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ABSTRACT
With the booming demand for machine learning (ML) applica-
tions, it is recognized that the number of knowledgeable data
scientists cannot scale with the growing data volumes and appli-
cation needs in our digital world. Therefore, several automated
machine learning (AutoML) frameworks have been developed to
fill the gap of human expertise by automating most of the process
of building a ML pipeline. In this paper, we present a micro-level
analysis of the AutoML process by empirically evaluating and
analyzing the impact of several learning settings and parameters,
i.e., meta-learning, ensembling, time budget and size of search
space on the performance. Particularly, we focus on AutoSklearn,
the state-of-the-art AutoML framework. Our study reveals that no
single configuration of these design decisions achieves the best
performance across all conditions and datasets. However, some
design parameters have a statistically consistent improvement over
the performance, such as using ensemble models. Some others
are conditionally effective, e.g., meta-learning adds a statistically
significant improvement, only with a small time budget.

1 INTRODUCTION
Due to the increasing success of machine learning techniques in
several application domains, they attract lots of attention from the
research and business communities. Hence, a wide range of fields
is witnessing many breakthroughs achieved by machine and deep
learning techniques [18, 29]. Furthermore, machine learning has
significant achievements compared to human-level performance.
For example, AlphaGO [20] defeated the GO game’s champion,
and deep learning models excelled in image recognition and sur-
passed human performance years ago [23].

Nevertheless, the machine learning modeling process is a highly
iterative, exploratory, and time-consuming process. Therefore, re-
cently, several frameworks (e.g., AutoWeka [22], AutoSklearn [7],
SmartML [17]) are proposed to support automating the Com-
bined Algorithm Selection and Hyper-parameter tuning (CASH)
problem [13, 19, 28]. The performance of the automatically gener-
ated pipelines, by these AutoML frameworks, is perfect for some
tasks such that data scientists cannot develop pipelines to beat it;
not even AutoML designers, as seen in the ChaLearn AutoML
Challenge 2015/2016 [12].
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These AutoML frameworks follow different learning settings,
i.e., parameters or options that AutoML users have to preset while
submitting the input dataset. For example, AutoSklearn [7]
and SmartML [17] adopt a meta-learning-based mechanism to
improve the automated search process’s performance. That is, they
start with the most promising models that have performed well
with similar datasets. ATM [21] limits the default search space into
only three classifiers, namely, Decision Tree, K-Nearest Neigh-
bours, and Logistic Regression. AutoSklearn offers an ensem-
bling mechanism as a post-hoc optimization instead of report-
ing only the best-performing model. Additionally, most AutoML
frameworks run within a user-determined time budget. Although
the user has the option to use different flavors of AutoML tools
by manipulating these learning settings, it is hard to decide which
of them should be used for the input dataset. So, these learning
settings are just hyper-parameters for AutoML tools.

Understanding the impact of these learning settings on real-
world datasets is vital, especially when the authors of the AutoML
frameworks evaluate their contributions using relatively small
datasets [22]. Besides, the authors may knowingly or unknowingly
select datasets on which their frameworks perform well.

In this study, we present a thorough analysis of the significance
of various hyper-parameters (learning settings) of the AutoML pro-
cess, including meta-learning, ensembling, length of time budget
and size of search space. Since AutoSklearn supports different
settings for all of these hyper-parameters, we nominated it to be
the backbone of this study.

So, the contribution of this paper can be summarized as follows:

• We benchmark 100 datasets on different learning settings
(hyper-parameters) of AutoSklearn.

• The impact of each hyper-parameter of AutoSklearn
has been examined using different configurations.

• For each positive/negative impact of hyper-parameter con-
figuration, we validate its consistency using Wilcoxon
statistical test [27].

• Eventually, we provide a simple guideline for which of
these hyper-parameters is expected to improve the perfor-
mance score based on the input datasets’ characteristics.

