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ABSTRACT
Due to the impact of analytical processes on our life, an increas-

ing effort is being devoted to the design of technological solu-

tions that help humans in measuring the bias introduced by such

processes and understanding its causes. Existing solutions can

refer to either back-end or front-end stages of the data process-

ing pipeline and usually represent bias in terms of some given

diversity or fairness constraint. In our previous work [1], we

proposed an approach for rewriting filtering and merge opera-

tions in pre-processing pipelines into the “closest” operations so

that protected groups are adequately represented (i.e., covered)
in the result. This is relevant because any under-represented

category in an initial or intermediate dataset might lead to an

under-representation of that category in any subsequent analyti-

cal process. Since many potential rewritings exist, the proposed

approach is approximate and relies on a sample-based cardinality

estimation, thus introducing a trade-off between the accuracy

and the efficiency of the process. In this paper, we investigate this

trade-off by first presenting various measures quantifying the er-

ror introduced by the rewriting, due to the applied approximation

and the selected sample. Then, we (preliminarly) experimentally

evaluate such measures on a real-world dataset.

1 INTRODUCTION
The impact of data on our society is getting higher and higher,

with data about people being more and more often exploited

as the basis to make decisions that might impact people’s lives.

Thus, it becomes crucial to ensure that, in the systems enabling

such data-based decisions, data are dealt with in a responsible and
non-discriminating way [23], in all the steps, from acquisition to

analysis.

Non-discrimination can be addressed by considering specific

diversity and fairness constraints. Diversity allows us to capture

the quality of a collection of items with respect to the variety

of its constituent elements. On the other hand, fairness can be

broadly defined as the impartial treatment of individuals and of

demographic groups inside data processing tasks.

Among all data processing steps, data pre-processing plays a

relevant role when considering non-discrimination issues since it

can introduce technical bias by exacerbating pre-existing bias that
may exist in society, with an impact on the whole data lifecycle.

When considering pre-processing tasks, an often considered

non-discriminating constraint is coverage. Coverage constraints
guarantee that the input, or training, dataset includes enough

examples for each (protected) category of interest, thus increasing

diversity with the aim of limiting the introduction of bias during

the next analytical steps. Coverage is quite relevant in the first

data processing tasks, like data transformation, since the used

transformations might change the, possibly initially satisfied,

coverage of protected categories.
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In this paper, we are interested in investigating solutions for

detecting bias in data-preprocessing steps, defined in terms of cov-

erage constraints, with a special reference to filtering and merge

data transformations, mitigating it, and checking whether the

mitigation was effective. Specifically, we focus on classical data

transformation operations, often defined in terms of Selection-

Projection-Join (SPJ) operations over tabular data, that can reduce

the number of records related to some protected or disadvantaged

groups, defined in terms of some sensitive attributes, even if such

attributes are not directly used in the specification of the data

transformation operation.

In this frame, the approach we developed [1] aims at support-

ing the user by minimally rewriting the transformation operation

so that input coverage constraints are guaranteed to be satisfied in

the transformation result. Through rewriting, the revised process

is traced for further processing, thus guaranteeing transparency.
Since many potential rewritings exist, we proposed a sample-

based two-steps approach for detecting, under an approximate

approach, the minimal (i.e., the optimal) rewriting of the orig-

inal query. After transforming the SPJ query into a canonical

form, first (in a pre-processing step), the search space of potential

rewritings is discretized, so that an approximation of the optimal

solution can be detected in the next processing step, by looking at

the resulting finite set of points. The coverage-based rewriting of

the input query can be obtained by visiting the grid, produced as

the result of the pre-processing step, according to an order that

guarantees the fast detection of theminimal rewriting, and by ver-

ifying constraint satisfaction through a sample-based approach.

The coverage-based rewriting is approximate both because of the

discretization of the search space and of the error in estimating

cardinalities and constraint satisfaction on the sample.

In this paper, we start from this approach and we investigate

its effectiveness in the detection of the optimal coverage-based

solution. To this aim, we introduce three main groups of mea-

sures quantifying the error that can be generated by the used

approximated and sample-based approach. The first group of

measures deals with the accuracy of the discretization applied

in the pre-processing step. The second group deals with the er-

ror due to the usage of the sample for the grid generation and

cardinality estimations, while the third group helps the user in

quantitatively evaluating specific solutions obtained through the

rewriting.

The generated rewritings are then (preliminarly) experimen-

tally analyzed in terms of the proposed measures, on a real-world

dataset. The obtained results provide hints on how to tune ap-

proximation and sample related parameters to achieve a good

trade-off between accuracy and performance in the context of

coverage-based rewriting, by combining new results related to

accuracy presented in this paper with results related to perfor-

mance, previously presented in [1].

Even if the proposedmeasures have been defined in the context

of a specific coverage-based approach, we believe that they can be

of more general value in understanding the role of approximation

and sampling during data pre-processing.



The remainder of the paper is structured as follows. In Sec-

tion 2, we present the overall approach to coverage-based rewrit-

ing. In Section 3, we introduce new measures to quantify, in

terms of accuracy, the impact of rewriting. In Section 4, we ex-

perimentally analyze the impact of the rewriting according to

the introduced measures. Section 5 discusses related work while

Section 6 concludes the paper and outlines future work directions.

2 COVERAGE-BASED REWRITING
We focus on data to be transformed for further data analytical

tasks. Data can refer specific protected (minorities or historically

disadvantaged) groups and we aim at guaranteeing that each

transformation step during the pre-processing pipeline, based

on filtering or merge operations, produces a new dataset con-

taining enough entries for each protected group of interest. In

the following, we briefly describe input data and the proposed

technique. Additional details can be found in [1, 3].

Datasets. Our rewriting approach can be applied over a collec-

tion of tabular datasets (e.g., relations in a relational database,

Data Frames in the Pandas analytical environment) 𝐼 ≡ 𝐼1, ..., 𝐼𝑟 .

