
ConversationalQuestion Answering
Using a Shift of Context

Nadine Steinmetz
TU Ilmenau
Germany

nadine.steinmetz@tu-ilmenau.de

Bhavya Senthil-Kumar∗
TU Ilmenau
Germany

bhavya.tharayil@gmail.com

Kai-Uwe Sattler
TU Ilmenau
Germany

kus@tu-ilmenau.de

ABSTRACT
Recent developments in conversational AI and Speech recogni-
tion have seen an explosion of conversational systems such as
Google Assistant and Amazon Alexa which can perform a wide
range of tasks such as providing weather information, making ap-
pointments etc. and can be accessed from smart phones or smart
speakers. Chatbots are also widely used in industry for answering
employee FAQs or for providing call center support. Question
Answering over Linked Data (QALD) is a field that has been
intensively researched in the recent years and QA systems have
been successful in implementing a natural language interface to
DBpedia. However, these systems expect users to phrase their
questions completely in a single shot. Humans on the other hand
tend to converse by asking a series of interconnected questions or
follow-up questions in order to gather information about a topic.
With this paper, we present a conversational speech interface for
QA, where users can pose questions in both text and speech to
query DBpedia entities and converse in form of a natural dialog
by asking follow-up questions. We also contribute a benchmark
for contextual question answering over Linked Data consisting
of 50 conversations with 115 questions.

1 INTRODUCTION
With the increasing development of speech interfaces and chat-
bots, conversations with a machine becomes more and more
common to us. In this way, we are able to ask for everyday life
questions or communicate with a customer service without talk-
ing to a real person. But, most of these interfaces are either trained
for a very specific domain or limited regarding the type of ques-
tions. Question Answering (QA) systems based on knowledge
graphs aim to answer questions from the complete knowledge
represented by the graph. Of course, these systems might be
specific regarding domains, but as they are tuned to graph pat-
terns, they also work on all-purpose knowledge bases, such as
DBpedia or Wikidata. Over the last 10 years, the QALD challenge
(Question Answering on Linked Data) provided several datasets
for the purpose of the evaluation of QA systems. Participating
systems showed the ability to understand natural language and
transform it to a formal query language, specifically SPARQL, in
order to provide the answer to the user. These systems require
complete sentences respectively questions to be able to process
it further. In contrast to that, conversations often start with a
complete sentence/question and further questions are built upon
the context of the preceding questions and answers. Follow-up
questions might only consist of a fragment of a sentence andmust
be completed in mind. Which means, the conversation partner
∗work was done during master studies at the institute

© 2021 Copyright for this paper by its author(s). Published in theWorkshop Proceed-
ings of the EDBT/ICDT 2021 Joint Conference (March 23–26, 2021, Nicosia, Cyprus)
on CEUR-WS.org. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0)

requires context information. For humans, this also works when
the context is slightly changing to a different topic but having
minor touch points to the previous course of conversation. With
this paper, we present an approach that is able to handle slight
shifts of context. Instead of maintaining within a certain node
distance within the knowledge graph, we analyze each follow-up
question for context shifts.

The remainder of the paper is organized as follows. In Sect. 2
we discuss related approaches from QA and conversational QA.
The processing of questions and the resolving of context is de-
scribed in Sect. 3. We have implemented this approach in a pro-
totype which is evaluated using a newly created benchmark. The
results of this evaluation presented in Sect. 4 demonstrate that
our approach is capable of holding up several types of conversa-
tions. Finally, we conclude the results in Sect. 5 and point out to
future work.

2 RELATEDWORK
Our proposed system is able to handle speech as incoming ques-
tions as well as textual input. But, the focus of our proposed
approach is the correct interpretation of conversations within
a context. Therefore, we limit the related work discussion to
research approaches on conversational QA.