This analysis is ongoing and extendable. So, we will update
it with new datasets and additional frameworks. For ensuring
reproducibility, we have released all artifacts (e.g., datasets, source
code, log results).1

The remainder of this paper is organized as follows. We discuss
the related work in Section 2. Section 3 describes our experi-
ment design and defines the target learning settings. Section 4
presents the impact of meta-learning (Section 4.1), ensembling

1https://datasystemsgrouput.github.io/AutoMLDesignDecisions/
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(Section 4.2), length of the time budget (Section 4.3), and size of
the search space (Section 4.4). The datasets that show significant
performance differences towards/against any of these design pa-
rameters are further analyzed in Section 4.5. Finally, we conclude
the paper in Section 5.

2 RELATED WORK
Recently, several studies have surveyed and compared the per-
formance of various AutoML frameworks [11, 13, 19, 24, 28].
In general, these studies show no clear winner as there are al-
ways some trade-offs that need to be considered and optimized
according to the context of the problems and the user’s goals.
For example, Gijsbers et al. [11] have conducted an experimental
study to compare the performance of 4 AutoML systems, namely,
AutoWeka, AutoSklearn, TPOT and H2O using 39 datasets
and time budgets of 1 and 4 hours. The study results observed
that some AutoML tools perform significantly better or worse on
several datasets than others. The authors could not draw clear con-
clusions about which data properties could explain this behavior.

Truong et al. [24] have conducted a study using 300 datasets
to compare the performance of 7 AutoML frameworks, namely,
H2O, [15], AutoSklearn, Ludwig2, Darwin3, TPOT and
Auto-ml using dynamic time budgets. The results of this study
showed that no framework managed to outperform all others on a
plurality of tasks. Across the various evaluations and benchmarks,
H2O, Auto-keras and AutoSklearn performed better than
the rest of the tools.

Zöller and Huber [28] have performed a comparison for 8
CASH optimization algorithms, namely, Grid Search, Random
Search, ROBO (RObust Bayesian Optimization) [16], BTB (Bayesian
Tuning and Bandits)4, hyperopt [1], SMAC, BOHB [6] and Optu-
nity5. The comparison results showed that all CASH algorithms’
performance, except the grid search, perform similarly on av-
erage. The authors also noted that a simple search algorithm
such as random search did not perform worse than the other
algorithms. Besides, the authors compared the performance of
6 AutoML frameworks, namely, TPOT, hpsklearn6, Auto-
Sklearn, ATM, H2O in addition to Random Search. The re-
sults of the frameworks’ comparison showed that on average, all
AutoML frameworks have similar performance. However, for a
single dataset, the performance differs on average by 6% accuracy.

To the best of our knowledge, this study is the first that focuses
on analyzing the learning settings and parameters of the AutoML
process. The previous studies mainly focus on comparing whole
frameworks’ performance or comparing different optimization
techniques’ performance. Thus, a single configuration of the learn-
ing settings is used with all the tested datasets. Mostly, it is the
default settings to have a fair comparison among the benchmarked
frameworks [11, 13, 19, 24, 28]. In contrast, this study focuses
on the impact of the learning settings and different configura-
tion of the AutoML framework over the accuracy performance.
Understanding this relationship can help the domain expert use
AutoML frameworks and select the learning setting configuration
that works well with his dataset.

2https://github.com/uber/ludwig
3https://www.sparkcognition.com/product/darwin/
4https://github.com/HDI-Project/BTB
5https://github.com/claesenm/optunity
6https://github.com/hyperopt/hyperopt-sklearn/tree/master/hpsklearn

3 EXPERIMENT DESIGN
In this paper, we followed the best practices on how to construct
and run good machine learning benchmarks and general-purpose
algorithm configuration libraries [2]