Among the attributes𝐴1, ..., 𝐴𝑚 of each input dataset, we assume

that some discrete valued attributes 𝑆1, ..., 𝑆𝑛 are of particular

concern, since they allow the identification of protected groups,

and we call them sensitive attributes. Examples of sensitive at-

tributes are the gender (with values in {𝑓 𝑒𝑚𝑎𝑙𝑒,𝑚𝑎𝑙𝑒}) and the

race (with values in {𝑎𝑠𝑖𝑎𝑛, 𝑏𝑙𝑎𝑐𝑘, ℎ𝑖𝑠𝑝𝑎𝑛𝑖𝑐,𝑤ℎ𝑖𝑡𝑒}).

Data pre-processing operations. The pre-processing opera-

tions we are interested in correspond tomonotonic Select-Project-

Join (SPJ) queries over input tabular data that might alter the

representation (i.e., the coverage) of specific groups of interests,

defined in terms of sensitive attribute values. To this aim, we

focus on SPJ queries that return, among the others, at least one

sensitive attribute (called sensitive SPJ operations or queries). For
the sake of simplicity, we assume that selection conditions are

defined over numeric attributes, even if the proposed approach

can be easily extended to any other ordered domain. Thus, under

the considered assumptions, sensitive attributes are not included

in selection conditions (typical assumption in data processing).

In the following, when needed, we denote 𝑄 by 𝑄 ⟨𝑣1, ..., 𝑣𝑑 ⟩
or 𝑄 ⟨𝑣⟩, 𝑣 ≡ (𝑣1, ..., 𝑣𝑑 ), where 𝑣1, ..., 𝑣𝑑 are the constant values

appearing in the selection conditions 𝑠𝑒𝑙𝑖 ≡ 𝐴𝑖𝜃𝑖𝑣𝑖 in 𝑄 .

Coverage constraints. Conditions over the number of entries

belonging to a given protected group of interest returned by the

execution of SPJ queries can be specified in terms of coverage
constraints [6, 27]. Given a sensitive SPJ query 𝑄 , with reference

to a sensitive attribute 𝑆𝑖 , and a value 𝑠𝑖 belonging to the domain

of 𝑆𝑖 , 𝑖 ∈ {1, ..., 𝑛}, a coverage constraint with respect to 𝑆𝑖 and

𝑠𝑖 is denoted by 𝑄 ↓𝑆𝑖𝑠𝑖 ≥ 𝑘𝑖 and it is satisfied by 𝑄 over the

input dataset 𝐼 when 𝑐𝑎𝑟𝑑 (𝜎𝑆𝑖=𝑠𝑖 (𝑄 (𝐼 ))) ≥ 𝑘𝑖 holds. For example,

choosing gender as a sensitive attribute, a coverage constraint

could be 𝑄 ↓gender
𝑓 𝑒𝑚𝑎𝑙𝑒

≥ 10, specifying that the result of 𝑄 must

contain data related to at least 10 female individuals.

Coverage constraints can be provided together with𝑄 or they

can already be available in the system, as any other integrity

constraint. This could be useful when they represent generally

valid non-discrimination rules that must be satisfied by any query

execution.

The approach. Given a dataset 𝐼 and a set of coverage con-

straints 𝐶𝐶 , each selected sensitive SPJ query 𝑄 can be rewritten

into another query 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
, according to what presented in [1], so

that 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
is the minimal query relaxing 𝑄 guaranteeing cover-

age constraint satisfaction when evaluated over the input dataset.

Relaxation is reasonable when the user is happy with the speci-

fied transformation and she wants to keep the result set of the

original query after the rewriting. 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
must therefore satisfy

the following properties: (i)𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
≡ 𝑄 ⟨𝑢⟩, thus𝑄𝑜𝑝𝑡

𝐼,𝐶𝐶
is obtained

from 𝑄 by only changing the selection constants; (ii) 𝑄 ⊆ 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
,

thus 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
always contains the result of the input query; (iii) all

coverage constraints associated with 𝑄 are satisfied by 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
(𝐼 ).

The rewriting should be optimal, i.e., the new query has to satisfy

specific minimality properties with respect to the input query

𝑄 . In order to make the definition of minimality properties ho-

mogeneous with respect to all the selection attributes 𝐴𝑖 in 𝑄 ,

we define them in a transformed unit space, in which the values

for each attribute 𝐴𝑖 in 𝐼 are normalized between 0 and 1. We

denote with𝑄 , 𝐼 ,𝐴𝑖 , 𝑣 a query, a dataset, an attribute, and a vector

of values, respectively, in the unit space. Notice that properties

(i), (ii), and (iii) are satisfied in the original space if and only if

they are satisfied in the normalized one. Minimality can now

be stated according to the following two properties: (iv) there

is no other query 𝑄 ′
satisfying conditions (i), (ii), and (iii) such

that 𝑄 ′(𝐼 ) ⊂ 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
(𝐼 ) (thus, 𝑄𝑜𝑝𝑡

𝐼,𝐶𝐶
is the minimal query on 𝐼

satisfying (i), (ii), and (iii)); (v) 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
≡ 𝑄 ⟨𝑢⟩ is the closest query

to 𝑄 ⟨𝑣⟩ according to the Euclidean distance between 𝑣 and 𝑢 in

the unit space, satisfying (i), (ii), (iii), and (iv) (thus, 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
is the

coverage-based rewriting syntactically closest to the input query,

thus maximizing proximity and potentially user satisfaction).

In order to compute the optimal coverage-based rewriting of

an SPJ query𝑄 ⟨𝑣⟩, given a set of coverage constraints𝐶𝐶 and an

instance 𝐼 , we follow the approach presented in [1], consisting

of three steps shortly discussed in what follows. For the sake of

simplicity in the notations, in presenting the approach and the

related examples, we do not underline symbols referring to the

unit space, even if proximity is always considered in that space.

