
Trust-empowered, IoT-driven Legitimate Data Offloading
Zakaria Maamar
Zayed University

Dubai, UAE

Noura Faci
Claude Bernard Lyon 1 University

Lyon, France

Fadwa Yahya
Prince Sattam Bin Abdulaziz University

Al-Kharj, KSA
University of Sfax

Sfax, Tunisia

Ejub Kajan
State University of Novi Pazar

Novi Pazar, Serbia

ABSTRACT
In an IoT environment deployed on top of fog and/or cloud nodes,
offloading data between nodes is a common practice that aims at
lessening the burden on these nodes and hence, meeting some
real-time processing requirements. Existing initiatives put em-
phasis on “when to offload” and “where to offload” using criteria
like resource constraint, load balancing, and data safety during
transfer. However, there is limited emphasis on the trustworthi-
ness of those nodes that will accept the offloaded data putting
these data at risk of misuse. To address this limited emphasis,
this paper advocates for trust as a decision criterion for iden-
tifying the appropriate nodes for hosting the offloaded data. A
trust model is designed and then, developed considering factors
like legitimacy, quality-of-service, and quality-of-experience. A
system demonstrating the technical doability of the trust model
is presented in the paper, as well.

KEYWORDS
Data Flow, Internet-of-Things, Legitimacy, Offloading, Trust.

1 INTRODUCTION
On top of many forms of computing like enterprise comput-
ing, social computing, and ubiquitous computing in the field of
Information and Communication Technologies (ICT), cloud com-
puting and fog computing are among the latest ICT that organiza-
tions are embracing to tackle the challenges of the 21𝑠𝑡 century.
On the one hand, cloud computing promotes Anything-as-a-
Service (*aaS) as an operation-model for organizations that wish
to concentrate on their core functionalities/competencies with-
out being concerned with the availability of resources like soft-
ware, platform, and infrastructure that would help them achieve
these functionalities/competencies [16]. On the other hand, fog
computing promotes the deployment of processing and/or stor-
age resources at the edge of communication networks allowing
to minimize data transfer and hence, exposure to interception
risks [14].

A good amount of research discusses the synergy between
cloud and fog [5, 19]. Indeed, despite cloud’s pay-per-use and
scalability benefits, cloud seems inappropriate for certain applica-
tions (e.g., medical and financial) that have strict non-functional

© 2021 Copyright for this paper by its author(s). Published in theWorkshop Proceed-
ings of the EDBT/ICDT 2021 Joint Conference (March 23–26, 2021, Nicosia, Cyprus)
on CEUR-WS.org. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0)

requirements to satisfy in terms of minimizing data latency1 and
protecting sensitive data. Transferring data over public networks
to (distant) clouds could take time because of high latency, could
be subject to interceptions, alterations, and misuses, and could
depend on network availability and reliability. To address data-
latency and data-sensitivity concerns, ICT practitioners advocate
for fog computing where processing and/or storage resources
are made available “next” (or close) to where data is collected.
According to Khebbeb et al. [10], cloud means more resources,
more reliability, and more latency, and fog means less resources,
less reliability, and less latency.

Although cloud and fog are expected towork hand-in-hand [12],
there are situations where cloud and/or fog could seek the sup-
port of their respective peers with handling some complex cross-
border business applications, for example. Known as offload-
ing [13, 14], this support would lead to forming relations between
Clouds (C) [6], between F ogs (F) [2], and between F ogs and
Clouds. We refer to these 3 cases as C2C offloading flow, F 2F
offloading flow, and F 2C offloading flow. However, to ensure a
successful offloading we advocate for some criteria with focus,
in this paper, on trust and eligibility that would help identify the
right peers according to past experiences, current loads, possible
incentives, to cite just some. Questions that we raise, but not
limited to, include how can clouds/fogs discover potential peers,
what risks do clouds/fogs take when offloading demands to peers,
what demands would be eligible for offloading, and what criteria
would define clouds/fogs’ trust and eligibility levels?

We adopt the Internet-of-Things (IoT) to illustrate trust-empowered
legitimate offloading in an environment of multiple clouds and
fogs. Millions of things (e.g., from tiny ones like chips to ad-
vanced ones like embedded systems) are spread over the cyber-
physical environment collecting, processing, and distributing
data of different types ranging from humidity level in a ware-
house to number of vehicles on a highway. According to Gartner2,
6.4 billion connected things were in use in 2016, up 3% from 2015,
and will reach 20.8 billion by 2020. It is worth noting the strong
coupling of IoT with cloud and fog computing as reported in the
literature [5, 23]. Many IoT applications adopt cloud and fog as
operation models to secure the necessary resources for process-
ing, storing, and communicating the massive volume of data that
things generate.

The rest of this paper is organized as follows. Section 2 briefly
discusses cloud, fog, IoT, and trust. Section 3 presents the offload-
ing model in terms of core concepts, types of data flows, and
types of offloading flows. The way trust guides the definition of

1Puliafito et al. report that “the average round trip time between an Amazon Cloud
server in Virginia (U.S.A.) and a device in the U.S. Pacific Coast is 66ms; it is equal to
125ms if the end device is in Italy; and reaches 302ms when the device is in Beijing” [17].
2www.gartner.com/newsroom/id/3165317.

www.gartner.com/newsroom/id/3165317

offloading flows is presented in the same section. Section 4 dis-
cusses the technical details about the offloading model. Section 5
concludes the paper and presents some future work.