Dhingra et al. proposed KB-InfoBot, a fully neural end-to-end
multi-turn dialogue agent for the movie-on-demand task [2]. The
agent is trained entirely from user feedback. It consists of a belief
tracker module which identifies user intents, extracts associated
attributes and tracks the dialogue state in a Soft-KB Lookup com-
ponent which acts as an interface with the movie database to
query for relevant results. Subsequently, the state is summarized
into a vector and a dialogue policy selects the next action based
on the current dialogue state. The policy is entirely trained on
dialogues. The authors proposed a probabilistic framework for
computing the posterior distribution of the user target over a
knowledge base, termed a Soft-KB lookup. This distribution is
constructed from the agent’s belief about the attributes of the
entity being searched for. The dialogue policy network, which
decides the next system action, receives as input this full distribu-
tion instead of a handful of retrieved results. They show in their
experiments that this framework allows the agent to achieve a
higher task success rate in fewer dialogue turns.

Microsoft XiaoIce (“Little Ice” in Chinese) is a social chatbot
primarily designed to be an AI companion with which users
can form long-term emotional connections [9]. This ability to
establish long-term emotional connections with it’s human users
distinguishes XiaoIce from other social chatbots as well as popu-
lar conversational AI personal assistants such as Amazon Alexa,
Apple Siri, Microsoft Cortana and Google Assistant. XiaoIce has
attracted over 660 million active users since it’s launch in May
2014 and has developed more than 230 skills ranging from ques-
tion answering, recommending movies or restaurants to story-
telling and comforting. The most sophisticated skill is Core Chat,



where it engages in long and open-domain conversations with
users.

In addition to having a sufficiently high IQ required to acquire
a range of skills to complete specific tasks, social chatbots also
require a high EQ tomeet user’s emotional needs such as affection
and social belonging. The core of XiaoIce’s system design is
this integration of IQ (content-centric) and EQ(user-centric) to
generate contextual and interpersonal responses to form long-
term connections with users.

Just recently, Vakulenko et al. presented an approach to rewrite
follow-up questions in conversations in order to be able to find
the correct answer [8]. Their proposed model employs a unidirec-
tional Transformer decoder. The model predicts output tokens
according to an input sequence, references to a context and the
context itself. The training is performed via a teacher forcing
approach. After the rewriting the input question, the question
answering process consists of the retrieval of relevant text pas-
sage, the extraction of potential answers to the input question
and the ranking of the answers. The authors evaluated their ap-
proach on two different datasets (QuAC1 and TREC CAsT2). In
contrast to this approach, we are dealing with Semantic Ques-
tion Answering and our procedure to identify the context of a
conversational question is based on the underlying knowledge
graph – specifically DBpedia.

Reddy et al. introduced CoQA, a dataset for Conversational
Question Answering systems consisting of a total of 127,000
questions along with their answers from conversations about
text passages covering seven unique domains [5]. The questions
are sourced using Amazon Mechanical Turk (AMT) by pairing
two annotators, a questioner and an answerer, on a passage
through the ParlAI MTurk API [4]. Every turn in the conversation
contains a question and an answer along with its rationale. It
can be observed that around 30.5 percent of questions of the
CoQA dataset does not rely on coreference with the conversation
history and can be answered on their own. Almost half of the
questions (49.7 percent) contains explicit coreference markers
such as he, she, it etc. They either refer to an entity or an event
introduced previously in the conversation. The remaining 19.8
percent does not contain any explicit coreference markers but
rather refer to an entity or event implicitly.

All approaches and datasets described above are based on un-
structured textual sources. In contrast, our approach is based on
a knowledge graph and takes into account the semantic informa-
tion of the question. Christmann et al. proposed an approach for
a conversational question answering system based on knowledge
graphs [1]. Their system, CONVEX, examines the context of an
input question within the knowledge graph to be able to answer
follow-up questions. Based on the edges and nodes around the
focus of the first question, the conversation is disambiguated.
The authors claim, that topic changes are rare and therefore only
investigate the direct context of the focus entity of the first ques-
tion. The evaluation benchmark has been sourced by Amazon
Mechanical turks and consists of around 11,200 conversations
based on theWikidata knowledge graph. In contrast to CONVEX,
our system is able to handle topic changes – for instance, when
the focus entity changes, but the predicate stays the same.