3.1 AutoML framework: AutoSKLearn
AutoSklearn [7], the winner of two ChaLearn AutoML chal-
lenges, is implemented on top of Scikit-Learn, a popular
Python machine learning package [9]. It uses Sequential Model-
based Algorithm Configuration (SMAC) as a Bayesian optimiza-
tion technique [14]. Beside adopting meta-learning and ensem-
bling design decisions, time budget and search space are also con-
figurable in AutoSklearn. The framework uses meta-learning
for initializing the search process as a warm start. It also utilizes
the ensembling learning setting to improve the performance of
output models. Moreover, one of the main advantages of Auto-
Sklearn is that it comes with different execution options. In
particular, its basic vanilla version (AutoSklearn-v) applies
only the SMAC optimization techniques for the AutoML optimiza-
tion process. However, AutoSklearn also allows the end-users
to enable/disable the different optimization options including the
usage of meta-learning (AutoSklearn-m), ensembling (Auto-
Sklearn-e) in addition to the full version (AutoSklearn)
where all options are enabled.

3.2 Datasets
We used 100 datasets that are collected from OpenML reposi-
tory [26]. OpenML datasets are already preprocessed into numer-
ical features. Therefore, they match the input criteria of Auto-
Sklearn. The datasets include binary (50%) and multi-class
(50%) classification tasks. The sizes of these datasets varies be-
tween 5KB and 643MB. The datasets used in this study cover a
wide spectrum of various meta-features (e.g., r_numerical_features,
class_entropy, max_prob, mean_prob, std_dev, dataset_ratio, sym-
bols_sum, symbols_std_dev, skew_std_dev, kurtosis_min, kurto-
sis_max, kurtosis_mean and kurtosis_std_dev) [5]. Each dataset
is partitioned into training and validation split (80%) and a test
split (20%) which is used to evaluate the output pipeline.

3.3 Hardware Choice and Resources
The experiments are conducted on Google Cloud machines. Each
machine is configured with 2 vCPUs, 7.5 GB RAM, and ubuntu-
minimal-1804-bionic. Each experiment is run four times with
different time budgets: 10, 30, 60, and 240 minutes.

3.4 Learning Settings Definitions
Learning settings are the parameters or options that AutoML
users have to preset while submitting the input dataset. This paper
focuses on four of them: meta-learning, ensembling, time budget,
and search space size. In the following, we define each of them
in the context of AutoML and briefly describe their mechanism
used in AutoSklearn.

Meta-learning [25] is the process of learning from previous
experience gained while applying various learning algorithms on
different types of data. In the context of AutoML, the main advan-
tage of meta-learning techniques is that it allows hand-engineered
algorithms to be replaced with automated methods designed in a
data-driven way. Thus, it is used partially to simulate the machine
learning expert’s role for non-technical users and domain experts.
AutoSklearn applies a meta-learning mechanism based on a
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knowledge base storing the meta-features of datasets and the best-
performing pipelines on these datasets. Thirty-eight statistical and
information-theoretic meta-features are used. In the offline phase,
the meta-features and the empirically best-performing pipelines
are stored for each dataset in their repository (140 datasets from
OpenML repository) [7]. For any new dataset in the online phase,
the framework extracts its meta-features and searches for the most
similar datasets to return the top 𝑘 best-performing pipelines on
these similar datasets. These 𝑘 pipelines are used as a warm start
for the Bayesian optimization algorithm used in the framework.

In principle, the main goal of any meta-learning mechanism is
to improve the search process by enabling the optimization tech-
nique to start from the most promising pipelines instead of starting
from random pipelines. If the suggested pipelines’ performance is
bad, the Bayesian optimization can recover from these pipelines
in the next iterations.

Ensembling is the process of combining multiple ML base mod-
els trained on the same task to produce a better predictive model.
These base models can be combined using several techniques,
including simple/weighted voting (averaging), bagging, boosting,
and other techniques [4]. In principle, the main advantage of us-
ing ensembling techniques is that it allows the base models to
collaborate in generating more generalized predictions than using
predictions from an individual base model.
AutoSklearn stores the generated models instead of just

keeping the best-performing one. These models are used in a post-
processing phase to construct an ensemble. AutoSklearn uses
the ensemble selection methodology introduced by Caruana et
al. [3]. It is a greedy technique that starts with an empty ensemble
and attractively adds base models to the ensemble to maximize
the validation performance.