2 BACKGROUND
Cloud is a popular ICT topic that promotes Anything-as-a-Service
operation model, adopts pay-per-use pricing, and consolidates
hardware and software resources into datacenters. Cloud comput-
ing is sometimes known as the 5𝑡ℎ utility after water, electricity,
gas, and telephony. However, despite cloud popularity, it does
not, unfortunately, suit all applications. It is not recommended
for latency-critical and data-sensitive applications due to reasons
such as high latency added by network connections to datacen-
ters and multi-hops/nodes between end-users and datacenters
that increase the probability of interceptions.

Fog was generalized by Cisco Systems in 2014 [4] as a new
ICT-based operation model. The main idea is to make process-
ing, storage, and networking resources “close” to data. Real-time
applications that require almost immediate action and high data
protection, would discard cloud in favor of fog. Varghese et al.
mention that by 2020, existing electronic devices will generate
43 trillion gigabytes of data that need to be processed in cloud dat-
acenters [22]. However, this way of operating cannot be sustained
for a long time due to frequency and latency of communication
between these devices and cloud datacenters. Fog would process
data closer to its source so, that, network traffic is reduced and
both Quality-of-Service (QoS) and Quality-of-Experience (QoE)
are improved.

The abundant literature about IoT does not help propose a
unique definition for IoT. We present 3 references on IoT that
are [3], [1], and [18]. First, Barnaghi and Sheth provide a good
overview of IoT requirements and challenges [3]. On the one
hand, requirements include quality, latency, trust, availability,
reliability, and continuity that should impact efficient access and
use of IoT data and services. On the other hand, challenges re-
sult from today’s IoT ecosystems that feature billions of dynamic
things thatmake existing search, discovery, and access techniques
and solutions inappropriate for IoT data and services. Second,
Abdmeziem et al. discuss IoT characteristics and enabling tech-
nologies [1]. Characteristics include distribution, interoperability,
scalability, resource scarcity, and security. And, enabling tech-
nologies include sensing, communication, and actuating. These
technologies are mapped onto a three-layer IoT architecture that
are referred to as perception, network, and application, respec-
tively. Finally, Qin et al. [18] define IoT from a data perspective
as “In the context of the Internet, addressable and interconnected
things, instead of humans, act as the main data producers, as well
as the main data consumers. Computers will be able to learn and
gain information and knowledge to solve real world problems di-
rectly with the data fed from things. As an ultimate goal, computers
enabled by the Internet of Things technologies will be able to sense
and react to the real world for humans”.

Trust may be seen as “an act of faith; confidence and reliance
in something that’s expected to behave or deliver as promised” [9].
On a regular basis, many ICT researchers and practitioners raise
the question of should we trust cloud services or not. In [8],
Huang and Nicol examine reputation- and Service-Level Agree-
ment (SLA)-based trust, and Trust-as-a-Service (TaaS). While
reputation-based trust relies on a user’s (or community of users)
experience, SLA-based trust relies on QoS measurement and
SLA verification, in our case between clouds. The former may

be weak in term of transparency since a cloud service’s provider
may fine tune/beef up some measurements. Regarding TaaS, trust
management is delegated to a third party. However, some policy
and security mechanisms should be considered, like accreditation
and Public Key Infrastructure (PKI), and should also include a
cloud auditor in charge of certifying both the cloud provider and
the third party. In [9], Khan and Malluhi promote first, cloud
prevention to ensure data privacy and access control and second,
digital signature to ensure data integrity. The authors raise the
question of “how can cloud providers earn their customers’ trust
when a third party is processing sensitive data in a remote machine
located in various countries?”. In [11], Li presents FASTCloud
that is a framework to assess and select trustworthy cloud ser-
vice based on QoS. This framework’s 4 main components are
cloud service providers, cloud service customers, potential cloud
consumers, and a trustworthy cloud service selection. The last
one evaluates trust level of cloud services based on the collected
QoS attributes information by employing the trust assessment
model, and returning the trust assessment results to potential
cloud consumers.

3 OFFLOADING MODEL
This section discusses data flows in conjunction with offload-
ing flows and then, presents the impact of trust on offloading
decisions.

3.1 Overview
According toMahmud et al., offloading in the context of fog-based
applications could be bottom-up, top-down, and hybrid [14]. Us-
ing Fig. 1, we illustrate the cases of offloading flows (of), C2Cof,
F 2Fof, and F 2Cof, that could arise in conjunction with data
flows (df) that we specialize into T 2Cdf, T 2Fdf, and F 2Cdf
where T refers to Thing. df is meant for capturing data that
things collect/sense and conveying these data to recipients namely,
cloud and fog, depending on the under-development IoT appli-
cations’ functional and non-functional requirements [13]. Con-
veyed data could be either raw or processed depending again on
the recipients’ needs and these requirements, as well.