1https://quac.ai/
2http://www.treccast.ai/

3 METHOD & IMPLEMENTATION
We introduce our system architecture as well as the processing
steps during a conversation in detail in the next sections.

3.1 System Architecture
Figure 1 shows the proposed system architecture. The speech
interface is developed using Dialogflow, Google’s development
suite for creating dialogue systems on websites, mobiles and IoT
devices. Dialogflow is an AI-powered tool that uses machine
learning models to detect the intents of a conversation. The
underlying Google Speech To Text (STT) API is used to transcribe
user audio input to text. The Text To Speech (TTS) API returns
spoken text as an audio response back to the user. Once an intent
is identified, Dialogflow sends a request to our webhook service
with the transcribed text. The webhook service then handles the
user’s query and forwards the request to an external API, i.e. our
HYDRA API3 or the DBpedia SPARQL endpoint4. The result of
the query is forwarded to the Dialogflow agent which finally
responds to the user with a spoken audio response. Our webhook
service is the crux of the system that handles user queries. It has
a context module that handles follow-up queries by resolving
co-references to entities using a dialog memory.

3.2 Processing Steps
The processing steps in answering a query and the detailed steps
are explained in the following sections.

3.2.1 Intent Classification. In the first step, we identify the
intent of the question. An intent represents the purpose of a
user’s input. We predefined several intents for each type of user
request that we want to handle:

• greeting intent,
• factual intent - for first questions in conversations,
• follow-up intent - to continue a conversation,
• a fall back intent - if something is wrong with the question
or it cannot be answered.

For the training of the intent classification, we used a set of dif-
ferent sample questions. We identify follow-up queries based on
certain contextual cues such as the presence of explicit coref-
erences like “he”, “she”, “his”, “her”, “it’s” etc. or the presence
of phrases like “What about”, “how about” etc. For each intent
we can either respond with a static response as in the case of a
greeting or define an action to be triggered. When a user writes
or says something, Dialogflow categorizes and matches the inten-
tion to a predefined intent which is known as intent classification.
For example a query such as “What is the capital of Cameroon?”
would be matched to the factual query intent and a follow-up
query such as “What about China?” or “What is its population?”
would trigger the follow-up query intent.

3.2.2 Webhook Service and fulfillment. Once the intent of the
user is identified and necessary parameters are extracted, the
Dialogflow agent sends a webhook request with the transcribed
raw text, the intent and parameters to the webhook service. De-
pending on the intent the appropriate function is triggered to
handle the query. The end user writes or speaks in the query
“What is the capital of Czech Republic?”. Based on the identified
intent, different actions are triggered:

3HYDRA is a QA system that transforms natural language to SPARQL queries for
DBpedia based knowledge graphs, cf. [7]
4http://dbpedia.org/sparql

https://quac.ai/
http://www.treccast.ai/
http://dbpedia.org/sparql


Figure 1: System architecture

• A factual question intent triggers a direct API call for our
QA API HYDRA.

• In case of a follow-up intent, the question is further ana-
lyzed to retrieve the answer.

In the first case, the Dialogflow agent matches the end-user
expression to the factual question intent. This triggers the di-
rect call of the HYDRA REST interface with the query text. The
HYDRA system generates the SPARQL using a template based
approach (citation removed for anonymization). The HYDRA ser-
vice provides the answer and the respective SPARQL query. The
answer is transferred to Dialogflow and provided to the user.
The SPARQL query is parsed to extract the subject and predi-
cates and the information is stored in the output context of the
payload. For every conversation turn, we store the subject and
predicate values to the context memory in order to resolve them
in subsequent follow-up queries.

For the case of a follow-up intent, the question is analyzed
according to the context of the preceding conversation. The actual
analysis and the processing steps are described in the following
sections.

3.2.3 Context Detection in Follow-Up Questions. For the han-
dling of a follow-up question, several steps are required. We
identify named entities and detect the type of context shift. For
our approach, a shift of context can occur in two different ways:

• Either the focus (named entity (NE)) of the previous ques-
tion changes,

• or the follow-up question asks for a different relation-
ship/predicate.