The time budget represents the available time to examine the
search space for identifying a pipeline that maximizes the perfor-
mance metric. Generally, it is hypothesized that the more time
allocated to the search process, the higher the achievable perfor-
mance [7]. On the other hand, there is another trade-off that should
be considered. The longer the budget we allocate, the more com-
puting resources we will consume for the search process and the
higher potential that the model overfits the validation set.

The search space of any AutoML process is significantly huge
[7]. For example, AutoSklearn [7] is designed with over 15
classifiers from the scikit-learn library. Assuming that each
classifier has only 2 hyper-parameters and each of them has 100
discrete values, the search space contains 15∗1002 different config-
urations. However, in practice, the real numbers are much bigger.

4 RESULTS AND DISCUSSION
The set of questions aimed at assessing the impact of each learning
settings are as follows. Does the parameter improve/decline the
performance accuracy? Is the difference statistically significant?
And finally, when is it recommended to enable each parameter?
We answer these questions for each learning setting.

4.1 The Impact of Meta-Learning
To assess the impact of the meta-learning mechanism, we experi-
mented with comparing the performance of AutoSklearn-m
and AutoSklearn-v. Figure 1 shows the impact of meta-learning
over different time budgets. From this figure, the meta-learning

mechanism does not always lead to better performance. On aver-
age, AutoSklearn-v and AutoSklearn-m provide a com-
parable performance, for the four time budgets, as shown in Ta-
ble 1. In particular, both versions have similar performance in
64, 55, 65, and 69 datasets for the 10, 30, 60, and 240 minutes,
respectively. Table 1 summarizes the results for each time budget.

We used Wilcoxon statistical test [10] to assess the signifi-
cance of the performance difference between AutoSklearn-v
and AutoSklearn-m. The results of Table 2 show that the
meta-learning mechanism makes a statistically significant gain
with 95% confidence (𝑝 value < 0.05) only with the 10 minutes
time budget. For the 30-minute time budget, the level of confi-
dence decreases to 93.5%. In contrast, for the time budgets of 60
and 240 minutes, there is no statistically significant difference in
using the meta-learning mechanism to initialize the search process.
Hence, this implies that the longer the time budget, the lower the
impact of the meta-learning mechanism. In general, the longer
the time budget, the more time available for the AutoML search
process to explore more configurations in the search space, and
the higher probability of getting a better result. Hence, the impact
of the initial configurations is also lower.

We speculated whether the improvement/deterioration effect
of meta-learning is constant for the same datasets across the four
time budgets. As shown in Figure 2(a), we found that 25 datasets
have better accuracy when using AutoSklearn-m than Auto-
Sklearn-v in the 10-minute time budget. Out of those 25, the
improvement holds in only 13 datasets in the 30-minute time
budget. Similarly, among the 13 datasets, only 5 continued to
retain this behavior during the 60-minute. Finally, only one dataset
is common among the four time budgets.

From Figure 2, the datasets with improved performance scores
are not the same in every time budget. By analyzing the meta-
features of these datasets, we could not link them over different
time budgets. This observation is also confirmed in Figure 2(b),
where we could not draw a clear pattern out of these datasets.

4.2 The Impact of Ensembling
To assess the impact of the ensembling, we have experimented
with comparing the performance of AutoSklearn-v and Auto-
Sklearn-e. Figure 3 shows the performance differences be-
tween the two versions over the 100 datasets. On average, Auto-
Sklearn-e increased the accuracy performance by 0.5%, 0.7%,
1%, and 1.4% over the four time budgets, successively. In partic-
ular, the two modes have similar performance in 65, 62, 66, and
63 datasets for 10, 30, 60, and 240 minute time budgets. Table 3
summarizes the results for each time budget.