Cloud nodes Fog nodes
Raw/Processed-data flow

Raw-data flow

c

c f

f

c f

Raw-data flowCommunity of things

F2C offloading flow

F2F

offloading

flow

C2C

offloading

flow

Legend

Networking resourcesStorage resources Processing resources

Figure 1:Offloading flows in conjunction with data flows

3.2 Types of data flows
To define data flows, we rely on our previous work on cloud-
fog coordination [12, 24]. As stated above, data flows connect
thing and fog together (T 2Fdf), thing and cloud together (T 2Cdf),

and fog and cloud together (F 2Cdf)3. Although the 3 specialized
data flows could simultaneously exist, we came up in our pre-
vious work with 6 criteria whose use would permit to Highly-
Recommend (HR), Recommend (R), and Not-Recommend (NR)
which data flow should exist for an under-development IoT ap-
plication. These criteria are frequency (rate of data transfer from
things to fogs/clouds; the frequency could be regular, e.g., every
2 hours, or continuous), sensitivity (nature of data exchanged be-
tween things and fogs/clouds; highly-sensitive data should not be
exposed longer on networks during the exchange), freshness (how
important data exchanged between things and fogs/clouds should
be up-to-date, i.e., recent), time (delay that results from with-
holding/processing data at the thing level until its transfer to
fogs/clouds), volume (amount of data that things produce and
send to fogs/clouds), and criticality (demands that fogs/clouds
express with regard to data of things; low demands could lead
to ignoring certain data). Assumption made in support of the
6 criteria is that, distance-wise, clouds are far from things and
fogs are close to things.

In Table 1, we summarize how the afore-mentioned criteria,
taken independently from each other, assist with recommending
the establishment of specific data flows. More details about these
recommendations are presented in [12].

Contrarily to what we did in [12] where frequency, sensitivity,
freshness, time, volume, and criticality are taken independently
from each other, we combined them all using a fuzzy logic-based
multi-criteria decision making approach [24]. This approach was
demonstrated using a healthcare-driven IoT application along
with an in-house testbed that featured real sensors (tempera-
ture and humidity DHT11) and fog (rPi2) and cloud (Ubidots)
platforms. During the experiments, we modified the frequency
of streaming data (every 3 second, 5 second, 7 second, and ran-
domly) for each of the 3 data flows, T 2C, T 2F , and F 2C, and
the volume (around low and high amount) and criticality (around
low and high important) of the transmitted data. Upon data re-
ceipt at an end-point whether fog or cloud, we timestamped
data messages prior to storing them. Table 3 summarizes the
experiments with focus on the recommendations of establishing
specific data flows. More details about these recommendations
are presented in [24].

3.3 Types of offloading flows
C2Cof, F 2Fof, and F 2Cof identify possible interactions between
clouds, between fogs, and between fogs and clouds. As stated
earlier, the objective of offloading is to secure the support of all
parties that could either be “idle” or have a “light” load allowing
them to accommodate additional demands from peers. It is worth
noting that offloading flows are to a certain extent in-line with
data flows shedding light on the loads that clouds and fogs could
handle depending on the volume of data that things would submit
for processing and/or storage.

(1) C2Cof establishes collaboration between clouds accord-
ing to their ongoing loads and processing and storage
resources. In compliance with Fig. 1, things periodically
collect and generate (raw) data from the cyber-physical
surroundings and send these data to clouds (T 2Cdf) and/or
fogs (T 2Fdf) for processing/storage, as deemed neces-
sary (Section 3.2). A cloud can serve a certain number
of data-based demands instantly or offload some to other

3Pre-processing data at fogs prior to sending the pre-processed data to clouds.

reachable clouds in the same domain if this cloud is con-
gested, which could delay handling these demands. While
the offloading could be based on peers’ current loads (and
other performance criteria like storage capacity), we ex-
amine in Section 3.4 the value-added of trust in selecting
these peers.

(2) F 2Fof establishes collaboration between fogs according
to their ongoing loads and processing and storage re-
sources [2]. In compliance with Fig. 1, things periodically
collect and generate (raw) data from the cyber-physical
surroundings and send these data to fogs (T 2Fdf) and/or
clouds (T 2Cdf) for processing/storage, as deemed neces-
sary (Section 3.2). A fog can serve a certain number of
data-based demands instantly or offload some to other
reachable fogs in the same domain if this fog is congested,
which could delay handling these demands. While the of-
floading could be based on peers’ current loads (and other
performance criteria like storage capacity), we examine
in Section 3.4 the value-added of trust in selecting these
peers.

(3) F 2Cof establishes collaboration between fogs and clouds
when these fogs’ offloading demands cannot be accommo-
dated by other fogs in the context of F 2Fof. Performance
and/or trust criteria could back the decision of discard-
ing these fogs. In compliance with Fig. 1, fogs could send
(either raw or processed) data to clouds (F 2Cdf) for (ex-
tra) processing/storage, as deemed necessary. While the
offloading could be based on clouds’ current loads (and
other performance criteria like storage capacity), we ex-
amine in Section 3.4 the value-added of trust in selecting
these clouds.

3.4 Trust-empowered legitimate offloading
Table 3 contains the list of parameters used to calculate T rust
Scores (TS) of fogs and clouds. Among these parameters, we
cite list of acquaintances, QoS, and QoE.

In [7], Fiedler et al. suggest that different factors could influ-
ence𝑄𝑜𝐸. In our work, we adopt one influence factor that is𝑄𝑜𝑆
allowing to compute 𝑄𝑜𝐸 as per Equation 1.