Consider the factual question What is the official language in
Germany?. Here, the following types of questions are conceivable:

• Either the follow-up question asks for the official language
of a different country,

• or the conversation continues with a question regarding a
different fact about Germany.

Any other question would be considered to be a new factual
question and the start of a new conversation. Therefore, we
identify the shift of context and continue to generate the new
SPARQL based on the context that maintains compared to the
previous question.

Thus, our approach for context detection in follow-up ques-
tions consists of three sub-steps:

• named entity linking (NEL),
• predicate identification (PI), and

• context resolution (CR).
These three sub-steps are described in detail in the next para-

graphs.

Named Entity Linking. Following the sample question above,
a follow-up question could be "What about China?". Therefore,
we have to identify the new NE in the follow-up question. For
this, we utilize the DBpedia Spotlight web service5 to annotate
mentions of named entities in natural language. As the disam-
biguation of ambiguous mentions would require more contextual
information, the service most probably returns the NE with the
highest popularity.

Predicate Identification. In case, the follow-up question asks
for a different fact about the same named entity, we need to
identify the new predicate. For the mapping of natural language
phrases to their corresponding DBpedia properties, the PATTY
[3] dataset is used. The dataset contains the original labels and
several alternative phrases for each DBpedia ontology property.
For the identification of property phrases in the follow-up ques-
tion, we use the Dialogflow entity service6. The service allows to
create custom (so-called) entities to train the identification within
natural language. Here, we create a custom entity using the DB-
pedia properties and the phrases from the PATTY dataset. The
Dialogflow agent is trained on this custom entity and we can use
this custom entity to recognize the phrases in the user utterance
and map them to their corresponding DBpedia properties. For ex-
ample the phrases “Who was he married to”, “Who is his spouse”
etc. are both mapped to the DBpedia property dbo:spouse and
stored as a parameter in the webhook request payload and can
then be accessed in the webhook service handler.

Resolving context. When resolving the context of a follow-up
question, the essential task is to identify the shift of context. This
means, we need to analyze if the focus entity or the property
changed. Consider the example query as shown in Figure 2. Here,
the subject is “Germany” and “official language” refers to the
property. Now consider the follow-up query “What about China?”
is being asked. After the NEL and PI processing steps, the named
entity for the phrase “China” is identified so we know that this
is the new focus the user is referring to, but no properties are
identified. Therefore, we need to resolve this from the predicate
mentioned in the previous turn in the conversation. We fetch the
property dbo:language from the dialogmemory and reformulate

5https://www.dbpedia-spotlight.org/api
6https://cloud.google.com/dialogflow/es/docs/entities-custom

https://www.dbpedia-spotlight.org/api
https://cloud.google.com/dialogflow/es/docs/entities-custom


Figure 2: Sample conversation for a change of the property.

the same query by replacing the subject with the new subject
dbr:China7. Now consider the case if the follow-up question
would have been "What about its national anthem?". Here, the
new property for the phrase “national anthem” is identified, but
it is required to keep the focus entity of the previous question.
We reformulate the query with the new property dbo:anthem
and subject dbr:Germany.

In this manner, at each turn of the conversation we need to
identify the presence of new entities or properties and resolve the
missing part from the dialog memory. However, the follow-up
question could also refer to the answer of the previous question
instead of the focus entity. In order to resolve the coreferences
correctly, we rely on some rules based on the question type of
the first question and the type of follow-up question as follows:

• WHO : If the first question is of typeWHO, we know that
the expected answer type is a Person. Therefore if we have
a WHO question followed by a coreference "he/she" as in
When was she born , we resolve the subject to the answer
of the first question. If the same question is followed by a
coreference "it" such as "What is its capital?", we resolve
the coreference to the first subject "Germany".

• WHAT / WHICH : If the first question is of typeWHAT
or WHICH, the expected answer can be a city, currency,
number etc. For example, "What is the capital of Czech
Republic?". Now if this is followed by a question such
as "what about its currency?" the coreference "it" is re-
solved to the subject of the first question which is "Czech
Republic".