Canonical form generation.We first translate the selected SPJ

queries into a canonical form, in which each selection condition

containing operators (>, ≥, =) is translated into one or more

equivalent conditions defined in terms of operator <. For example,

any predicate of the form 𝐴𝑖 > 𝑣𝑖 can be transformed into the

predicate −𝐴𝑖 < −𝑣𝑖 . When considering canonical forms, an

optimal coverage-based rewriting query is obtained from the

input query by replacing one or more selection predicates 𝑠𝑒𝑙𝑖 ≡
𝐴𝑖 < 𝑣𝑖 with a predicate 𝑠𝑒𝑙 ′

𝑖
≡ 𝐴𝑖 < 𝑢𝑖 with 𝑢𝑖 ≥ 𝑣𝑖 . 𝑠𝑒𝑙

′
𝑖
is

called a relaxation of 𝑠𝑒𝑙𝑖 . Relaxed queries generated through

coverage-based rewriting starting from 𝑄 ⟨𝑣⟩, 𝐼 , and 𝐶𝐶 have the

form 𝑄 ⟨𝑢⟩, with 𝑢 ≥ 𝑣 , and can be represented as points 𝑢 in the

𝑑-dimensional space defined over the selection attributes. Taking

into account the features of the canonical form and property (ii)

of the optimal rewriting, it is simple to show that the query point

corresponding to the optimal rewriting must be contained in

the upper right region of the reference space with respect to the

point represented by the input query.



(a) Data distribution (b) Data discretization (4 bins)

(c) Multi-dimensional grid (d) Multi-dimensional grid visit

Figure 1: Data representation and processing

Example 2.1. Consider the Diabetes US dataset1 and let𝑔𝑒𝑛𝑑𝑒𝑟
be the sensitive attribute. Suppose we are interested in finding

people whose number of medications is less than 10 and the num-

ber of performed lab tests is less than 30. Additionally, suppose we

would like to guarantee that at least 15 females are present in the

query result (coverage constraint). The corresponding SPJ query

is𝑄 ⟨30, 10⟩, defined in SQL as SELECT * FROM Diabetes WHERE
num_lab_procedures < 30 AND num_medications < 10. Fig-
ure 1(a) shows the data distribution corresponding to a small

sample of size 100 taken from the Diabetes relation, projected
over the attributes referenced in the query selection conditions

(points are colored and shaped according to the sensitive attribute

values: blue crosses for females and black dots for males). The

query corresponds to point (30, 10) in such a space and the region
boxed at the bottom left of point (30, 10) contains the result of𝑄 .

The query is already in canonical form, so no preliminary

rewriting is required. The search space for detecting coverage-

based rewritings of the input query corresponds to the grey

region in Figure 1(b). ^

1
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+

1999-2008

Pre-processing.According to property (ii) of the coverage-based
rewriting, given an input query𝑄 ⟨𝑣⟩, any coverage-based rewrit-
ing is located in the upper right portion of the space defined

by 𝑣 . Thus, the (unit) search space contains infinite possible

coverage-based rewritings among which the optimal one should

be identified. During the pre-processing step, such search space is

discretized, so that an approximation of the optimal solution can

be detected in the next processing step by looking at the result-

ing finite set of points. To this aim, we first organize the search

space as a multi-dimensional grid. The grid has 𝑑 axes, one for

each selection attribute in the canonical form of 𝑄 ⟨𝑣⟩, and each

axis, starting from query values, is discretized into a fixed set

of bins, by using a binning approach (e.g, equi-width, dividing

each axis in a fixed number of bins of equal size, or equi-depth,

in which each bin contains an equal number of instances), typ-

ical of histogram generation. Each point 𝑣 at the intersection

of hyperplanes corresponding to bin values corresponds to a

sensitive SPJ query containing 𝑄 ⟨𝑣⟩, thus satisfying condition

(ii) of the reference problem. The set of grid points identified

in this way is called discretized search space. The approach is

approximate because a smaller query, in terms of minimality and

proximity, than that identified by the algorithm, corresponding

https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008


to a coverage-based rewriting of the input query, might exist

but, if it lies inside one grid cell, it cannot be discovered by the

algorithm. Notice that the grid is computed starting from 𝐼 and

𝑄 (𝐶𝐶 is not used).

Example 2.2. During the pre-processing step, by applying, as

an example, the equi-depth binning approach to each axis of our

reference example, we obtain the grid represented in Figure 1(b),

considering 4 bins for each axis. The points of the resulting dis-

cretized search space correspond to the grid intersection points.

Each point corresponds to a sensitive SPJ query, obtained from

the input one by replacing selection constants with the grid point

coordinates (see Figure 1(c)). ^

Processing. During the processing step, we visit the discretized
search space returned by the pre-processing step starting from

the grid point corresponding to the input query. The discretized

search space is visited one point after the other, at increasing

distance from 𝑄 . For each point 𝑢, we check whether the as-

sociated query 𝑄 ⟨𝑢⟩ is a coverage-based rewriting of 𝑄 ⟨𝑣⟩ by
estimating the query result cardinality, for each protected group

referenced by coverage constraints𝐶𝐶 , and the query cardinality

𝑐𝑎𝑟𝑑 (𝑄 (𝐼 )).
The properties of the discretized search space and of the used

canonical form are taken into account for pruning cells that can-

not contain the solution and for further improving the efficiency

of the process, by iteratively refining the size and the number of

cells during the visit and, as a consequence, by working with a

discretized search space at varying granularity [1].