𝑄𝑜𝐸 =

𝑔𝑜𝑜𝑑 if |𝑄𝑜𝑆𝐴 −𝑄𝑜𝑆𝑀 | ∈ [𝜎 + 𝛿, 1]
𝑓 𝑎𝑖𝑟 if |𝑄𝑜𝑆𝐴 −𝑄𝑜𝑆𝑀 | ∈ [𝜎 − 𝛿, 𝜎 + 𝛿 [
𝑏𝑎𝑑 if |𝑄𝑜𝑆𝐴 −𝑄𝑜𝑆𝑀 | ∈ [0, 𝜎 − 𝛿 [

(1)

where (𝜎 ± 𝛿) would define a threshold.
TS calculation begins with identifying potential connections

between data flows, between offloading flows, and between data
flows and offloading flows. The objective of this identification is
to determine who initiates what; a flow’s recipient could initiate
another flow and so on. In Fig. 2, dashed lines correspond to these
connections that we label as “could be the same”. In the context
of trust-empowered legitimate offloading, 4 out of 5 “could be
the same” connections constitute our focus as per the following
cases (only 2 are detailed):

Case 1. T 𝑖2F 𝑗

df −→ F 𝑗2F 𝑘
of |C

𝑘
of: following the formation of

a data flow from T 𝑖 to F 𝑗 , F 𝑗 assesses its current pro-
cessing and storage resources and, then, decides to form
an offloading load to convey the received (raw) data to
F 𝑘≠𝑗 , C𝑘 , or both F 𝑘≠𝑗 and C𝑘 . Detecting F 𝑘≠𝑗 and C𝑘

is made possible thanks to acq(F 𝑗). When calculating the
trust scores of F 𝑘 and/or C𝑘 and since F 𝑗 would finan-
cially compensate F 𝑘 and/or C𝑘 , we adopt a conservative

Table 1: Recommendations about establishing data flows when criteria are separated ([12])

Criterion Features T2Cdf T2Fdf F2Cdf
Frequency Continuous stream NR HR R

Regular stream
Short gaps NR HR HR
Long gaps R R R

Sensitivity High NR HR HR
Low R R R

Freshness Highly important NR HR R
Lowly important R R R

Time Real-time NR HR HR
Near real-time R HR HR
Batch-processing HR NR NR

Volume High amount HR NR NR
Low amount NR HR R

Criticality Highly important HR HR R
Lowly important NR HR HR

Table 2: Recommendations about establishing data flows when criteria are combined ([24])

Scenario # Criteria Linguistic values Recommendations
Scenario 1 Frequency Regular stream (around short and long gaps)★ T2Cdf is NR; T2Fdf is R; F2Cdf is R

Sensitivity Around low and high★
Freshness Highly important
Time Real time
Volume High amount
Criticality Lowly important

Scenario 2 Frequency Regular stream long gaps T2Cdf is NR; T2Fdf is HR; F2Cdf is R
Sensitivity High
Freshness Highly important
Time Real time
Volume Low amount
Criticality Lowly important

Scenario 3 Frequency Regular stream long gaps T2Cdf is R; T2Fdf is R; F2Cdf is R
Sensitivity Low
Freshness Lowly important
Time Near-real time
Volume Around low and high amount★
Criticality Highly important

Scenario 4 Frequency Regular stream long gaps T2Cdf is R; T2Fdf is R; F2Cdf is R
Sensitivity Low
Freshness Lowly important
Time Near-real time
Volume High amount
Criticality Around lowly and highly important★

★: Around Val1 and Val2 : both Val1 and Val2 meet the scenario’s requirements.

Table 3: List of parameters

Parameter Description
C Set of all clouds in the ecosystem.
F Set of all fogs in the ecosystem.
T Set of all things in the ecosystem.
𝑎𝑐𝑞 (𝑒𝑛𝑡𝑖𝑡𝑦𝑖) Acquaintance function that returns entities (things, fogs, and/or clouds) within range of entity𝑖 .
𝑄𝑜𝑆𝐴

C𝑖 2C 𝑗
Announced Quality of Service that C 𝑗 is expected to maintain when accepting C𝑖 ’s offloading demands. An-
nounced𝑄𝑜𝑆 is compared to Measured𝑄𝑜𝑆 (𝑄𝑜𝑆𝑀

C𝑖 2C 𝑗
) to detect any gap (Equation 1).

𝑄𝑜𝑆𝐴
F𝑖 2F 𝑗

Announced Quality of Service that F 𝑗 is expected to maintain when accepting F𝑖 ’s offloading demands. An-
nounced𝑄𝑜𝑆 is compared to Measured𝑄𝑜𝑆 (𝑄𝑜𝑆𝑀

F𝑖 2F 𝑗
) to detect any gap (Equation 1).

𝑄𝑜𝑆𝐴
F𝑖 2C 𝑗

Announced Quality of Service that C 𝑗 is expected to maintain when accepting F𝑖 ’s offloading demands. An-
nounced𝑄𝑜𝑆 is compared to Measured𝑄𝑜𝑆 (𝑄𝑜𝑆𝑀

F𝑖 2C 𝑗
) to detect any gap (Equation 1).

𝑄𝑜𝐸C𝑖 2C 𝑗 Quality of Experience that C𝑖 uses to capture its satisfaction in C 𝑗 completing its offloading demands. 𝑄𝑜𝐸 is
dependent on whether C 𝑗 ’s𝑄𝑜𝑆 was maintained or not at run-time4 .

𝑄𝑜𝐸F𝑖 2F 𝑗 Quality of Experience that F𝑖 uses to capture its satisfaction in F 𝑗 completing its offloading demands. 𝑄𝑜𝐸 is
dependent on whether F 𝑗 ’s𝑄𝑜𝑆 was maintained or not at run-time.

𝑄𝑜𝐸F𝑖 2C 𝑗 Quality of Experience that F𝑖 uses to capture its satisfaction in C 𝑗 completing its offloading demands. 𝑄𝑜𝐸 is
dependent on whether C 𝑗 ’s𝑄𝑜𝑆 was maintained or not at run-time.

