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ABSTRACT

We present Noah, an ongoing research project aiming at devel-
oping a system for semi-automatically creating end-to-end Web
data processing pipelines. The pipelines continuously extract and
integrate information from multiple sites by leveraging the re-
dundancy of the data published on the Web. The system is based
on a novel hybrid human-machine learning approach in which
the same type of questions can be interchangeably posed both
to human crowd workers and to automatic responders based on
machine learning (ML) models. Since the early stages of pipelines,
crowd workers are engaged to guarantee the output data quality,
and to collect training data, that are then used to progressively
train and evaluate automatic responders. The latter are fully de-
ployed into the data processing pipelines to scale the approach
and to contain the crowdsourcing costs later. The combination
of guaranteed quality and progressive reductions of costs of the
pipelines generated by our system can improve the investments
and development processes of many applications that build on
the availability of such data processing pipelines.

1 INTRODUCTION AND MOTIVATION

The Web is the largest knowledge base ever built by humans.
However, most of the data on the Web are not directly available
to applications, unless complex data extraction and integration
pipelines are set-up. Creating these pipelines to build structured
knowledge bases and continuously maintain them in a cost effec-
tive way is still a challenging problem. Currently, most projects
fulfill their data processing needs by means of case-by-case solu-
tions that cannot be reused across projects.

This paper presentsNoah, a research project that aims at devel-
oping a system for creating andmaintaining over time end-to-end
data processing pipelines for continuously extracting and inte-
grating Web data. Noah is based on an hybrid human-machine
learning approach, whose goal is to guarantee the quality of pro-
cessed data by leveraging feedbacks provided by human crowd
workers. Our approach can be classified in the realm of Open
Information Extraction [31], because it aims at extracting and
integrating information both at the instance (objects) and at
the schema (attributes) levels into an internal knowledge base
(IKB) that is created, populated and maintained for every domain.
Indeed, if new sources are incrementally added to an already
generated pipeline, the system is able to discover new entities
and new attributes from the aforementioned sources.
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In order to contain the crowdsourcing costs, the proposed
approach leverages two techniques. First, it exploits the inherent
redundancy of Web sources to automatically find correct domain
information: data published by several independent sources are
more likely to be correct and can be easily discerned by noisy
or non-relevant data [8, 15]. Secondly, it exploits the collected
data to continuously train ML models. Those ML models are pro-
gressively introduced in the form of automatic responders that
replace crowd workers [1, 30], and are continuously evaluated
during each step of the data processing pipelines: only respon-
ders that become sufficiently reliable are fully deployed in the
operations of the created pipelines.

Figure 1: Web detail pages in the Smartphone domain.

Problem Description. Given a set of sources S = {𝑆1, 𝑆2 . . .}
from the same domain (e.g., Smartphones); each source 𝑆𝑖 is spec-
ified by means of 𝑛𝑖 URLs of detail pages about domain objects
(e.g., IPhone 12, Mi 10T). By detail page we mean a page report-
ing information about a particular object, the topic entity [29]
of the page, on which it publishes values of several attributes.
An example of detail pages from two sources, about the same
IPhone 12 domain object is shown in Figure 1 where the values of
several attributes of interest such asModel,Memory, Price are
highlighted.

A domain includes a set of objects O = {𝑜1, 𝑜2, . . .} and a set
of attributesA = {𝐴1, 𝐴2, . . .} which will be populated with data
extracted from the pages of the sources belonging to that domain.
New attributes and new objects of a domain can be discovered
as new sources are considered part of the domain.

Each source publishes detail pages reporting the values of a
subset of domain attributes, for a subset of domain objects. We
use the terms source attributes or source objects when we want to
denote the version of a domain attribute or object as published
by a source, i.e., we are referring to the occurrences of attribute
values about an object as published by a source. It is worth notic-
ing that some domain attribute can be published, possibly with
inconsistencies amongst the provided values, by several sources,
e.g., Model, while other attributes, e.g., ReviewScore or Price,
have values which are inherently source-specific.