• WHEN : For the question type When, the expected an-
swer is a date or a location, for example "Whenwas Princess
Diana born?" or "Where was Bach born?”. So, in the case
of a follow-up question with a coreference "she" as in "And
when did she die?" shall always be resolved to the subject
identified in the first question "Princess Diana".

• WHERE : Here the expected answer is a location, for
example "Where was Bach born?" and similar to the case
of WHEN questions coreferences in subsequent follow-up
questions are always resolved to the subject of the first
question, here in this example "Bach".

• HOW : The expected answer type of the question type
How is a number. Hence, the coreferences in the follow-up
queries are resolved to the subject in the first question. For
example the question "How many languages are spoken

7dbr refers to http://dbpedia.org/resource/

in Turkmenistan?" followed by the coreference "it" in the
follow up question "What is it’s official language?" will be
resolved to "Turkmenistan".

These rules are based on our inferences from the questions in
our evaluation benchmark consisting of 50 sets of conversations
each of which referring to a question in the QALD 9 evaluation
dataset (cf. Section 4.1).

Asking for Clarifications. There are some cases where the
follow-up question may be referring to the answer to the first
question rather than the subject in the first question. For exam-
ple consider the question “Who is the spouse of Barack Obama?”
followed by the follow-up question “And at which school did she
study?”. In this case, the focus of the first question as well as the
answer are of the same type. We need to resolve the ambiguity
by asking the user for clarification. For our first prototype, we
have implemented this for the entities of type dbo:Person. That
means, whenever the focus of the question as well as the answer
to the question both refer to named entities of type dbo:Person,
we resolve it by asking the user which entity they actually meant.
We have implemented this using a suggestions list where users
are presented a list of options containing the two entities men-
tioned and users can confirm by selecting the appropriate entity.8
Figure 4 shows the conversation which tries to answer the QALD
question “What is the name of the school where Obama’s wife
studied?”. The focus of the first query is "Barack Obama" and
the system returns the spouse of Barack Obama i. e, “Michelle
Obama” as the answer. Both entities are saved in the dialog mem-
ory for future reference. When the user asks the follow-up query
"Which school did she/he study?" the system asks the user for
clarification in order to resolve the ambiguity between the two
entities9. The user is now presented with two options as a sug-
gestion list and the user confirms by clicking on one of them.
Finally, the response for the selected query is presented to the
user.

3.2.4 Query execution and Response. Once all entities are re-
solved, the SPARQL query is formulated by replacing the subject
and property in the general SPARQL template. Then the SPARQL
query is sent to the SPARQL endpoint for execution. The results
from the SPARQL endpoint are usually either a text value such

8Cf. the demo video for a clarification case:
https://zenodo.org/record/4091782/files/Barack_Obama.mov
9The system cannot resolve the gender-based co-reference of the relevant named
entities yet. But, DBpedia provides the property foaf:gender which could be used
to identify the gender of all entities involved.

https://zenodo.org/record/4091782/files/Barack_Obama.mov


Figure 3: Sample conversation for a change of the focus entity.

Figure 4: Asking for Clarification

as a number or a DBpedia resource URI. We then formulate the
response as a complete sentence. For this, we use a template
of the format “The property of subject is result”. This text
response is converted to speech using Google Text To Speech
(TTS) and presented as spoken output to the user. If the result of
the SPARQL query returns a DBpedia resource then we execute
an additional SPARQL query to obtain the thumbnail associated
with that resource if any10.

Figure 5 shows an example conversation which answers the
question "Who was the doctoral supervisor of Albert Einstein?"
from the QALD 7 train dataset in a series of follow-up questions
and Figure 6 shows another sample conversation that answers
the question "What is the currency of Czech Republic" in a series
of follow-up questions.

10We prepared video demos for some sample conversations:
https://doi.org/10.5281/zenodo.4091782

4 EXPERIMENTS
In this section, we describe some experiments to evaluate our
system and discuss the results. Section 4.1 introduces our evalu-
ation benchmark. Sections 4.2.1 and 4.2.2 shows the evaluation
results of our system against the benchmark. In Section 4.2.3, we
take a detailed look at the separate processing steps and their
failure rates. Section 4.2.4 describes the results based on different
question types and discusses the reasons of failures in each step.
We discuss the results of our experiments in Section 4.3.