Table 4 shows that the outcomes of Wilcoxon test, which is
conducted to assess the statistical significance of the accuracy per-
formance between AutoSklearn-v and AutoSklearn-e.
The table shows that the ensembling techniques enhance the per-
formance with a statistically significant gain with more than 95%
confidence (𝑝 value < 0.05) on the four time budgets. The level
of confidence is almost 99% over all the time budgets combined.
Generally, the ensemble model extremely boosts accuracy com-
pared to the individual base models as long as these base models’
errors are independent of each other [4]. Although the base classi-
fiers’ errors are not completely independent, the ensemble model
still enhances the accuracy in a statistically significant manner.
It means that the accuracy improvement by the ensemble model,
generated by AutoSklearn-e, is not a random effect and is
expected to be repeated on the new datasets.
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Figure 1: The impact of meta-learning over all time budgets. Upward triangles represent better performance with Auto-
Sklearn-m, downward triangles represent better performance using AutoSklearn-v, and circles mean that the absolute
difference is < 1%.

Table 1: Comparison between the performance of AutoSklearn-v and AutoSklearn-m in terms of accuracy over different
time budgets.

Time Budget Framework
Accuracy Gain (Accuracy) #datasets with

Mean SD Min Mean Max gain > 1%

10
AutoSklearn-m 0.870 0.144 1.1% 2.9% 6.7% 25
AutoSklearn-v 0.868 0.145 1.1% 5.6% 15.6% 10

30
AutoSklearn-m 0.873 0.143 1.1% 2.8% 18.8% 27
AutoSklearn-v 0.873 0.142 1.1% 4.5% 16.7% 17

60
AutoSklearn-m 0.873 0.141 1.1% 3.4% 18.8% 17
AutoSklearn-v 0.874 0.137 1.1% 4.4% 13.3% 17

240
AutoSklearn-m 0.877 0.136 1.1% 5.5.% 18.8% 13
AutoSklearn-v 0.872 0.149 1.1% 2.7% 8.3% 17

Table 2: The results of Wilcoxon test for assessing the statis-
tical significance of the performance difference using Auto-
Sklearn-m over AutoSklearn-v

Mode 1 Mode 2 Time Budget 𝑃 value

AutoSklearn-m AutoSklearn-v

10 0.004
30 0.065
60 0.434
240 0.305

The datasets with an enhanced/declined performance using
AutoSklearn-e within the four time budgets are studied. Fig-
ure 4(a) shows the overlap among the datasets with better per-
formance using the ensembling mechanism. Figure 4(b) shows
the overlap among the datasets with better performance using
AutoSklearn-v. Our analysis shows no strong correlation be-
tween the meta-features of the datasets and the probability of

having a better/lower performance impact using the ensembling
mechanism.

4.3 The Impact of Time Budget
This experiment compares the accuracy gain of all combinations of
time budget increases (10/30 Min, 10/60 Min, 10/240 Min, 30/60
Min, 30/240 Min, 60/240 Min). For space limitations, we could
not include all comparison figures. However, they are available in
the project repository.

On average, the accuracy values on each of the four time bud-
gets are comparable. For example, the base/increased time budgets,
i.e., 10/30 Min (Figure 5(a)), 30/60 Min (Figure 5(b)), 60/240 Min
(Figure 5(c)) and 10/240 Min (Figure 5(d)), have similar perfor-
mance in 65, 57, 66, and 60 datasets, respectively. The accuracy
of the base time budget was lower than the performance of the
increased time budget for 9, 9, 13, and 11 datasets on the four
figures, respectively. On the other hand, they have better perfor-
mance for 17, 21, 22, and 26 datasets. The majority of the datasets



Table 3: Comparison between the performance of AutoSklearn-v and AutoSklearn-e in terms of accuracy over different
time budgets.