𝑛C𝑖 2C 𝑗 Number of times that C 𝑗 accepted/completed the offloading demands of C𝑖 .
𝑛F𝑖 2F 𝑗 Number of times that F 𝑗 accepted/completed the offloading demands of F𝑖 .
𝑛F𝑖 2C 𝑗 Number of times that C 𝑗 accepted/completed the offloading demands of F𝑖 .

approach that consists of making F 𝑗 check the authentic-
ity of the data’s sender, namely T 𝑖 , using T 𝑖2F 𝑗

df. To this
end, we relate authenticity to a flow’s initiator whether
this initiator would be a thing, a fog, or a cloud and de-
fine the concept of legitimate initiator [25]. Here, T 𝑖 is
the initiator and its legitimacy becomes a concern for F 𝑗 .

According to Pakulski, “legitimacy therefore relies not on
trust, but on an impersonal sense of duty on the part of the
followers to follow commands of a proper authority, who-
ever is in authority, and whatever is the content of these
commands” [15].

Sources of data

flows to assign

Thing

(primary)

Fog

(secondary)

Cloud Fog Cloud

Sources of offloading

flows to assign

Fog

Fog Cloud

could be the same

Cloud

Cloud

co
u
ld

 b
e

th
e

sa
m

e

co
u
ld

 b
e

th
e

sa
m

e

could be

the same

could be the same

Figure 2: Potential connections between the different flows

For illustration, let us assume that T 𝑖 is illegitimate by
flooding F 𝑗 with “fake” data, which triggers the formation
of an offloading flow from F 𝑗 to F 𝑘 . Processing these
data at the level of F 𝑘 produces irrelevant results for users
along with wasting F 𝑗 ’s financial resources and F 𝑘 ’s
processing resources as well as “blaming” F 𝑘 for these
results. At the end, F 𝑗 adjusts the trust score of F 𝑘 . To
avoid this scenario, our approach to calculate trust scores
considers the legitimacy of a flow’s initiator along with
the quality of experience that results from handling this
flow. Due to legitimacy aspect, we refine 𝑄𝑜𝐸F 𝑗 2F𝑘 into
𝑄𝑜𝐸T𝑖

F 𝑗 2F𝑘
where T 𝑖 is the reason of making F 𝑗 interact

with F 𝑘 . We compute a data flow-triggered TSdf
F 𝑗 ,F𝑘

using Equation 2.

TSdf
F 𝑗 ,F𝑘 = Agg({𝐿𝑒𝑔T𝑖 ,F 𝑗 ×𝑄𝑜𝐸T𝑖

F 𝑗 2F𝑘 }𝑖=1,𝑛) (2)

where
- Agg refers to some common aggregate function like
average and minimum.

- 𝐿𝑒𝑔T𝑖 ,F 𝑗 is T 𝑖 ’s legitimacy when establishing a data
flow with F 𝑗 .

To define T 𝑖 ’s legitimacy, we develop behavioral patterns
like those presented in [20]. The objective is to demys-
tify the recurrent behavior of T 𝑖 based on its interac-
tions with fogs and/or clouds. We link behavioral patterns
to the recommendations presented in Table 2 and spe-
cialize them into legitimate pattern (L𝑝), where a thing
would implement HR and R outcomes that were obtained
with respect to IoT applications’ features/linguistic val-
ues (e.g., real-time and continuous streaming), and illegiti-
mate pattern (I𝑝), where a thing would do the opposite by
implementing NR outcomes. We compute 𝐿𝑒𝑔T𝑖 ,F 𝑗 using
Equation 3.

𝐿𝑒𝑔T𝑖 ,F 𝑗 = V(AppT𝑖 ,F 𝑗 ,T 𝑖2F 𝑗

df) (3)
where
- AppT𝑖 ,F 𝑗 is the IoT application in which T 𝑖 and F 𝑗

jointly participate.
- V(AppT𝑖 ,F 𝑗 ,T 𝑖2F 𝑗

df) refers to T 𝑖 ’s legitimacyValue
to send data to F 𝑗 during AppT𝑖 ,,F 𝑗 ’s execution.

V(AppT𝑖 ,F 𝑗 ,T 𝑖2F 𝑗

df) =

1 ∵ the data flow is highly recommended.
0 ∵ the data flow is recommended.
-1 ∵ the data flow is not recommended.

Case 2. F 𝑖2C 𝑗

of −→ C 𝑗2C𝑘
of: following the formation of an

offloading flow (that most probably would be connected
to a data flow from F 𝑖 to C 𝑗 , C 𝑗 assesses its current pro-
cessing and storage resources and, then, decides to convey
this offloading flow to C𝑘≠𝑗 . When C 𝑗 calculates the trust
score of C𝑘 , we deem necessary to include the trust score,
that F 𝑖 would have defined for C 𝑗 , in this calculation. The
rationale of this inclusion is that F 𝑖 would like to “know”
to whom its offloading flow would be assigned since its
initial contact for the offloading is C 𝑗 and not C𝑘 . Com-
pared to case 1, F 𝑖 ’s eligibility is not a concern based on
the previous trust score calculation that involved F 𝑖 and
C 𝑗 . After refining 𝑄𝑜𝐸C 𝑗 2C𝑘 into 𝑄𝑜𝐸F𝑖

C 𝑗 2C𝑘
where F 𝑖 is

the reason of making C 𝑗 interact with C𝑘 , we compute an
offloading flow-triggered TSof

C 𝑗 ,C𝑘 using Equation 4.