4.1 Evaluation Benchmark
To the best of our knowledge, benchmarks for conversational QA
anchored in DBpedia are not existent11. Therefore, we introduce a
benchmark of 50 conversations inspired from the QALD datasets.
Each conversation consists of a direct question followed by one
or two follow-up questions. Overall, the dataset consists of a total

11Christmann et al. [1] and Saha et al. [6] just recently published their own bench-
marks for conversational QA on knowledge graphs, but they are both based on
Wikidata.

https://doi.org/10.5281/zenodo.4091782


Figure 5: Example query and response (QALD-7-train, question id:167)

Figure 6: Example query and response (QALD-7-train, question id:169)

Table 1: Precision of direct and follow-up questions

Type of Question Number of Questions Answered micro-precision
Direct questions 50 42 0.84

Follow-up questions 65 49 0.75
Overall 115 91 0.79

of 115 individual questions12. Each conversation corresponds to
a question from the QALD-9 dataset.

12The dataset is available at https://doi.org/10.5281/zenodo.4091791

4.2 Evaluation Results
Our proposed system performs completely automatically for
given questions. Of course, in case of ambiguous follow-up ques-
tions a human interaction is required and requested. But the
analysis of the questions and the shift of context is performed

https://doi.org/10.5281/zenodo.4091791


Table 2: Percentage of failure by processing step

Processing Step Percentage of
Failure

Speech Recognition 1.74
Response from HYDRA 7.83

Named Entity Recognition 1.74
Mapping of Predicate 5.21

Resolving context 4.35
Total 20.86

Table 3: Percentage of failure by follow-up question type

Follow-up Question Type Percentage of
Failure

WHERE 3.07
WHO/WHOM 7.69

WHICH 4.61
HOW 0

WHEN 0
AND/WHAT + Entity 9.23

AND/WHAT + coreference + Predicate 0
Total 24.61

completely self-sufficient. Hence, the evaluation is executed in
this manner. Section 4.2.1 and Section 4.2.2 describe our system’s
results based on the precision and recall overall and in detail
for follow-up questions. In Section 4.2.3 the separate processing
steps of our system are evaluated. In addition, the reasons for a
failure in each step are discussed. In Section 4.2.4, we evaluate
the system based on the different types of follow-up questions
and discuss the reasons for failures.

4.2.1 Overall Precision and Recall. We evaluated the overall
quality of our system using the measures precision and recall.
Recall is defined as the ratio of the number of correct answers
provided by the system to the number of gold standard answers
with respect to a single question 𝑞. In other words, recall is the
ratio of intersection of relevant and retrieved answers to the
relevant answers. And precision is defined as the ratio of the
number of correct answers provided by the system to the number
of all answers provided by the system. Precision can also be
defined as the ratio of the intersection of relevant and retrieved
answers to the retrieved answers.

For the dataset mentioned above, 36 out of 50 conversations
were answered completely by our system. i. e. it answered the
direct question as well as all follow-up questions correctly. We
did not encounter partially correct answers. That means either
the system fails to answer a question or the answer returned
was 100% accurate. Therefore, recall and precision are the same
(= 0.72) for the complete dataset.

4.2.2 Direct and Follow-up queries. We also evaluated the di-
rect and follow-up queries separately and the results are shown
in Table 1. The evaluation benchmark consists of 50 direct ques-
tions out of which 42 were answered correctly and 49 out of the
65 follow-up queries were answered correctly. As a result the
micro-precision of direct queries is 0.84 and that of follow-up
queries is 0.75. The overall precision considering 91 out of the
total 115 questions answered is 0.79.

4.2.3 Evaluation based on Processing steps. In this section, we
present the evaluation results based on the individual processing
steps involved and discuss the reasons of failure. Table 2 shows
the percentage of failure for each of the processing steps. As
discussed in the previous section, the system was able to answer
80% of the questions in overall and the failure rate is 20 %.