Example 2.3. Figure 1(d) illustrates the processing approach
for the considered example. Starting from the grid point corre-

sponding to the input query 𝑄 , we estimate the cardinality of

𝑄 ↓gender
𝑓 𝑒𝑚𝑎𝑙𝑒

on 𝐼 , needed for checking constraint satisfaction, and

of 𝑄 (𝐼 ), by relying on a sample-based approach, obtaining (2, 8).
Since the constraint is not satisfied, we further visit the other

points of the discretized search space at increasing distance from

𝑄 , checking constraint satisfaction and looking for the minimum

rewriting (property (iv)). The visit proceeds as pointed out in Fig-

ure 1(d) (the order of the visit is represented by the blue numbers

associated with the top right vertex of each cell). Shaped cells

are not visited thanks to the pruning effect: if 𝑄 ⟨𝑢⟩(𝐼 ) satisfies
the coverage constraints, all the points in the upper right portion

of space defined by 𝑢 will not satisfy conditions (iv) and (v) of

the reference problem, thus they can be discarded. The optimal

coverage-based rewriting corresponds to query 𝑄 ⟨43, 20⟩ (big
blue dot in Figure 1 (d)) since (43, 20) is the point at the minimum

distance from the origin such that the corresponding query sat-

isfies the considered coverage constraint (𝑄 ↓gender
𝑓 𝑒𝑚𝑎𝑙𝑒

≥ 15). The

input query is thus rewritten into SELECT * FROM Adult WHERE
num_lab_procedures < 43 AND num_medications < 20. ^

Sample-based estimation. The processing step, as well as cov-

erage constraint checking, requires fast and accurate cardinality

estimates. To make the processing more efficient, similarly to

[16], we rely on sampling based estimators based on samples

(uniform, independent, and without replacement) of the input

dataset [9], dynamically constructed during the rewriting phase,

and on the approach in [18] for generating the sample of joined

tables. As well known, a sample of a given size can be generated

so that query selectivity can be estimated with an error 𝑒 and

confidence 𝛿 [4]. As an example, if the error is 1% and the confi-

dence is 95%, the sample size should be 9604: this means that 95

samples with size 9604 out of 100 will lead to an estimation error

equal to 1%.

Performance evaluation. The analysis of the efficiency of the

proposed coverage-based query rewriting approach has been in-

vestigated in a previous work [1]. The experiments demonstrated

that the time complexity of the proposed algorithms depends

on: the number of bins, the used binning approach, the num-

ber of selection conditions in the query, the coverage constraint

threshold, and the sample size. Specifically, by varying the num-

ber of selection conditions or the number of bins, and therefore

the dimensionality of the multi-dimensional grid and the size

of the discretized search space, the execution time rapidly in-

creases; the impact of the curve of dimensionality can however

be reduced by applying the designed optimizations. Equi-depth

binning approaches often lead to a more efficient processing than

equi-width approaches since the distribution of points in the

discretized search space follow data distribution, thus reducing

the number of grid cells with no dataset points and, as a conse-

quence, the number of cardinality estimations. The execution

time also depends on the chosen coverage constraint thresholds

and the number of coverage constraints. Finally, the sample size

influences the cardinality estimation time and therefore the total

execution time.

3 IMPACT EVALUATION
The coverage-based rewriting of the input query can be obtained

by visiting the grid, produced as the result of the pre-processing

step, and by verifying constraint satisfaction relying on a sample-

based approach. The optimal coverage-based rewriting is there-

fore approximate since: (i) the grid, that corresponds to the dis-

cretized search space, might have an impact on the accuracy of

the selected coverage-based rewriting; (ii) the estimation error

related to the sample usage has an impact on query cardinality

estimation and on constraint satisfaction.

It is therefore important to introduce some measures quantify-

ing the error that can be generated. To this aim, in the following

we discuss three groups of measures: the first group deals with

the approximation error related to the usage of the grid for the

discretization of the query search space; the second group deals

with the approximation error related to the usage of a sample dur-

ing the pre-processing and processing phases; the third concerns

the error related to the detected optimal rewriting.

3.1 Grid-based accuracy
Due to the usage of a discretized search space, the optimal covera-

ge-based rewriting identified by the proposed approach is the

best approximation of an optimal rewriting, given the considered

grid. The accuracy related to the usage of a given grid for the

detection of the optimal rewriting thus corresponds to the error

introduced by the discretization process.

As pointed out before, given a query 𝑄 ⟨𝑣⟩, the visit proceeds
at increasing distance from the query point 𝑣 . When an optimal

rewriting 𝑄 ⟨𝑢⟩ is reached, this means that the neighbours of

𝑢 in the discretized search space cannot be optimal rewritings

(otherwise the search would have stopped before). On the other

hand, another point 𝑧 might exist that is not included in the

search space but 𝑄 ⟨𝑧⟩(𝐼 ) satisfies 𝐶𝐶 and either it is closer to

the query point 𝑣 than 𝑢 or 𝑄 ⟨𝑧⟩(𝐼 ) ⊆ 𝑄 ⟨𝑢⟩(𝐼 ). Such point is an

optimal rewriting but, due to the approximation, it cannot be

identified by the proposed approach. The approximation error



Figure 2: Grid-based accuracy (dashed blue line for the
maximum diagonal, dotted blue line for the minimum di-
agonal)

for the identified approximate optimal rewriting𝑄 ⟨𝑢⟩, also called
grid-based accuracy, can therefore be defined as the maximum

distance between 𝑢 and all its neighbours on the grid, preceding

it in the search; the accuracy is therefore lower than or equal

to the diagonal of the grid cells having 𝑢 as a vertex and closer

to 𝑣 than 𝑢. By considering the entire grid, we can quantify the

maximum and minimum grid-based accuracy in terms of the

maximum and the minimum diagonal length of grid cells (see

Figure 2 for a graphical explanation).

Definition 3.1 (Grid-based accuracy). Let 𝐺𝑏 be the grid gen-

erated from a dataset 𝐼 and a query 𝑄 using a certain binning

approach 𝑏. The mimimum/maximum grid-based accuracy of𝐺𝑏 ,

denoted by 𝑑𝑖𝑎𝑔𝑚𝑖𝑛
𝐺𝑏

and 𝑑𝑖𝑎𝑔𝑚𝑎𝑥
𝐺𝑏

, is defined as the minimum/

maximum diagonal length of grid cells in𝐺𝑏 , normalized between

0 and 1. □

Example 3.2. Figure 2 shows the normalized cell diagonal

lengths for the grid created as discussed in Example 2.2. The

grid-based accuracy for this grid varies between 0.05 (dotted blue

line), corresponding to queries 𝑄 ⟨30, 15⟩ and 𝑄 ⟨30, 20⟩ and 0.73

(dashed blue line), corresponding to query 𝑄 ⟨90, 75⟩. ^

Different binning approaches might lead to a different grid-

based accuracy. In particular, when fixing the reference data

interval over each axis, binning approaches based on data distri-

bution, like equi-depth, lead to a higher variability of grid-based

accuracy, since they generate smaller buckets for dense regions

and larger buckets for sparse ones, as stated by the following

proposition.