In the following, we identify source objects by means of the
URL of the detail page hosting its data, and we identify source



Figure 2: Running Example — The Smartphones domain includes 2 sources crawled at 𝑛 instants. Over each source 6 correct
extraction rules working on several detail pages are given: 𝑟 𝑖

𝑗
( 𝑗 = 1, . . . , 6) denotes the 𝑗-th rule working on source 𝑆𝑖 , each

extracting the value of a source attribute from a detail page associated with a source object. For example, 𝑝13 indicates the

page about IPhone 11 from source 𝑆1 and rule 𝑟12 extracts the Model from every page of the same source. At every time 𝑡 , the

values extracted from the two sources are conveniently depicted as organized in tables: each row of the table is associated

with a detail page of the source, and each column is associated with an extraction rule around the same source. The set

of domain attributes includes: Model, Brand, Price, Memory, Camera 1, Camera 2. Correct linkages can be represented as pairs

of pages about the same domain objects: {(𝑝11, 𝑝
2
1), (𝑝

1
𝑚, 𝑝24)}. Correct source attribute matches can be represented as pair of

correct extraction rules: {(𝑟11 , 𝑟
2
1 ), (𝑟

1
2 , 𝑟

2
2 ), (𝑟

1
4 , 𝑟

2
3 ), (𝑟

1
5 , 𝑟

2
4 ), (𝑟

1
6 , 𝑟

2
5 )}.

attributes by means of a unique, within the domain, identifier
of the extraction rule that is capable of locating its value from
the detail page. By extraction rule we mean a function extracting
at most one value from a detail page. It does not matter the
formalism, e.g., XPath expressions, in which it will be specified.

Our goal is that of continuously extracting data of guaranteed
level of quality from the detail pages composing to sources. The
data are reorganized into an Integrated Knowledge Graph (IKB)
while minimizing the overall costs. As a measure of data quality,
we will use standard measures such as precision, recall, and 𝐹 -
measure over integrated data [23]. As a measure of the cost, the
goal is that of minimizing the crowdsourcing costs [5, 27].

In IKB the following information will be available: (linkages
and matches) how the source attributes and objects are respec-
tively mapped to the domain attributes and objects; (values prove-
nance) the source attribute values for every object in the domain.

The problem we want to solve is that of continuously creating
K𝑡 , that is an IKB at every time 𝑡 in which the snapshots of the
detail pages from every source in a domain D are gathered. We
illustrate the problem definition by means of a running example
shown in Figure 2.

2 SCOPE, OPPORTUNITIES, CHALLENGES

Building and maintaining effective data processing pipelines over
Web data is a challenging problem for several reasons. First, Web
sources are autonomous and remote: they can unpredictably
change and therefore break all the extraction rules created on
previous versions of the same source to extract data. Second, the
set up of an integration pipeline requires to solve many inter-
related tasks, each of which has motivated flurry of research
works, including: sources discovery, data extraction, schemamatch-
ing, record linkage, data fusion, data labeling, and data cleaning.
Each of these problems has been extensively studied over the
last decades, with tens, if not hundreds in some cases, of well-
recognized research works [6, 13, 19, 34, 39].

The focus of our research project covers the three problems
that we believe are at the core of any Web data integration
pipeline: extraction, matching, and linkage. It does not include,
on one hand, the sources discovery problem, and the automatic
synthesis of crawling programs; on the other hand, it does not
include the data fusion problem.

Our solution can help several projects that need to set up and
maintain over time Web data processing pipelines, but require a
guaranteed quality of the pipelines’ output data to be business
meaningful.

Clearly, the amount of work outsourced to crowd workers
to guarantee the quality level largely depends on the inherent
characteristic of the domain: those containing static attributes
that are largely redundant from source to source can dramatically
simplify domain data detection, extraction and schema matching;
an attribute working as a soft identifier across several sources can
contribute significantly to reduce the cost of the record linkage
task for a domain (i.e, books’ ISBN).

Unfortunately, it turns out that many interesting domains (e.g.,
job postings, real estates, . . . ) do not exhibit such redundancy
and the type of redundancy that the system has to exploit is
at an intensional level, i.e., type and format of values, range of
values, labels of extracted data. Generally speaking, separating
domain data from other information become largely dependent
on the context in which the attributes are proposed, and on
the availability of human feedback to check the correctness of
proposed hypotheses.