Time Budget Framework
Accuracy Gain (Accuracy) #datasets with

Mean SD Min Mean Max gain > 1%

10
AutoSklearn-e 0.873 0.139 1.1% 4.1% 16.4% 22
AutoSklearn-v 0.868 0.145 1.1% 3.4% 8.3% 12

30
AutoSklearn-e 0.880 0.136 1.1% 3.4 13.5% 27
AutoSklearn-v 0.873 0.142 1.1% 3.1% 11.1% 10

60
AutoSklearn-e 0.884 0.132 1.1% 4.9% 12.5% 24
AutoSklearn-v 0.874 0.137 1.1% 3.1% 6.4% 9

240
AutoSklearn-e 0.886 0.130 1.1% 7.1% 52.7% 14
AutoSklearn-v 0.872 0.149 1.1% 2.9% 8.3% 11
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Figure 2: Overlap among datasets having better perfor-
mance using AutoSklearn-m(a), and AutoSklearn-v(b)
through each time budget. The new color in each bar repre-
sents the number of new datasets with higher performance
at this time budget, while the same color represents the same
datasets from previous time budgets.

Table 4: The results of Wilcoxon test for assessing the statis-
tical significance of the performance difference using Auto-
Sklearn-e over AutoSklearn-v

Framework 1 Framework 2 TB 𝑃 value

AutoSklearn-e AutoSklearn-v

10 0.011
30 0.000
60 0.000

240 0.008

achieve a performance improvement when increasing the time
budget, while few datasets witness a performance decline. Thus,
offering more time for AutoSklearn to search for a better so-
lution generally lead to accuracy performance gains as previously
established in [7]. Table 5 shows the statistical significance of
increasing the time budget [27]. In particular, increasing the time
budget from 10 minutes to 30 minutes and from 60 minutes to 240
minutes do not provide a statistically significant performance gain.
On the other hand, increasing the time budget from 10 to 60, 30

Table 5: The results of Wilcoxon test for assessing the statis-
tical significance of the performance gain for increasing the
time budget

Framework TB 1 TB 2 Avg. Acc. Diff 𝑃 value

AutoSklearn-v

30 10 0.005 0.226
60 10 0.007 0.004
60 30 0.002 0.141
240 10 0.007 0.000
240 30 0.002 0.027
240 60 0.000 0.110

AutoSklearn-m

30 10 0.004 0.211
60 10 0.004 0.198
60 30 0.00 0.956
240 10 0.008 0.099
240 30 0.004 0.614
240 60 0.004 0.398

AutoSklearn-e

30 10 0.007 0.000
60 10 0.011 0.000
60 30 0.004 0.675
240 10 0.013 0.000
240 30 0.006 0.038
240 60 0.002 0.265

AutoSklearn

30 10 0.003 0.362
60 10 0.009 0.000
60 30 0.005 0.019
240 10 0.014 0.001
240 30 0.011 0.002
240 60 0.005 0.117

Table 6: Search space effect: result summary

Search Space Mean SD
3𝐶 0.867 0.139
𝐹𝐶 0.863 0.153

to 60, 10 to 240, and 30 to 240 provide a statistically significant
accuracy gain.

4.4 The Impact of The Size of The Search Space
In this experiment, we compare the accuracy using the full search
space, with all available classifiers (𝐹𝐶), to a subset of search space
containing the best-performing classifiers (3𝐶). In practice, we
selected the top 3 classifiers, i.e., support vector machine, random
forest, and decision trees, based on the results of the 𝐹𝐶. Table 6
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Figure 3: The impact of ensembling over all time budgets. Upward triangles represent better performance with Auto-
Sklearn-e, downward triangles represent better performance using AutoSklearn-v, and circles means that the absolute
difference is < 1%
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Figure 4: Overlap among datasets having better perfor-
mance using AutoSklearn-e(a) and AutoSklearn-v(b)
through each time budget. The new color in each bar repre-
sents the number of new datasets with higher performance
at this time budget, while the same color represents the same
datasets from previous time budgets.