Proposition 1. Let 𝐺𝑤 be the grid generated from a dataset 𝐼
and a query 𝑄 using the equi-width approach and 𝐺𝑑 that gener-
ated using the equi-depth approach, with𝑛 bins for each axis in both
cases. Then: (i) 𝑑𝑖𝑎𝑔𝑚𝑖𝑛

𝐺𝑑
≤ 𝑑𝑖𝑎𝑔𝑚𝑖𝑛

𝐺𝑤 ; (ii) 𝑑𝑖𝑎𝑔𝑚𝑎𝑥
𝐺𝑑

≥ 𝑑𝑖𝑎𝑔𝑚𝑎𝑥
𝐺𝑤 . □

3.2 Sample-based accuracy
The accuracy of the query rewriting approach depends on the

sample data distribution for two main reasons: (i) different sam-

ple distributions might lead to the generation of different buckets

and therefore of different grids, with an impact on both pre-

processing and processing steps; (ii) the sample is used for query

cardinality estimation and, as a consequence, the estimation error

has an impact on the minimality property, in addition, it might

lead to a wrong assessment of constraint satisfaction.

Impact on (pre-)processing In order to evaluate the impact

of the sample usage on grid generation, we compare the data

distribution of the dataset 𝐼 with the data distribution of the

sample 𝑆 , both projected over the attributes appearing in the

considered query 𝑄 . The more similar the two distributions, the

lower is the impact of the sample selection in the detection of

the optimal coverage-based rewriting.

Several metrics have been proposed for quantifying the dis-

tance between two multivariate datasets. Many of them, e.g., the

Wasserstein metric [17], the Kullback-Liebler [13, 14] and the

Jensen-Shannon divergence [10], quantify the distance between

the corresponding probability distributions and sometimes, as

for the Wasserstein metric, the result might tend to infinity [17].

Probability distributions are not directly available under the con-

sidered scenarios and, even if computed, they introduce a further

level of approximation in the computation. The Kolmogorov-

Smirnov (KS) distance, defined for arbitrary univariate distribu-

tions [7, 22], measures the maximum distance, between 0 and 1,

between the cumulative distributions of two datasets. Due to its

generality, it is quite used and many, very complex, extensions

to the multivariate case exist.

In our work, we consider a very simple extension of the uni-

variate KS metric, obtained by averaging the KS distance com-

puted for each query attribute. The distance computed between

two datasets 𝐼 and 𝑆 is denoted by 𝑑𝐾𝑆 (𝐼 , 𝑆). This approach is

suitable since, similarly to what we have proposed for the search

space construction, where we rely on an aggregation of unidi-

mensional histograms instead of a multidimensional histogram,

it aggregates distances defined on each single attribute.

In order to investigate the impact of the KS distance for a

sample 𝑆 on the identification of the optimal rewriting, it is useful

to introduce some metrics, quantifying the difference in using

𝑆 instead of the initial dataset 𝐼 for the detection of the optimal

coverage-based rewriting. Such metrics compute the average

difference, in terms ofminimality, proximity, and solution distance,
between the optimal rewritings 𝑄

𝑜𝑝𝑡

𝑆,𝐶𝐶
and 𝑄

𝑜𝑝𝑡

𝐼,𝐶𝐶
, obtained by

processing the sample 𝑆 and the original dataset 𝐼 , respectively,

on a random set of queries𝑄𝑆 , uniformly distributed in the query

search space:

• Average minimality difference (property (iv) of the optimal

rewriting). It quantifies how much different 𝑄
𝑜𝑝𝑡

𝑆,𝐶𝐶
and

𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
are, in average, with respect to their result set car-

dinalities when they are executed over the input dataset 𝐼

(thus, it quantifies, in average, the difference in the relax-

ation of the original query over the initial dataset):

𝑚(𝐼 , 𝑆) ≡ 𝑎𝑣𝑔𝑄 ∈𝑄𝑆
|𝑐𝑎𝑟𝑑 (𝑄𝑜𝑝𝑡

𝑆,𝐶𝐶
(𝐼 ))−𝑐𝑎𝑟𝑑 (𝑄𝑜𝑝𝑡

𝐼 ,𝐶𝐶
(𝐼 )) |

𝑐𝑎𝑟𝑑 (𝑄 (𝐼 )) .

• Average proximity difference (property (v) of the optimal

rewriting). It quantifies how much different 𝑄
𝑜𝑝𝑡

𝑆,𝐶𝐶
and

𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
are, in average, with respect to their Euclidean dis-

tance 𝑑 () from the input query𝑄 , in the unit space, further

normalized between 0 and 1 (thus, it quantifies, in average,

how far the two optimal rewritings are with respect to the

original query):

𝑝 (𝐼 , 𝑆) ≡ 𝑎𝑣𝑔𝑄 ∈𝑄𝑆 |𝑑 (𝑄
𝑜𝑝𝑡

𝑆,𝐶𝐶
, 𝑄) − 𝑑 (𝑄𝑜𝑝𝑡

𝐼,𝐶𝐶
, 𝑄) |.

• Average solution distance: It quantifies how much differ-

ent 𝑄
𝑜𝑝𝑡

𝑆,𝐶𝐶
and 𝑄

𝑜𝑝𝑡

𝐼,𝐶𝐶
are, in average, in terms of their



Euclidean distance in the unit space, further normalized

between 0 and 1 (thus, it quantifies, in average, how far

the two optimal rewritings are, without taking the input

dataset and the original query into account):

𝑠𝑑 (𝐼 , 𝑆) ≡ 𝑎𝑣𝑔𝑄 ∈𝑄𝑆𝑑 (𝑄
𝑜𝑝𝑡

𝑆,𝐶𝐶
, 𝑄
𝑜𝑝𝑡

𝐼,𝐶𝐶
).

