
MRbox: Simplifying Working with Remote Heterogeneous
Analytics and Storage Services via Localised Views

Athina Kyriakou
National Technical University of Athens

Zografou, Greece
athina.skyriakou@gmail.com

Iraklis A. Klampanos
National Centre for Scientific Research "Demokritos"

Agia Paraskevi, Greece
iaklampanos@iit.demokritos.gr

ABSTRACT
The management, analysis and sharing of big data usually in-
volves interacting with multiple heterogeneous remote and local
resources. Performing data-intensive operations in this environ-
ment is typically a non-automated and arduous task that often
requires deep knowledge of the underlying technical details by
non-experts. MapReduce box (MRbox) is an open-source exper-
imental application that aims to lower the barrier of technical
expertise needed to use powerful big data analytics tools and
platforms. MRbox extends the Dropbox interaction paradigm,
providing a unifying view of the data shared across multiple het-
erogeneous infrastructures, as if they were local. It also enables
users to schedule and execute analytics on remote computational
resources by just interacting with local files and folders. MRbox
currently supports Hadoop and ownCloud/B2DROP services and
MapReduce jobs can be scheduled and executed. We hope to fur-
ther expand MRbox so that it unifies more types of resources, and
to explore ways for users to interact with complex infrastructures
more simply and intuitively.

1 INTRODUCTION
A number of multidisciplinary scientific and business problems
require the use of advanced analytics tools and the management,
processing and sharing of big data across local and remote plat-
forms, services and cloud infrastructures. Users often define com-
plex analytics pipelines using workflow management systems,
which can also orchestrate their execution. However, in prac-
tice, this orchestration is only partially automatic because the
tools, resources and execution environments used by different
organisations are highly heterogeneous while the majority of
workflowmanagement systems provide solutions to field-specific
problems [8]. As a result, researchers and data analysts are forced
to encounter the technical details of the underlying tools and
resources.

In response to this challenge, MRbox attempts to lower the
barrier of required technical knowledge to use the needed tools
and infrastructures and to hide the complexity of big data man-
agement from non-experts. To this end, we investigate provid-
ing local views on remote computation and file storage cloud
resources, extending the paradigm of cloud storage, synchroni-
sation and data exchange services, such as Dropbox [5]. Using
the file system of the local operating system, MRbox provides an
overview of the data stored in the connected remote infrastruc-
tures and enables users to perform computation jobs on them, as
if they were local, and to share the files produced easily.

More specifically, users can delete, modify or move data sets,
just by interacting with local files and folders and without the

© 2021 Copyright for this paper by its author(s). Published in theWorkshop Proceed-
ings of the EDBT/ICDT 2021 Joint Conference (March 23–26, 2021, Nicosia, Cyprus)
on CEUR-WS.org. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0)

Figure 1: The concept of MRbox is to simplify interacting
with multiple analytics and big data resources by extend-
ing the cloud storage paradigm.

need to know explicitly in which remote or local resource they
reside. In addition, in the current prototype, users have the ability
to schedule and execute MapReduce jobs [3] on a remote Hadoop
cluster [12] from their local machine. The input data can be
stored in any connected resource but users do not have to run
specialised HDFS commands [12] on their terminal to move them
to a specific Hadoop cluster and to issue the MapReduce job.
Lastly, output data generated from MapReduce processes are
fetched locally for ad hoc analytics and they are pushed onto the
B2DROP data exchange service[6], so that users can share their
results with colleagues and with the outside world.

MRbox could be useful to different actors. It can be used by
(i) data analysts, researchers and engineers working on big data
crunching problems, but also by (ii) systems and e-infrastructures
that seek to seamlessly integrate with third-party big data and
data management resources. MRbox is an open-source project
hosted on GitHub1.

2 ASSUMPTIONS AND USE CASES
For the development of MRbox, the two main assumptions made
are: (i) Users do not necessarily have full control of the needed
remote resources. They just have rights to create, delete, modify
and relocate files in their remote folders and run computation
jobs on them. (ii) When working with large and complex data
sets, moving them should be avoided unless necessary[2].

For the development of the current prototype, the following
use cases were identified. Firstly, users should easily connect to
the integrated remote infrastructures, just by running the MRbox
application. Secondly, they need to have a complete view of the
file system hierarchy in the remote resources from their local file
system. When a remote data set exceeds in size the maximum
file size that can be replicated in the local machine, a link file
will be created locally, containing only the path to the remote file.
Thirdly, users of MRbox would have a live preview of the files
residing in a remote source by running file system commands in
their terminal (e.g. head, tail), even when the files do not exist
1https://github.com/AthinaKyriakou/mrbox

https://github.com/AthinaKyriakou/mrbox

physically in the local machine. Moreover, users should be able
to schedule computation jobs that will be executed in remote
processing infrastructures by referring to files as if they were
local. Lastly, users need to have seamless access to the output files
generated by the scheduled jobs in order to do further analysis,
or share them with their peers.