shows that both search spaces have a comparable performance.
Figure 6 shows the effect of using the 𝐹𝐶 against using only 3𝐶 on
AutoSklearn. The results show that there is no clear winner. In
particular, the 𝐹𝐶 exceeds the accuracy of 3𝐶 in 28 datasets with
an average accuracy gain of 3.3%, while using 3𝐶 achieves better
performance on 21 datasets with an average accuracy difference
of 5.9%. Besides, 50 datasets have negligible accuracy differences

Table 7: The results of Wilcoxon test for assessing the statisti-
cal significance of the performance difference for increasing
the search space

Mode 1 Mode 2 Avg. Acc. Diff 𝑃 value
𝐹𝐶 3𝐶 -0.003 0.618

(less than 1%). The Wilcoxon test (Table 7) shows no statistically
significant difference between the two search spaces. Although the
𝐹𝐶 is much larger, it does not reduce accuracy than the exploited
search space (3𝐶). Therefore, it is better to keep all classifiers in
the target search space.

4.5 Special Runs and Discussion
The datasets with substantial performance differences towards/against
any of the discussed learning settings are further investigated and
reran 3 times per configuration. We noticed that most of these
datasets have an order of magnitude fewer instances than features
or have significantly few instances (mostly with datasets from med-
ical domains); see Table 8. Generally, the generated pipelines and
their accuracy for these kinds of datasets are completely different
in each iteration. For instance, 5 different classifiers are selected
in 6 unique pipelines for the dataset_40_sonar (sonar)
dataset.

In principle, the importance of the learners’ hyper-parameters
varies based on their effect on the accuracy [8]. Moreover, the
importance of the hyper-parameters depends on the dataset charac-
teristics. For example, the regularization parameter is critical for
datasets with fewer instances than features to avoid over-fitting.
Hence, the AutoML tool should pay more attention to it for better
generalization with the current few instances.
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(a) 10-30 Min.
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(b) 30-60 Min.
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(c) 60-240 Min.
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(d) 10-240 Min.

Figure 5: The impact of increasing the time budget on AutoSklearn performance from 𝑥 to 𝑦 minutes (x-y). Upward triangles
represent better performance with 𝑦 time budget. Downward triangles represent better performance on 𝑥 time budget. Circles
mean that the difference between 𝑥 and 𝑦 is < 1%.
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Figure 6: The impact of reducing the search space size on
each AutoML framework. Upward triangles represent bet-
ter performance with 𝐹𝐶 search space. Downward triangles
represent better performance with 3𝐶 search space. circles
means that the difference between 𝐹𝐶 and 3𝐶 is < 1%.

In AutoSklearn, the ML pipeline structure consists of three
fixed components, i.e., data preprocessor, feature preprocessor,
and classifier. AutoSklearn tries several options for each stage
and selects the one that maximizes the validation accuracy. Since
the feature engineering phase is significant, the output pipelines
have high-performance differences when they have different fea-
ture preprocessors, even if the same classifier is selected for all
of them. For example, although lda is selected as a classifier in
two pipelines for dbworld-bodies (bodies), their accura-
cies are very different; i.e., 93.8% for AutoSklearn-v since it
used nystroem_sampler preprocessor compared to 75% for
AutoSklearn-m without any preprocessors. Additionally, over
AutoSklearn-v, two pipelines with the same Gaussian naive
Bayes gaussian_nb classifiers generate 100% and 83.3% ac-
curacy values with different preprocessors. In practice, the feature
engineering phase consumes most of the data scientists’ time;

however, it is not handled very well by any AutoML tool, in-
cluding AutoSklearn [24]. Therefore, there is a huge room of
improvement in the automated feature engineering phase.