Impact on constraint satisfaction. The error and the confi-

dence related to the considered sample (see Section 2) have an

impact also on coverage constraint satisfaction. A constraint

𝐶𝐶𝑖 ≡ 𝑄 ↓𝑆𝑖𝑠𝑖 ≥ 𝑘𝑖 is satisfied on 𝐼 if 𝑐𝑎𝑟𝑑 (𝜎𝑆𝑖=𝑠𝑖 (𝑄 (𝐼 ))) ≥ 𝑘𝑖 .

Since the sample-based estimation of 𝑐𝑎𝑟𝑑 (𝜎𝑆𝑖=𝑠𝑖 (𝑄 (𝐼 ))) might

lead to an error of 𝑒 × 𝑐𝑎𝑟𝑑 (𝐼 ), in order to guarantee that the

constraint is also satisfied by the input dataset 𝐼 , we can mod-

ify the constraint, when evaluated over the sample, as: 𝑄 ↓𝑆𝑖𝑠𝑖 ≥
𝑘𝑖 + (𝑒×𝑐𝑎𝑟𝑑 (𝐼 )). This consideration makes the proposed sample-

based approach reasonable for coverage constraints in which

𝑘𝑖
𝑐𝑎𝑟𝑑 (𝐼 ) has the same order of magnitude as 𝑒 . Notice that, by

changing the constraint as proposed above, we increase the prob-

ability of constraint satisfaction on the input dataset at the price

of reducing proximity of the optimal rewriting with respect to

the input query (since the optimal query will be further away

from the initial one).

3.3 Solution-based accuracy
Let 𝑆 be a sample of dataset 𝐼 and 𝑄

𝑜𝑝𝑡

𝑆,𝐶𝐶
= 𝑄 ⟨𝑢⟩ be the opti-

mal solution obtained from 𝑆 , given a query 𝑄 ⟨𝑣⟩ and a set of

coverage constraints 𝐶𝐶 . It could be useful to introduce some

additional measures to evaluate the quality of the obtained opti-

mal rewriting 𝑄
𝑜𝑝𝑡

𝑆,𝐶𝐶
with respect to the discretized search space

identified by the chosen dataset 𝑆 , taking into account both the

applied relaxation with respect to the original query and the

approximation error, in line with what we have proposed for

grid-based and sample-based accuracy. To this aim, we propose

the following three measures:

• Grid-based accuracy of𝑄𝑜𝑝𝑡
𝑆,𝐶𝐶

. According to what discussed

in Subsection 3.1, it can be computed as the maximum

distance between 𝑢 and all its neighbours on the grid,

preceding it in the search (thus, the maximum diagonal

of the cells of the grid having 𝑢 as a vertex and closer to 𝑣

than 𝑢).

• Relaxation degree. Similarly to [16], the relaxation degree,

first proposed in [1], quantifies, through estimations over

the initial dataset 𝐼 , howmuch the optimal coverage-based

rewriting 𝑄
𝑜𝑝𝑡

𝑆,𝐶𝐶
relaxes the original query 𝑄 , as the per-

centage of new added tuples with respect to those con-

tained in the original query result:

|𝑄𝑜𝑝𝑡

𝑆,𝐶𝐶
(𝐼 ) |− |𝑄 (𝐼 ) |
|𝑄 (𝐼 ) | .

• Proximity. It can be computed as the Euclidean distance

between the optimal coverage-based rewriting 𝑄
𝑜𝑝𝑡

𝑆,𝐶𝐶
and

𝑄 in the unit space, further normalized between 0 and

1, thus indicating how far the optimal rewriting is with

respect to the original query.

Example 3.3. The optimal coverage-based rewriting of the

running example corresponds to query 𝑄 ⟨43, 20⟩ (see Example

2.3). The grid-based accuracy of such solution is 0.16 (see Figure

2), since this is the maximum length between the solution and

its neighbours on the grid. Since 𝑐𝑎𝑟𝑑 (𝑄 ⟨43, 20⟩(𝐼 )) = 38 and

𝑐𝑎𝑟𝑑 (𝑄 (𝐼 )) = 8 (see Figure 2), the relaxation degree is 3.75 (to

guarantee constraint satisfaction, the cardinality of the rewrit-

ten query is about 4 times that of the original query). Finally,

the proximity, i.e., the Euclidean distance between (30, 10) and
(43, 20) in the unit space, normalized between 0 and 1, is 0.19,

thus corresponding to a relaxation of 19% with respect to the

maximum query, returning the whole dataset. ^

4 EXPERIMENTAL RESULTS
In this section, we present some preliminary experimental results

with the aim of analyzing the accuracy of the proposed query

rewriting approach.

4.1 Experimental Setup
All experiments were conducted on a PC with an Intel Core i5-

8300H 2.30 GHz CPU and 16GB main memory, running Microsoft

Windows 10. All programs were coded in Python 3.8.

The experiments refer to a real dataset, stored in PostgreSQL:

Diabetes US2 representing 10 years (1999-2008) of clinical care

at 130 US hospitals and integrated delivery networks (100,000

instances). It includes over 50 features representing patient and

hospital outcomes. For our experiments we use gender as sensi-

tive attribute and we add a coverage constraint on 𝑓 𝑒𝑚𝑎𝑙𝑒 .

For this dataset, we generated many random samples with an

increasing size, guaranteeing a variable percentage of error (1% or

3%) and a variable level of confidence (95% or 99%). More precisely,

we considered the following sample sizes: 1067 (3% error and

95% confidence), 1843 (3% error and 99% confidence), 9604 (1%

error and 95% confidence), 16588 (1% error and 99% confidence).

For each sample size, we generated 5 random samples, for a total

of 20 samples. The samples are all small enough to be stored in

main memory.