Redundancy as OpenIE Enabler

The redundancy plays a fundamental role in our system to keep
the crowdsourcing costs at reasonable levels. Whenever redun-
dancy of data across sources is properly detected and exploited,
domain data can be discerned by other noisy or out-of-domain in-
formation. For example, WEIR [4] assumes that linkages between
collection of pages from two sources are already known as part
of the input, and then it exploits the redundancy of distinct and



independent sources that publish information about the same
objects and attributes to automatically find correct extraction
rules and schema matches.

Noah aims at escalating to the largest possible extent the
use of redundancy for extracting and integrating Web data as
pioneered by WEIR. It will exploit at least the following forms
for redundancy:

Intensional several sources publish the same domain at-
tributes

Extensional several sources publish information about the
same domain objects

Temporal a source publish data about the same domain
objects and attributes over time

Intra-source a source can publish data about the same ob-
jects in pages of distinct type, e.g., a result page containing
snippet of records with most relevant attributes plus link
to detail pages containing all attributes [21]

At the same time, and with the help of human feedback, Noah
aims at overcoming WEIR’s limitations by relaxing its rather
strict underlying assumptions on the input domain: WEIR re-
quires that enough intensional and extensional redundancy is
available to discern all domain data from all other information.

WEIR andNoah falls in the realm of the OpenIE approaches [3,
4, 16, 29, 33, 37]: unlike the ClosedIE approaches [18, 20, 25, 28]
where the managed knowledge base does not grow in terms of
subjects and predicates but only in terms of values, new schema
information, e.g., new domain attributes, can be progressively
discovered while populating the knowledge base with entities
and values of schema already known.

There are two main differences between Noah and other Ope-
nIE [29] systems: first, we do not require a pre-populated Knowl-
edge Base, as we start from an empty IKB and we populate it as
new sources over the domain; second, we aim at continuously
extracting and integrating data [11], as we believe that the tempo-
ral setting is important both for business reasons (many projects
need continuous stream of data rather than snapshots), and for
taking into the main problem definition the maintenance costs of
the generated pipelines over time, costs that are largely neglected
in many research proposals [29].

Despite many of the problems that need to be tackled to cre-
ate our pipelines have already been extensively covered in the
research literature, we believe that semi-automatizing the cre-
ation of Web data processing pipelines can be still considered a
relevant problem [10].

We argue that if the costs and the guaranteed level of qual-
ity [17] are explicitly considered, many projects relying on data
processing pipelines can be re-conducted into a much more con-
trollable investment and validation process, and their overall
feasibility can be significantly improved because many business
projects are strongly and directly affected by the cost of creating
and maintaining the underlying Web data processing pipelines.

Moreover, we believe that by posing to human and automatic
responders the same type of queries, they become interchange-
able enough to motivate the study of new deployment methodolo-
gies for Web data processing pipelines. The goal of such method-
ologies is to progressively lowering the crowdsourcing costs by
means of machine-learning techniques while keeping under con-
trol the output quality level since the early stages of the deployed
pipelines. Indeed, many development projects often experience
unpredictable and erratic time-to-market (TTM) and return-on-
investment (ROI) because, especially in the early stages, they

adopted ML algorithms but lack the amount and quality of train-
ing data, and the validation, needed to guarantee the desired
output quality.

Figure 3: Overview of Noah System & Pipelines created

3 NOAH SYSTEM AND PIPELINES

The Noah system supports the semi-automatic generation of
end-to-end Web data processing pipelines over several domains.
Figure 3 shows how the system can generate and operate many
pipelines at the same time, each having an IKB that is progres-
sively and continuously populated with data coming from the
sources of the domain on which it operates. Our system will in-
teract with external systems by means of two major components:
the Crawler, that continuously downloads snapshot of pages from
every source with a frequency specified by a cron expression;
and the Crowd Manager, that manages the interactions with a
crowdsourcing platform.

During operations, Noah will generate pipeline queries for
the responders engaged by the crowdsourcing platform. The
responders will contribute to solve the system tasks needed to set
up and maintain new pipelines: for example, tasks are needed to
select initial extraction rules over every domain source, select and
label the source attributes, finding the linkages between source
objects to a common mediated domain object, and matching the
source attributes across several sources to a mediated domain
attribute.

System Tasks

The main system tasks that need to be tackled to set up a Noah
pipeline are shown in Figure 4: Page Linkage, Data Extraction,
Schema Matching, and Object Linkage.