TSof
C 𝑗 ,C𝑘 = Agg({TSof

F𝑖 ,C 𝑗 ×𝑄𝑜𝐸F𝑖

C 𝑗 2C𝑘
}𝑖=1,𝑛) (4)

where, compared to Equation 2’s TSdf, Equation 4’s TSof

refers to trust-score calculation that is triggered because
of an offloading flow and not data flow and is defined as
follows:

TSof
F𝑖 ,C 𝑗 = Agg({𝑄𝑜𝐸C𝑝

F𝑖2C 𝑗 }C𝑝 ∈X𝑖,𝑗
) × 𝑒−|X𝑖,𝑗 | (5)

where
- X𝑖, 𝑗 denotes the multiset of peers (including 𝐶𝑘) to
which 𝐶 𝑗 forwarded the offloading demands of 𝐹 𝑖 .

- 𝑄𝑜𝐸C𝑝

F𝑖2C 𝑗 indicates 𝐹 𝑖 ’s offloading quality-of-experience
with 𝐶 𝑗 given C𝑝 in X𝑖, 𝑗 .

- |X𝑖, 𝑗 | represents X𝑖, 𝑗 ’s cardinality.
Case 3. T 𝑖2C 𝑗

df −→ C 𝑗2C𝑘
of following the formation of a

data flow from T 𝑖 to C 𝑗 , C 𝑗 assesses its current process-
ing and storage resources and then, decides to form an
offloading load to convey the received (raw) data to C𝑘≠𝑗 .

Case 4. F 𝑖2C 𝑗

df −→ C 𝑗2C𝑘
of: following the formation of a

data flow from F 𝑖 to C 𝑗 , C 𝑗 assesses its current process-
ing and storage resources and then, decides to form an
offloading load to convey the received (processed) data to
C𝑘≠𝑗 , for extra-processing.

4 EXPERIMENTS
This section discusses the testbed and experiments to validate
the offloading model and then, presents some results.

4.1 Testbed set-up
To check the technical doability of our offloading model, we de-
ployed a testbed that simulates both data flows between things
and clouds/fogs and offloading flows between fogs, between
clouds, and between fogs and clouds. Through the testbed, we
aimed at selecting the trustworthy recipient of an offloading flow.
The testbed is fully developed in Java SE 8 under Eclipse IDE
for Java Developers5. The computer used during development
runs Windows 8 64 bits, 1.4 GHz quad-core processor CPU, and
4GB RAM. The development focused on 3 decision-making com-
ponents discussed below:

• Thing decider runs over thing nodes to identify where data
of these things should be sent. This decider refers to our
cloud-fog coordination work (Table 2) and determines the
legitimacy of things when selecting data recipients as per
Equation 3. For instance, if fog is highly-recommended
and cloud is not-recommended as per Table 2, then the
thing decider will privilege fog nodes over cloud nodes.
Should the thing decider comply with this recommenda-
tion, then it assigns 1 as a legitimacy value to the thing
sending data to one of the fog to select.

• Fog offloading decider runs over fog nodes to identify a
trustworthy recipient of data when offloading data be-
comes necessary. Indeed, each fog in the testbed has its
fog offloading decider that accesses details stored in an in-
house developed database about past experiences between
various nodes (things, fogs, and clouds) of the testbed. Such
details include legitimacy of thing nodes and fog/cloud
nodes’ announced and measured QoSs. It is worth men-
tioning that we used a QoS dataset6 to assign QoS val-
ues to fog and cloud nodes when data flows or offload-
ing flows are required. Based on thing’s legitimacy and
cloud/fog QoSs, the fog offloading decider computes TS
for all acquaintances of a respective fog node. Finally, it
selects the node with the highest TS.

• Cloud offloading decider runs on top of cloud nodes acting
like fog offloading decider. Contrarily to fogs, clouds can
offload data to their peers, only.

4.2 Simulations and results
To validate both the offloading model and the decision makers’
outcomes, we carried out different experiments. First, an in-house
client-server Java application, 𝑇𝑎𝑝𝑝 , allowed to simulate things’
behaviors as clients sending data extracted from a T-drive Taxi
Trajectories dataset [26] to clouds and fogs that act as servers. We
annotated this dataset with data-flow recommendations (Table 2)
so that, the thing decider selects the best data flow recipient. Sec-
ond, we developed another client-server Java application,𝐶𝐹𝑎𝑝𝑝 ,
to simulate clouds’ and fogs’ behaviors when offloading data. A
cloud/fog is simultaneously a client when it offloads data and a
server when it receives data. Each cloud/fog’s 𝐶𝐹𝑎𝑝𝑝 receives
data sent by other nodes, stores them, and decides to offload
them to other nodes. As per Table 4, both Java applications run
on various types of computers that vary between personal lap-
tops located in KSA and Tunisia and desktops available in the
laboratories of Prince Sattam Bin Abdulaziz University in KSA.

To perform the experiments, we simulated data flows from
things to clouds/fogs. A data flow contains raw data in terms
of id, message extracted from T-drive Taxi Trajectories dataset,
5www.eclipse.org/downloads/packages.
6github.com/QXL4515/data-set.

and sending timestamps. Here, the thing decider coupled to𝑇𝑎𝑝𝑝
selects the adequate recipient of data flows that could be a cloud
or a fog (Table 2). In addition, the thing decider computes and
stores the legitimacy of things per data flow in a database. We
associate the experiments with the following scenarios:

• Scenario #1 simulates the offloading flows from a fog to
fogs. These flows are triggered by data flows received from
things (case 1, Section 3.4). To this end, the fog offloading
decider coupled to 𝐶𝐹𝑎𝑝𝑝 selects the adequate recipient
of the offloading flows. Indeed, the decider computes the
trust score (Equation 2) for all acquaintances of the current
fog node prior to selecting the one with the highest trust
score.