In order to evaluate the accuracy of the proposed approach, we

randomly generated a set of 1000 queries, with different selectiv-

ities, and we compared the impact of the grid and of the consid-

ered sample in detecting the optimal coverage-based rewriting,

by considering the measures presented in Section 3. All the se-

lected queries contain three selection conditions (thus leading

to a three-dimensional grid), with respect to the three numerical

attributes with the highest number of distinct values, namely

(number_emergency,num_lab_procedures,num_medications);
selection values are picked at random from the attribute value

range in the dataset. For the sake of simplicity, join queries are

not considered for these preliminary experiments.

For each query, we then defined the coverage constraint taking

into account the considered query and in such a way that it is

neither satisfied on the dataset nor on the considered samples.

The experiments were performed by considering two dis-

tinct binning approaches during the pre-processing step: (i) equi-
width∗, corresponding to an equi-width approach, dividing each

axis in a fixed number of bins of equal size, set as the minimum

between a selected number (denoted by #𝑏𝑖𝑛𝑠 in the experimental

results) and the number of distinct values for the considered at-

tribute in the dataset; (ii) equi-depth∗, in which each bin, defined

as for the equi-width
∗
approach, contains a constant number of

instances. A variable number of bins, namely 4, 8, 16, 32, 64, has

been considered for specific experiments.

We then performed three groups of experiments aimed at

analyzing the grid-based, the sample-based, and the solution-

based accuracy of the optimal coverage-based rewriting.

2
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+

1999-2008

https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008


(a) Maximal grid-based accuracy

(b) Minimal grid-based accuracy

Figure 3: Grid-based accuracy, when varying the number
of bins

4.2 Experimental evaluation
4.2.1 Grid-based accuracy. The first group of experiments

aims at analyzing the maximum and minimum grid-based ac-

curacy, as presented in Subsection 3.1, by varying the number

of bins, with respect to the selected binning approach, namely

equi-depth
∗
and equi-width

∗
. To this aim, we selected a sample

with size 16588 (sample 16588_3 in Figure 4) and we considered

all the generated 1000 random queries. The obtained results are

independent from the query selectivity, therefore in the following

we discuss those obtained with selectivity equal to 2.5%.

Figure 3 shows that both the maximum and the minimum

grid-based accuracy decrease by increasing the number of bins,

independently from the chosen binning approach. This is because,

by increasing the number of bins, the space is discretized into a

higher number of cells, thus obtaining cells of smaller size.

From Figure 3 we also observe the behaviour described by

Proposition 1: the maximal grid-based accuracy obtained with

the equi-depth∗ approach is always higher than the grid-based

accuracy obtained with the equi-width∗ approach; minimal accu-

racy behaves in the opposite way.

4.2.2 Sample-based accuracy. The second group of experi-

ments deals with the analysis of the sample-based accuracy, ac-

cording to the measures introduced in Subsection 3.2. To this

aim, we considered all the samples described in Subsection 4.1

and, for each of them, we computed the KS distance with respect

to the input dataset.

Results, presented in Figure 4, show that the obtained values

are very similar and quite small: for most sample sizes, the great-

est differences refer to the third decimal digit. As expected, by

increasing the sample size, the KS distance tends to decrease.

In order to evaluate the impact of the KS distance on sample-

based accuracy measures, we considered the sample size leading

to the highest variance (9604) and we selected the samples with

the highest difference between the corresponding KS distances

Sample KS Distance
1067_1 0.0185

1067_2 0.0185

1067_3 0.0185

1067_4 0.0199

1067_5 0.0198

Mean 0.0190

Variance 4.38e-7

Sample KS Distance
1843_1 0.0156

1843_2 0.0183

1843_3 0.0130

1843_4 0.0130

1843_5 0.0119

Mean 0.0144

Variance 5.36e-6

Sample KS Distance
9604_1 0.0058

9604_2 0.0064

9604_3 0.0026

9604_4 0.0071

9604_5 0.0134

Mean 0.0071

Variance 1.24e-5

Sample KS Distance
16588_1 0.0034

16588_2 0.0044

16588_3 0.0032

16588_4 0.0055

16588_5 0.0035

Mean 0.0040

Variance 7.32e-7

Figure 4: KS distance from the samples to the reference
dataset

Sample KS avg min. avg prox. avg sol.
distance difference difference distance

9604_3 0.0026 0.0275 0.1072 0.1403

9604_5 0.0134 0.1350 0.0995 0.1291

Table 1: Sample-based accuracy measures

(namely, 9604_3 and 9604_5). We then computed the sample-

based accuracy measures on the set of 1000 random queries.

Table 1 shows the results obtained by considering the equi-

depth
∗
approach and 32 bins (similar values has been obtained

for the equi-width
∗
and other numbers of bins). As you can see,

there is no clear ordering between the two samples when consid-

ering such measures. In particular, sample 9604_3 is better than

sample 9604_5 with respect to minimality; however, for prox-

imity and solution distance the opposite result holds. Thus, it

seems that the KS measure is not good enough for discriminating

between samples with a different behaviour with respect to the

detection of the optimal coverage-based rewriting. Additional

work is therefore needed for investigating or defining alterna-

tive functions able to discriminate between samples under the

considered scenario.

4.2.3 Solution-based accuracy. The last group of experiments

aims at analyzing the solution-based accuracy, according to the

measures introduced in Subsection 3.3, by varying the number of

bins, with respect to the selected binning approach, namely equi-

depth
∗
and equi-width

∗
. To this aim, we selected sample 16588_3

(i.e., the biggest sample with the smallest KS distance with respect

to the initial dataset) and we considered all the generated 1000

random queries. The obtained results show a different behaviour

with respect to the region in which the optimal solution is lo-

cated, either dense or sparse. In particular, Figure 5 shows that,

as expected, by increasing the number of bins, the grid-based

accuracy of the solution will decrease as well. However, depend-

ing on where the optimal solution is located, the equi-depth
∗

and the equi-width
∗
approaches behave in a different way. More

precisely, when the solution region is dense (Figure 5(a)), the ac-

curacy is lower with the equi-depth
∗
approach since in this case

higher density will lead to smaller bins. On the other hand, when

the solution region is sparse (Figure 5(b)), the accuracy is usually



(a) Solution in a dense region

(b) Solution in a sparse region

Figure 5: Grid-based accuracy of the solution

(a) Solution in a dense region

(b) Solution in a sparse region

Figure 6: Relaxation degree

lower with the equi-width
∗
approach since in this case lower

density will lead to longer bins under the equi-depth
∗
approach.