Page Linkage aims at obtaining a first approximate top-𝑘 page
linkages. Two pages have a linkage if they both publish data
related to the same domain object.

Example 3.1 (Page Linkage). In Figure 2 we can see two possi-
ble page linkages at time 𝑡𝑛 : {(𝑝11, 𝑝

2
1), (𝑝

1
𝑚, 𝑝24)}. Their distances,

i.e., 0.09 and 0.12, are shown at the top of Figure 5a.

Data Extraction aims at finding all the correct extraction rules.
It generates all the possible extraction rules and discover the
correct ones by exploiting the redundancy of published data
across several independent sources [4] when available, while
querying the responders [7] to confirm uncertain hypotheses.

Schema Matching aims at finding matches between extraction
rules by exploiting an instance-based distance measure between
source objects. The instance-based distance between two extrac-
tion rules assumes the availability of correct object linkages to
align source objects related to the same domain object, as pro-
duced in output by the next system task: the distance is obtained



Figure 4: Running example (Pipeline example with queries): tasks provided by system and query generated for hybrid

human-machine responders.

by averaging the distance between extracted values over all the
aligned detail pages.

Example 3.2 (Schema Matching). Consider source 𝑆1 and 𝑆2
at time 𝑡𝑛 and the set of page linkages {(𝑝11, 𝑝

2
1), (𝑝

1
𝑚, 𝑝24)} in

Figure 2: possible matches are {(𝑟11 , 𝑟
2
1 ), (𝑟

1
4 , 𝑟

2
3 ), (𝑟

1
4 , 𝑟

2
3 )}. The

pairwise attribute distances, i.e., 0.19 and 0.22, are shown at
the top of Figure 5c.

Object Linkage aims at finding linkages between source objects
by exploiting a pairwise attribute distance measure between
source attributes. The pairwise attribute distance between two
source objects assumes the availability of correct schemamatches
across the extraction rules to align source attributes related to
the same domain attribute, as produced in output by the previous
system task: the distance is obtained by averaging the distance
between the two values over all matching attributes.

We name the linkage/matching loop of system tasks Link-
age/Matching Duality; we further discuss it in Section 3.1.

Pipeline Queries

For every system task necessary to set up and maintain a pipeline,
Noah tries to solve it by using a human-in-the-loop approach [9,
26]: unsupervised algorithms will generate most-likely hypothe-
sis based on the available redundancy. These hypothesis are later
confuted or validated by means of queries posed to responders,
initially only human responders, and later, also by using auto-
matic responders based on ML models that have been trained
with the data collected while operating the Noah pipeline (see
Section 4).

An example of the queries posed to the responders for every
system task is shown in Figure 4: Page Linkage, Data Extraction,
Schema Matching and Object Linkage.

Example 3.3 (Data Extraction Query). Figure 4 shows an ex-
ample of query for Data Extraction tasks. The uncertainty of an
extraction rule generated by wrapper inference can be validated
by checking the extracted value on a detail page by means of a
query such as: "Is ’1050$’ a Price?", where Price is a candidate
label for the extraction rule and ’1050 $’ is the extracted value.

Example 3.4 (Schema Matching Query). Figure 4 shows that
schema matching tasks can be solved by means of queries con-
firming or refuting a single match: ’Do "108MP" and "20MP"
refer to the same attribute of object "MI 10"?’. The template of
the query to support a schema matching task has been filled up

with values extracted from two pages of distinct sources, e.g.,
using extraction rules (𝑟15 , 𝑟

2
4 ). These are two detail pages con-

sidered in a linkage, and "MI 10" is the name associated with the
corresponding domain object.

Example 3.5 (Page Linkage Query). A query such as ’Do these
two pages refer to the same object?’ posed to human responders in
Figure 4 can validate or refute a page linkage (𝑝1𝑚, 𝑝24). In order
for the query to be as simple as possible [35], we can show the
user a screenshot of the original pages.

Example 3.6 (Object Linkage Query). Unlike the case of page
linkage tasks above, here the query is posed directly on source
objects with extracted values. A query such as ’Do these 2 objects
refer to the same?’ posed to human responders in Figure 4 can
validate or refute an object linkage (𝑝11, 𝑝

2
1). To make the query as

simple as possible for an human responder, it is shown together
with two records whose attributes have been already aligned by
leveraging the results of a schema matching task.