• Scenario #2 is built upon scenario #1 where simulations
are about offloading flows triggered by data flows but
expected to be offloaded from a fog to a cloud (case 1,
Section 3.4). Here, the fog offloading decider selects the
adequate cloud recipient of the offloading flows based on
the calculated trust scores (Equation 2).

• Scenario #3 simulates offloading flows triggered by pre-
vious offloading flows from a cloud node another cloud
node (case 2, Section 3.4). Here, the cloud offloading decider
selects the best recipient of the offloading flows based on
the calculated trust scores (Equation4).

In conjunction with the experiments, we examined the vari-
ations in selecting data recipients depending on who offloads
data, either cloud or fog, so, that, we highlight the impact of
trust-empowered legitimate offloading on the selection of data
recipient. Deployed on many cloud/fog nodes, 𝐶𝐹𝑎𝑝𝑝 could de-
cide to offload the received data to another node in the network.
The cloud/fog offloading decider selects the recipient based on
their trust scores. Fig. 3 to Fig. 5 illustrate the number of offload-
ing flows received by each node in the network with focus on
the variation of this number over time. Indeed, the number of
offloading flows received by a node increases when the node
maintains its trust score and decreased due a degradation of its
trust score. The variation of trust scores is further detailed in
Fig. 6 and Fig. 7 measuring the trust scores of some nodes during
the experiments. In addition, these figures focus on the impact
of the variation in calculated trust scores on the selected node to
receive the offloading flows. As per Fig. 3, during scenario #1 the
3 fogs, 𝐹1, 𝐹2, and 𝐹3, are selected as recipient of offloaded data.
The experiments prove that the selection could vary according
to the trust score that is in turn calculated based on the QoE and
legitimacy of things. For instance, 𝐹2, which was privileged at the
beginning of the experiments, is penalized after a degradation of
its trust score. Fig. 6 shows only the trust scores calculated by 𝐹1.
This figure shows that 𝐶1 having the highest trust score at the
beginning of the experiments was selected by 𝐹1 as offloading
recipient. Then, and due a degradation in𝐶1’s trust score,𝐶2 hav-
ing the new highest trust score is selected by 𝐹1 as offloading
recipient.

5 CONCLUSION
In an IoT environment consisting of multiple fogs and clouds, it
happens that data that things send, whether separately or con-
currently, to these fogs and/or clouds for processing and/or stor-
age needs end-up being transferred to other peers for the same
needs. Known as offloading, this paper stresses out the impor-
tance of ensuring the trustworthiness of data recipients to avoid

www.eclipse.org/downloads/packages.
github.com/QXL4515/data-set.

Table 4: List of used computers

Computer Connection Location Role in the testbed
Laptop 1 WiFi KSA Fog
Laptop 2 WiFi KSA Cloud
Laptop 3 WiFi Tunisia Cloud
Laptop 4 WiFi Tunisia Cloud
Desktop x 6 Ethernet KSA 2 Fogs and 4 Things

1 2 3 4 5 6 7 8 9 10
0

3

6

9

12

15

Time (s)

|O
ffl
oa
di
ng

flo
w
s|

F1
F2
F3

Figure 3: Results of scenario #1 experiments

1 2 3 4 5 6 7 8 9 10
0

3

6

9

12

15

Time (s)

|O
ffl
oa
di
ng

flo
w
s|

C1
C2
C3

Figure 4: Results of scenario #2 experiments

1 2 3 4 5 6 7 8 9 10
0

3

6

9

12

15

Time (s)

|O
ffl
oa
di
ng

flo
w
s|

C1
C2
C3

Figure 5: Results of scenario #3 experiments

1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

C2 is selected C1 is selected

TS

Ti
m
e(
s)

C1
C2
C3

Figure 6: Variation of TSs measured by fog 𝐹1

1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2

3

C2 is selected C3 is selected

TS

Ti
m
e
(S
)

C2
C3

Figure 7: Variation of TSs measured by cloud 𝐶1

data misuse cases, for example. To address these cases, a trust
model has been designed and developed taking into account dif-
ferent factors namely, types of interactions between things, fogs,
and clouds, recommendations of where things should send their
data, legitimacy of data senders, quality-of-service of fogs/clouds,
and quality-of-experience interacting with fog/clouds. The trust
model has been demonstrated through a set of experiments.

In term of future work, we would like to complete the analysis
of case 3 (T 𝑖2C 𝑗

df −→ C 𝑗2C𝑘
of) and case 4 (F 𝑖2C 𝑗

df −→ C 𝑗2C𝑘
of)

as well as examine the impact of trust on developing a chain of
offloading flows. By analogy with case 2, a chain illustrated with
1[F 𝑖2F 𝑗

of]+ −→ F 𝑗2C𝑘
of −→ 1[C𝑘2C𝑙

of]+ could be formed raising
questions about the trustworthiness and traceability of who is
offloading to whom.

REFERENCES
[1] M.R. Abdmeziem, D. Tandjaoui, and I. Romdhani. In Anis Koubaa and Elhadi

Shakshuki, editors, Robots and Sensor Clouds, chapter Architecting the Internet
of Things: State of the Art. Springer International Publishing, 2016.