Response from HYDRA. The highest percentage of failure is
due to an incorrect response to the direct query from HYDRA
as the failure of a direct query results in the failure of all of the
subsequent follow-up queries. For some answers the HYDRA API
took too long to respond or was not able to provide an answer.

Mapping of Predicates. We use PATTY predicates and their
synonyms mapped to a custom Dialogflow Entity for identifying
predicates. In some cases the system fails to map the correct
predicate which results in failure. Consider the example “When
was Bach born?” from the conversation id:5 followed by the query
“And where?”. The system fails to map "where" to "birthPlace"
as this is open-ended and could also refer to a location as in
“deathPlace”. As a result the follow-up query cannot be resolved.

Resolving context. The step involving resolution of co-references
or context in follow-up queries is a very crucial step in answering
follow-up queries and has a percentage of failure of 4.35. We rely
on certain patterns or rules to resolve the context and sometimes
the system does not have enough knowledge to resolve them
correctly. Consider the example question “What is the capital of
French Polynesia?”. The follow-up question is “And who is its
mayor?” Now, during context resolution it fails to map the coref-
erence “its” to the correct reference (the response of the question)
as it does not have the background knowledge that only entities
of type city are associated with the predicate “mayor”. Hence, it
fails to correctly resolve the co-reference in the follow-up query.

Named Entity Recognition. NEmentions in the follow-up queries
are annotated using the DBpedia Spotlight API which was suc-
cessful in resolving most of the entities in our benchmark. How-
ever, it fails to resolve certain entities resulting in a failure rate of
1.74. For example, in the follow-up question "And Harry Potter"
the entity is resolved to the television show with the same name
and not the character Harry Potter which results in an incorrect
response.

Speech Recognition. The Google Speech to Text (STT) API was
able to correctly transcribe most of the queries correctly and
had a very low failure rate of 1.74. However, it fails to transcribe
few entities such as the entity "Kurosawa" and "MI6" correctly
which could also vary depending upon the accent or the way
different users pronounce certain words. It however performed
well overall during the evaluation and was able to transcribe
most of the input accurately.

4.2.4 Evaluation based onQuestion Types. In this section we
evaluate the system based on the different types of follow-up
questions. The system was able to correctly answer 75 % of the
follow-up queries and has an overall failure rate of 24. 61 %. Table
2 shows the percentage of failure for each of the question types.

4.3 Discussion
The quality of Conversational QA systems depends on the suc-
cess of previous questions along the course of the conversation
and especially of the first question. As shown in Table 2, the
success of a conversation fails when the response of the initial



QA API is incorrect. Therefore, QA in general is required to be
the objective of our further research. Secondly, we identified the
issue of predicate mapping when the question mentions a rela-
tionship that cannot be mapped to a predicate in the knowledge
graph. The lack of alternative labels for parts of the ontology is
common for most knowledge graphs – properties and ontology
classes often have one label whereas the entities mostly have
a main label and alternative label. Therefore, further research
regarding ontology enrichment is required to provide more infor-
mation about the ontology properties and classes. Unfortunately,
a direct comparison of results to other approaches is not feasible,
because of the lack of a common DBpedia-based benchmark and
published results respectively.

5 SUMMARY & FUTUREWORK
In this paper, we present our approach to conversational QA
using a shift of context. We developed a first prototype that iden-
tifies the type of context shift. Thus, a conversation consisting
of several request about specific topics / named entities can be
conducted. But, in contrast to other recent approaches, our ap-
plication is also able to handle slight changes of context and
the follow-up question are not required to ask for facts in direct
proximity of the primary sub-graph within the knowledge graph.
Likewise, smart speech interfaces, such as Alexa or Siri, are able
to do a conversation in a very limited way, for instance when
asked for the weather of different cities in a sequence. Whereas
our approach is able to handle conversations about a wide range
of domains and with slight changes of topics. In addition, we
propose a novel dataset for evaluation purposes of conversational
QA based on DBpedia. The dataset consists of 50 conversations
and 115 questions and it is publicly available. As discussed in
the evaluation section, the improvement of basic QA system is
essential for the quality of a conversation. Here, we pursue the
further development of our pattern-based approach to map simi-
lar natural language patterns to similar graph patterns. Future
work will also include the further utilization of DBpedia context
information to construct the application in a more intelligent
manner: for the identification of the gender of named entities, or
the mapping of natural language phrases to DBpedia properties.