A similar behavior can be observed for the relaxation degree

(Figure 6) and the proximity (Figure 7): by increasing the number

of bins, they decrease for both the binning approaches. When

the solution is contained in a dense region, equi-depth
∗
behaves

better than equi-width
∗
, especially for low numbers of bins. We

further notice that, for very low numbers of bins, proximity

and grid-based accuracy coincide (the farthest neighbour of the

solution is the query point itself).

(a) Solution in a dense region

(b) Solution in a sparse region

Figure 7: Proximity

Finally, notice that dense regions have a greater impact on

query cardinalities and, as a consequence, on the relaxation de-

gree, whose values are usually higher in this case (starting from

8 bins), independently on the selected binning approach. On the

other hand, dense regions tend to generate optimal solutions with

lower proximity (more evident with the equi-depth
∗
approach,

that is more sensible to data distribution), since constraint satis-

faction can be obtained on query points closer to the initial one.

In general, for uniformly distributed datasets, in which no sparse

regions can be detected, equi-depth
∗
can be considered the best

option. By combining the obtained results with those presented

in [1, 3], related to performance, a number of bins equal to 16

can be considered a good compromise between effectiveness and

efficiency.

5 RELATEDWORK
The interest for coverage constraints has been introduced in [5, 6],

drawing inspiration from the literature on diversity [11]. The

problem of evaluating the coverage of a given dataset has been

considered in the context of the MithraLabel system [12, 24], in

which the lack of coverage is modeled as a widget in the nutri-

tional label [26] of a dataset. Once the lack of coverage has been

identified, the smallest number of data points needed to hit all

the “large uncovered spaces” is identified with the aim of helping

data owners in achieving coverage through a data repairing ap-

proach. When protected categories are defined in terms of many

attributes, the identification of attribute patterns associated with

coverage problems might lead to performance issues, due to the

combinatorial explosion of such patterns. Efficient techniques,

inspired from set enumeration and association rule mining, ad-

dressing this problem have been proposed in [6]. To fix coverage

unsatisfaction, additional data can be acquired. Since data ac-

quisition has a cost in term of data processing, techniques have

been presented in [6] for determining the patterns that can be

covered given a certain maximum cost. An efficient approach for

coverage analysis, given a set of attributes across multiple tables,

is presented in [27]. As pointed out by the previous discussion,



most existing approaches chase coverage through data repair

and focus on efficiency issues. By contrast, we consider accuracy

for coverage-based query rewriting during data transformation,

thus complementing existing approaches.

The technique considered in this paper relies on rewriting.

Other fairness-aware rewriting approaches have been proposed

for OLAP queries [19, 20]. Bias is defined in terms of causal

fairness (checking for causal relationships from the sensitive at-

tributes to the outcome) and detected, explained, and resolved

through rewriting. On the other hand, we focus on data transfor-

mations in presence of coverage constraints.

Impact evaluation is quite relevant in the design and the ex-

ecution of non-discriminating pipelines, usually very complex

in real-world scenarios. Various systems have been designed

for supporting the user during this activity. Among them, we

recall: Fair-DAGs [25], an open-source library aiming at repre-

senting data processing pipelines in terms of a directed acyclic

graph (DAG) and identifying distortions with respect to protected

groups as the data flows through the pipeline; FairPrep [21], an

environment for investigating the impact of fairness-enhancing

interventions inside data processing pipelines; AI Fairness 360 [8],

an open-source Python toolkit for algorithmic fairness, aimed at

facilitating the transition of fairness-aware research algorithms

to usage in an industrial setting and at providing a common

framework to share and evaluate algorithms.

6 CONCLUDING REMARKS
Rewriting approaches have been recognized as an interesting

mean for enforcing specific non-discriminating properties guar-

anteeing transparency. In this paper, we started from the ap-

proach proposed in [1] with the aim of investigating the impact

of rewriting on coverage-constraint satisfaction. The approach is

approximate and relies on a sample for both the construction of

the solution search space and the detection of the optimal rewrit-

ing. Three different groups of measures have been proposed for

quantifying the accuracy induced by the approximation and the

impact of the sample in the detection of the optimal solution.

Preliminary experimental results show that: (i) different bin-

ning approaches lead to different grid-based accuracy degrees;

(ii) common measures for computing the distance between dis-

tributions are not effective for analyzing their behaviour in the

detection of the optimal coverage-based solution; (iii) the number

of bins used in the generation of the search space has an impact

in the accuracy of the detected solution, and not only on the

performance [1], while the optimal binning approach depends

on the position of the optimal rewriting in the search space; (iv)

a number of bins greater than 16 represents a good compromise

between accuracy and efficiency.

The proposed approach is at the basis of covRew [2], a Python

toolkit for rewriting slicing operations in pre-processing pipelines,

ensuring coverage constraint satisfaction. covRew takes in input

a two-dimensional tabular dataset 𝐼 , with the related sensitive

attribute specification, for the identification of protected groups,

a processing pipeline represented as a Pandas script [15], and a

set of coverage constraints. It includes three main components:

(i) a pipeline analyzer, which identifies candidate operations for

rewriting, (ii) a pipeline rewriter, which transforms operations

that are selected by the user according to the input coverage con-

straints, and (iii) an impact evaluator, assessing the impact of the

rewriting through the usage of the grid-based and solution-based

measures presented in Section 3. Such measures could lead the

user to reconsider some of the choices made in the selection of

the operations to be rewritten, thus producing a new annotated

script.

Future work is needed in order to understand how to define

new distance functions between distributions, focusing on their

behaviour during coverage-based rewriting. An additional issue

concerns the definition and the analysis of further solution-based

measures, evaluating the quality of the detected solution with

respect to the solution that would have been obtained without

considering a sample, as well as their integration in the covRew

prototype system.
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