[2] M. Al-Khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, and Y. Jarar-
weh. Improving Fog Computing Performance via Fog-2-Fog Collaboration.
Future Generation Computer Systems, 100, 2019.

[3] P.M. Barnaghi and A.P. Sheth. On Searching the Internet of Things: Require-
ments and Challenges. IEEE Intelligent Systems, 31(6), 2016.

[4] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu. Fog Computing: A Platform
for Internet of Things and Analytics. In Big Data and Internet of Things: A
Roadmap for Smart Environments, Studies in Computational Intelligence. Cisco,
Springer International Publishing, 2014.

[5] M. De Donno, K. Tange, and N. Dragoni. Foundations and Evolution of Modern
Computing Paradigms: Cloud, IoT, Edge, and Fog. IEEE Access, 7, 2019.

[6] S. Elnaffar, Z. Maamar, and Q.Z. Sheng. When Clouds Start Socializing: The
Sky Model. International Journal of E-Business Research, 9(2), 2013.

[7] M. Fiedler, T. Hossfeld, and P. Tran-Gia. A Generic Quantitative Relationship
between Quality of Experience and Quality of Service. IEEE Network, 24(2),
2010.

[8] J. Huang and D.N. Nicol. Trust Mechanisms for Cloud Computing. Journal of
Cloud Computing, 2:9, 2013.

[9] K.M. Khan and Q. Malluhi. Establishing Trust in Cloud Computing. IT
Professional, 12(5), 2010.

[10] K. Khebbeb, N. Hameurlain, and F. Belalab. A Maude-based Rewriting Ap-
proach to Model and Verify Cloud/Fog Self-Adaptation and Orchestration.
Journal of Systems Architecture, 110, November 2020.

[11] X. Li. FASTCloud: A Framework of Assessment and Selection for Trustworthy
Cloud Service based on QoS, 2020.

[12] Z. Maamar, T. Baker, N. Faci, E. Ugljanin, M. Al-Khafajiy, and V.A. Burégio.
Towards a Seamless Coordination of Cloud and Fog: Illustration through the
Internet-of-Things. In Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing (SAC’2019), Limassol, Cyprus, 2019.

[13] Z. Maamar, T. Baker, M. Sellami, M. Asim, E. Ugljanin, and N. Faci. Cloud vs
edge: Who serves the Internet-of-Things better? Internet Technology Letters,
1(5), 2018.

[14] R. Mahmud, K. Ramamohanarao, and R. Buyya. Application Management in
Fog Computing Environments: A Taxonomy, Review and Future Directions.
ACM Computing Surveys, 53(4), July 2020.

[15] J. Pakulski. Trust and Legitimacy. Policy, Organisation and Society, 5(1), 1992.
[16] M. Peter and G. Timothy. The NIST Definition of Cloud Computing. Techni-

cal Report 800-145, National Institute of Standards and Technology (NIST),
September 2011.

[17] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O. Rana. Fog Computing
for the Internet of Things: A Survey. ACM Transactions on Internet Technology,
19(2), 2019.

[18] Y. Qin, Q.Z. Sheng, N.J.G. Falkner, S. Dustdar, H. Wang, and A.V. Vasilakos.
When Things Matter: A Data-Centric View of the Internet of Things. CoRR,
abs/1407.2704, 2014.

[19] M. Saidur Rahmana, I. Khalila, M. Atiquzzaman, and X. Yi. Towards Privacy
Preserving AI-based Composition Framework in Edge Networks using Fully
Homomorphic Encryption. Engineering Applications of Artificial Intelligence,
94, September 2020.

[20] G. Suchacka and J. Iwanski. Identifying Legitimate Web Users and Bots with
Different Traffic Profiles - an Information Bottleneck Approach. Knowledge
Based Systems, 197, 2020.

[21] M. Varela, L. Skorin-Kapov, and T. Ebrahimi. In S. Möller and A. Raake, editors,
T-Labs Series in Telecommunication Services, chapter Quality of Service Versus
Quality of Experience. Springer, Cham, 2014.

[22] B. Varghese, N. Wang, D.S. Nikolopoulos, and R. Buyya. Feasibility of Fog
Computing. arXiv preprint arXiv:1701.05451, 2017.

[23] T. Wang, G. Zhang, M.Z. Alam Bhuiyan, A. Liu, W. Jia, and M. Xie. A Novel
Trust Mechanism based on Fog Computing in Sensor-Cloud System. Future
Generation Computing Systems, 109, 2020.

[24] F. Yahya, Z. Maamar, and K. Boukadi. A Multi-Criteria Decision Making
Approach for Cloud-Fog Coordination. In Proceedings of the 34th International
Conference on Advanced Information Networking and Applications (AINA’2020),
Caserta, Italy, 2020.

[25] J.P. Yoon and Z. Chen. Service Trustiness and Resource Legitimacy in Cloud
Computing. In Proceedings of the International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC’2010), Fukuoka, Japan, 2010.

[26] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge
from the physical world. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 316–324, 2011.

	Abstract
	1 Introduction
	2 Background
	3 Offloading model
	3.1 Overview
	3.2 Types of data flows
	3.3 Types of offloading flows
	3.4 Trust-empowered legitimate offloading

	4 Experiments
	4.1 Testbed set-up
	4.2 Simulations and results

	5 Conclusion
	References