6 ACKNOWLEDGEMENTS
This work was partially funded by the German Research Founda-
tion (DFG) under grant no. SA782/26.

REFERENCES
[1] Philipp Christmann, Rishiraj Saha Roy, Abdalghani Abujabal, Jyotsna Singh,

and Gerhard Weikum. 2019. Look Before You Hop&#58; Conversational
Question Answering over Knowledge Graphs Using Judicious Context Ex-
pansion. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (CIKM ’19). ACM, New York, NY, USA, 729–738.
https://doi.org/10.1145/3357384.3358016

[2] Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal
Ahmed, and Li Deng. 2017. End-to-End Reinforcement Learning of Dialogue
Agents for Information Access. In ACL.

[3] Max Planck Institute for Informatics. 2014. A large resource
of relational patterns. https://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/yago-naga/patty/.

[4] Alexander Miller, Will Feng, Dhruv Batra, Antoine Bordes, Adam Fisch, Jiasen
Lu, Devi Parikh, and Jason Weston. 2017. ParlAI: A Dialog Research Soft-
ware Platform. In Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations. Association for Computa-
tional Linguistics, Copenhagen, Denmark, 79–84. https://doi.org/10.18653/v1/
D17-2014

[5] Siva Reddy, Danqi Chen, and Christopher D. Manning. 2019. CoQA: A Con-
versational Question Answering Challenge. Transactions of the Association for
Computational Linguistics 7 (March 2019), 249–266. https://www.aclweb.org/
anthology/Q19-1016

[6] Amrita Saha, Vardaan Pahuja, Mitesh M. Khapra, Karthik Sankaranarayanan,
and Sarath Chandar. 2018. Complex Sequential Question Answering: Towards
Learning to Converse Over Linked Question Answer Pairs with a Knowledge
Graph. CoRR abs/1801.10314 (2018). arXiv:1801.10314 http://arxiv.org/abs/
1801.10314

[7] Nadine Steinmetz, Ann-Katrin Arning, and Kai-Uwe Sattler. 2019. From Natural
Language Questions to SPARQL Queries: A Pattern-based Approach. In Daten-
banksysteme für Business, Technologie und Web (BTW 2019), 18. Fachtagung des
GI-Fachbereichs „Datenbanken und Informationssysteme" (DBIS), 4.-8. März 2019,
Rostock, Germany, Proceedings. 289–308. https://doi.org/10.18420/btw2019-18

[8] Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu, and Raviteja Anan-
tha. 2020. Question Rewriting for Conversational Question Answering.
arXiv:cs.IR/2004.14652

[9] Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum. 2018. The Design and Im-
plementation of XiaoIce, an Empathetic Social Chatbot. arXiv:cs.HC/1812.08989

https://doi.org/10.1145/3357384.3358016
 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/patty/
 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/patty/
https://doi.org/10.18653/v1/D17-2014
https://doi.org/10.18653/v1/D17-2014
https://www.aclweb.org/anthology/Q19-1016
https://www.aclweb.org/anthology/Q19-1016
http://arxiv.org/abs/1801.10314
http://arxiv.org/abs/1801.10314
http://arxiv.org/abs/1801.10314
https://doi.org/10.18420/btw2019-18
http://arxiv.org/abs/cs.IR/2004.14652
http://arxiv.org/abs/cs.HC/1812.08989

	Abstract
	1 Introduction
	2 Related Work
	3 Method & Implementation
	3.1 System Architecture
	3.2 Processing Steps

	4 Experiments
	4.1 Evaluation Benchmark
	4.2 Evaluation Results
	4.3 Discussion

	5 Summary & Future Work
	References