The tremendous success of crowdsourcing [24] can be partially
explained by saying that human supervision can represent the
essential final ingredient to unmask those problems really hard to
solve through automatic algorithms but that can be transformed
into rather simple questions for human workers. However, it is
well known that in practice, the availability and the accuracy of
crowd workers, especially of unskilled ones, is strongly depen-
dent on the way the questions are posed and rewarded [35]. One
of the Noah goal is that of exploiting IKB, which is progressively
built, also to make the crowdsourcing queries as simple as pos-
sible. For example, a query to check a record linkage exploits
the schema matching already computed to make the two records
easy to be visually compared.

3.1 Linkage / Matching Duality

Figure 4 shows that two important integration tasks operated by
Noah pipelines, i.e., Schema Matching and Object Linkage, are
part of a loop in which each one assumes the availability of the
output of the other to solve its own task. Page Linkage is the
system task outside the loop needed for its initial triggering.

We assume available two normalized distance functions pro-
viding a value between 0 and 1 when comparing two rules, and
two source objects (records), respectively: the instance-based dis-
tance and the pairwise attribute distance. The former compares
two rules over the values they extract from a set of detail pages
which have been previously aligned, i.e., their linkages are fixed.



(a) Linkages Distances (b) Page Linkages over 2 Attributes (c) Matches Distances (d) Matches over 2 Linkages

Figure 5: Running example (Distance Similarity): 5a and 5c show distances in Pyramids; 5b and 5d expose relations in

Cartesian Plane where ’Uncertainties’ are due to the breaking of LC with Non-separable Domain

The latter compares two source objects over the values of some
of their attributes which have been previously aligned, i.e., their
matches are fixed.

Example 3.7 (Normalized Distance Functions). Instance-based
distance: let (𝑝1𝑚, 𝑝24) and (𝑝11, 𝑝

2
1) be two given correct linkages

for the detail pages associated with IPhone 12 and MI 10 source
object from source 𝑆1 and 𝑆2 as shown in Figure 5d. The distance
between the rules (𝑟15 , 𝑟

2
4 ) can be computed as follows: 𝑑 (𝑟15 , 𝑟

2
4 ) =

𝑑 (𝑟15 (𝑝
1
1), 𝑟

2
4 (𝑝

2
1)) + 𝑑 (𝑟

1
5 (𝑝

1
𝑚), 𝑟24 (𝑝

2
4)) = 𝑑 (‘108MP’, ‘108MP’) +

𝑑 (‘12MP’, ‘14MP’) = 2.9. The normalized distance in the range [0, 1]
is 0.27.

Pairwise attribute distance: let (𝑟22 , 𝑟
1
2 ) and (𝑟

1
1 , 𝑟

2
1 ) be two given

correct matches for Brand and Model attributes (see Figure 5b).
The distance between the two source objects aboutMI 10 PRO and
MI 10T can be computed as follows:𝑑 (𝑜12, 𝑜

2
2) = 𝑑 (𝑟12 (𝑝

1
2), 𝑟

2
2 (𝑝

2
2))+

𝑑 (𝑟11 (𝑝
1
2), 𝑟

2
1 (𝑝

2
2)) = 𝑑 (‘XIAOMI’, ‘XIAOMI’) +𝑑 (‘MI 10 PRO’, ‘MI 10T’)

= 3.2. The normalized distance in the range [0, 1] is 0.27.
We revisit and propose an extension of two domain properties,

called Local Consistency and Separable Domain, underlying the
formal approach presented in WEIR [4] for solving the extraction
and matching problem when the page linkage is given as input.

Our ambition is twofold: on the one side, we aim to extend
that approach to cover the whole trio of extraction, matching
and linkage problems at the core of Noah pipelines; on the other
hand, we want to relax the underlying assumptions by mean of
the feedback provided by human crowd workers, so making the
approach adaptable to domains with more disparate character-
istics that those originally covered in the WEIR project. Here
we briefly recall the two properties and sketch how we plan to
extend them.

Local Consistency (LC) In a source there cannot be two
distinct source attributes that refer to the same domain
attribute. The dual property that we additionally assume is
that two distinct detail pages from the same source cannot
publish data about the same domain object.