These results reflect the great importance of the feature engi-
neering phase as a crucial step in classical machine learning. The
right feature engineering phase could turn the feature space into a
linearly separable space, so even naive classifiers could achieve
relatively high accuracy. On the other hand, skipping this phase
or using the wrong feature engineering preprocessors makes it
harder to achieve relatively high accuracy, even for the most effi-
cient classifiers. Therefore, the image datasets that use many raw
pixels as features usually have an oscillated performance based
on the preprocessors selected in the feature engineering phase.
Consequently, the pipeline that uses more suitable preprocessors
to the target datasets relatively achieves better accuracy.

Using AutoSklearn-e’s greedy implementation of ensem-
bling with datasets having significantly few instances declines
the performance since the validation set is expected to contain
significantly few instances too. The fitted model is vulnerable to
over-fitting on such a small validation set, e.g., GCM in Table 8.

We believe that when dealing with really big datasets7, the
optimization process would not have the luxury to attempt the
same large number of configurations. The reason behind this is the
significant costs (e.g., time and computing resources) associated
with each configuration attempt. Thus, to tackle the challenge of
dealing with big datasets, there is a crucial need for a distributed
AutoML search process. For such big datasets, the meta-learning
mechanism can have a better significant impact on reducing the
search space and optimizing the search process with possibly a

7The average size of the 100 datasets of our experiments is 21.2MB (relatively
small). Relatively big datasets such as Cifar-10 (643MB) have failed with Auto-
Sklearn.



Table 8: A sample of the datasets’ characteristics and results
from the repeated (special) runs. ’m’, ’e’, ’v’ stands for the
version of AutoSklearn (A).

.
Dataset #Feat. #Inst. A Accuracy

10 minutes

sonar 61 208
m 0.885 0.827 0.788
v 0.846 0.827 0.712

bodies 4703 64
m 0.875 0.875 0.75
v 0.938 0.938 0.875

tumors_C 7130 60
m 0.666 0.666 0.60
v 0.666 0.466 0.466

micro-mass 1301 517
m 0.881 0.839 0.811
v 0.947 0.867 0.832

GCM 160064 190
e 0.604 0.604 0.583
v 0.792 0.708 0.646

30 minutes

stemmed 3722 64
m 0.812 0.812 0.75
v 0.875 0.875 0.812

lymphoma 4027 45
m 0.812 0.812 0.75
v 0.875 0.875 0.812

rsctc2010_3 22278 95
m 0.958 0.875 0.875
v 1.0 0.833 0.75

240 minutes

CovPokElec 65 1.4 M
m 0.954 0.888 0.62
v 0.80 0.572 0.504

lower number of attempts on the defined time budgets (See Table 8
for CovPokElec dataset).

5 CONCLUSION
This paper analyzed and presented various learning settings em-
ployed and considered by AutoSklearn and AutoML frame-
works in general. The analysis revealed several insights that can
help guiding and improving the design process of future AutoML
techniques. For example, no single configuration of the learning
settings can always guarantee an improved performance for all
datasets. Each configuration usually leads to a better performance
on some datasets. The meta-learning mechanism pioneered by
AutoSklearn achieves a statistically significant performance
improvement with short time budgets only, and it significantly
loses its impact with longer time budgets. Hence, we only rec-
ommend using meta-learning with limited time budgets or huge
datasets that take a long time to train a single model. Using ensem-
ble models, the results are consistently improved for all time bud-
gets. Thus, ensembling is recommended, especially with datasets
with many features and few instances, since it reduces the chances
of overfitting the validation split. Increasing the time budget needs
to be considered carefully as it does not always lead to a significant
improvement of the accuracy. This decision can vary from one
scenario/application to another according to the resource-accuracy
tradeoff. Deliberately selecting a small search space with a few
top-performing classifiers can lead to a very comparable perfor-
mance with a search space that includes many classifiers. This
insight is essential, especially for large datasets that cannot be
evaluated using many classifiers. Finally, this study opens the door
to adaptively configure the default learning settings for each input
dataset based on its characteristics.
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