Separable Domain (SD) In a mapping composed of several
extraction rules, each from a distinct source, and associ-
ated with the same domain attribute, the instance-based
distances between the rules of the mapping are always
smaller than distances with rules associated with a differ-
ent domain attribute. For computing the instance-based
distance, the object linkages are fixed and already known.
The dual property that we additionally assume is that in a
linkage composed of several source objects from distinct
sources and related to the same domain object, the pair-
wise attribute distances are always smaller than distances

with source objects associated with a different domain
object. For computing the pairwise attribute distance, the
source attribute matches are fixed and already known.

For domains in which such properties hold, the WEIR system
is able to match the extraction rules and build their mappings into
cluster of source attributes related to the same domain attribute
by comparing all the similarity distances, while at the same time,
it can separate the correct extraction rules from noisy ones. The
idea is pretty simple and depicted in Figure 5: DS suggests to
sort the set of all possible matches (pair of extraction rules) by
an instance-based distance leveraging the alignment of detail
pages (see Figure 5c). Those pairs are then processed in order of
increasing distances: every pair of rules are merged in the same
mapping as long as the addition of the rules will not lead to a
violation of the LC property, i.e., two rules (source attributes)
from the same source would end up being present in the same
output mapping (see Figure 5d). For certain domains, with suf-
ficiently overlapping sources, WEIR can automatically find the
correct extraction rules and their matching with rules over other
sources provided that the correct linkages between detail pages
are known.

The dual algorithm will solve the problem of finding correct
object linkages provided that correct schema matches between
source attributes are given as depicted in Figure 5: DS suggests
to sort the set of all possible linkages (pair of source objects) by a
pairwise attribute distance (see Figure 5a). Those pairs are then
processed in order of increasing distances: every pair of source
objects are merged in the same linkage as long as the addition
of the objects processed into an existing linkage will not lead
to a violation of the LC property, i.e., two source objects from
the same source would end up being present in the same output
linkage (see Figure 5b).

This algorithm exploits the duality of thematching and linkage
problems, in this setting, and it is at the core of integration engine
for theNoah project. However, differently fromWEIR, it does not
halt the integration as soon as a LC violation is detected: rather,
it generates pipeline queries to confirm the choice, and continue
the processing of all pairs in increasing order of distances, until
it is below a threshold over which no further matches/linkages
are expected with meaningful distance functions.

Unfortunately, as also recognized in WEIR [4], some domains
have sources and attributes with very similar but semantically
different values (e.g., the resolution of the front/rear cameras in
Figure 2). This situation easily lead to violation of the LC and SD
assumptions, and finding the mappings is a challenging problem
for many interesting domains.



Example 3.8 (Non-separable Domains for Schema Matching). In
Figure 2, source S1 and 𝑆2 both have extraction rules ((𝑟15 , 𝑟

1
6 ),

and (𝑟24 , 𝑟
2
5 ), respectively) with a low distance (Figure 5c) because

camera resolutions (e.g., 1-front and 2-back) are typically within
a small range of values expressed in megapixel (MP). In Figure 5d
it is shown that the pair of rules (𝑟15 , 𝑟

1
6 ) at distance 0.25 violates

the LC and DS assumptions because their distance is smaller than
the distance of (𝑟15 , 𝑟

2
4 ) that is 0.27.

Actually, it is well known that the Record Linkage dual prob-
lem, is even much more challenging than the Schema Matching
itself: the attributes containing the correct signals for considering
two objects equivalent can change from object to object even
within the same source (think at smartphones of different brands
with different policies for naming the models and differentiating
the features of each model). Assuming that every object in the do-
main does not lead to a separability violation is quite unrealistic,
beside toy cases.

Example 3.9 (Non-separable Domains for Object Linkage). In
Figure 5b the linkage (𝑝11, 𝑝

2
1) is uncertain due to the presence

of 𝑝22 . The two values (’MI 10’ vs ’MI 10T’) extracted by rule
𝑟21 from pages 𝑝21 and 𝑝22 differ by a single letter: the wrong
linkage (𝑝21, 𝑝

2
2) violating the LC property has a pairwise attribute

distance of only 0, 09 which is smaller than the distance of a
the correct linkage (𝑝11, 𝑝

2
1), and therefore the domain is not

separable.

We believe that the violations of LC and DS assumptions can
be manually fixed and that they help to find the most informative
pipeline queries that need to be posed to external responders, i.e.,
paid crowd workers, or suitably trained automatic responders.

By interleaving the dual linkage/matching algorithms in a loop
in which external responders can contribute, as shown in Figure 4,
each execution can contribute to improve the accuracy of the
distance function used by the other task, either by improving the
linkages used by the instance-based distance, or improving the
matches used by the pairwise attribute distance.

Our vision is that with the precious help of crowdsourcing and
a loop of interleaving linkage/matching operations, the desired
target quality can be reached even in presence of non-separable
domains: responders will be engaged to assess the quality of
the output, and to repair the uncertain choices made by the
integration algorithm. The linkages and matches confirmed by
human feedback can be frozen and exploited in the following
iterations, somehow progressively solving and hence removing
from the domain the linkages or matches that made the domain
inseparable.

4 RESEARCH DIRECTIONS

In the early stages of its life, the IKB K of a new Noah pipeline
might be scarcely populated. As redundancy builds up over time
with the addition of new sources to feed up the IKB, the accuracy
of the extraction and integration process increases.

The absence of overlapping between objects and attributes
published by a rather limited set of sources could limit the amount
of available redundancy. In this situation, for operating the pipeline,
Noah would end up generating a lot of queries supporting the
system tasks. As an alternative solution, Noah supports the in-
cremental addition of a source into an existing pipeline. A new
source might contribute to lower the overall costs if it signif-
icantly overlaps with the sources already available for the do-
main [14]. On the contrary, to integrate new sources publishing

new objects or new attributes, additional costs might be incurred
to support the integration with existing IKB.

We are interested to study ML techniques that could decrease
crowdsourcing costs even in absence of redundancy. The main
research area is that of synthesizing automatic responders ca-
pable of answering the same type of pipeline queries that are
normally posed to human responders for solving Noah tasks,
with the goal of progressively replacing human responders [7]
and scaling the approach up to many thousands of sources.

Unfortunately, state-of-the-artML unsupervised techniques [40,
42] can be adapted to provide accurate and reliable answers to
those queries only if enough training data have been collected.
Indeed, fairness and bias, or simply misuse of machine learning
algorithms, is a well-known problem in literature [12, 32] that
affects many development projects, especially in the scenarios
which are most commonly found in practice [38]: pre-trained ML
models and/or enough training data are not available up-front, so
that the ML models cannot be properly tuned and exhibit erratic
and unpredictable performance [41].

Snorkel [36] is another project exploiting the idea of leverag-
ing human work to train ML algorithms. However, it is based on
the idea of engaging skilled workers in every step of the process-
ing pipeline, while Noah aims at engaging non skilled workers
to whom can be interchangeably posed queries in the same form
as those posed to automatic responders. Several other projects
such as qodco [2] and SEER [22] have made use of crowdsourc-
ing by mainly focusing on the problem of selecting the correct
extraction rules, while Noah applies the same query control
methodology for all the tasks in the considered pipelines.

It is also well known that by using automatic responders not
accurate enough, it might turn out to be more expensive engaging
them than not using them at all, as additional human workers
should be engaged only to offset their wrong answers [7].

We envision a system in which crowd workers are used for
indirectly controlling the deployment of automatic responders,
and the two types of responders are interchangeably engaged.
Crowdsourcing workers contribute to collect domain data that
are then used to train and evaluate automatic responders, before
fully deploying them. Automatic responders will progressively
replace crowd workers to scale the approach and to lower the
operating costs, but only after enough evidence that their accu-
racy does not compromise the overall guaranteed output quality
data. At regime, crowd workers will be minimally used only to
keep monitoring the performance of automatic responders.

We have identified several novel research challenges:

• formalizing and proving the correctness of an algorithm
that solves the full trio of extraction, matching and linkage
tasks;

• creating and maintaining over time the continuous Web
data processing pipelines at low costs, with guaranteed
output quality;

• designing several independent automatic responders based
on ML models that are capable of answering queries nor-
mally posed to crowd workers;

• effectively measuring the available redundancy in a do-
main;

• estimating from the characteristics of a domain the crowd-
sourcing costs necessary to obtain and maintain the de-
sired output quality.
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