3 SYSTEM OVERVIEW
This section summarises the main components and features of
the application.

3.1 A Sample Session With and Without
MRbox

As an example, let us consider the scheduling of a MapReduce
job, which is the currently supported computation framework. In
the table below we compare the set of actions that a user needs
to perform, with and without using MRbox.
Using MRbox Without Using MRbox
1. Code the Map and Reduce
functions locally.

1. Code the Map and Reduce
functions locally.

2. Move the input file (or a
link to it) in the local MRbox
folder, if it is not already
there.

2. If the input data set is in
the local file system, copy it
to an HDFS cluster via HDFS
terminal commands. If it is
on a remote resource, use the
resource-specific API or in-
structions to copy it to HDFS.

3. Create a yaml file specify-
ing the local paths to Map
and Reduce functions, input
file and desired output loca-
tion.Move the yaml file in the
local MRbox folder.

3. Use the Hadoop Streaming
API to run the job. Move and
generally manage the files
generated using the HDFS
commands as needed.

Outputs are automatically
synced in the local MRbox
folder and in B2DROP. Links
are created if the files are
larger than a predefined size.

Use HDFS terminal com-
mands to fetch the outputs
locally. Use an ownCloud
client or API to copy them to
B2DROP.

3.2 Supported Resources
MRbox currently assumes a UNIX clone as the local and host
system and supports the Apache Hadoop framework [13] and
the B2DROP service [6].

Apache Hadoop is a widely used and open-source MapReduce
framework. It includes two main modules; Hadoop Distributed
File System (HDFS) and the Hadoop MapReduce. HDFS is the
distributed file system primarily used by Hadoop applications,
providing high data-access performance, fault tolerance and na-
tive support of large data sets. MRbox establishes a connection
to the desired HDFS on a remote cluster and it interacts with
Hadoop MapReduce via the Hadoop command line tools pro-
vided.

B2DROP[6] is a user-friendly data synchronisation and ex-
change service created by the European Data Infrastructure (EU-
DAT2) for research communities. It provides a secure storage
environment for long-tail but still volatile data that are subject
to active research, while facilitating the process of sharing and
keeping them up-to-date across different machines. It offers up

2https://eudat.eu/

to 20GB of storage per user. B2DROP offers automatic synchro-
nisation via ownCloud3, an open source file synchronisation and
sharing tool. Alternatively, the service can be accessed on the
Web via an intuitive user interface, or on the local machine via a
WebDAV Client.

3.3 MRbox Configuration
To connect to a remote HDFS, the local host needs to be con-
figured as a client node. This usually requires to have a copy
of the Hadoop distribution locally available and configured to
access the remote cluster[15]. In MRbox.conf – the configuration
file of MRbox – the user needs to specify the host and port of
the HDFS NameNode, as well as the path to the local Hadoop
installation. The user can also determine the absolute path of the
local and HDFS folders that will be in sync, and the maximum
size of the files that will be retrieved locally once created in an
integrated remote resource. Depending on the distribution policy
for MRbox, the Hadoop part of the configuration may also be
pre-configured, therefore saving the end user from even being
aware of the connection specifics to the remote Hadoop cluster.

In addition, the B2DROP service is currently used by installing
on the local machine the ownCloud Desktop Synchronisation
Client following the B2DROP documentation. Both B2DROP
and MRbox monitor the same local folder. A more fine-grained
integration of ownCloud inMRboxwill be developed in the future,
e.g. by modifying the existing client.

3.4 Managing Files
MRbox creates folders locally and on the integrated remote re-
sources, under the root paths specified in the MRbox.conf file.
In order to keep track of local and remote instances of files and
to promote consistency, MRbox implements a catalogue. This
section describes this catalogue, how it stores mappings of lo-
cal paths to remote ones, the synchronisation process between
the local MRbox folder, HDFS and B2DROP, the implementation
of links to comply with local size constraints, and the use of
checksums for data validation.

3.4.1 The Local Catalogue. The local catalogue is used to
maintain mappings between local and remote files and direc-
tories. In the current prototype of MRbox, the local catalogue
maps the local paths to the paths of the corresponding files and
directories on HDFS, making it possible for the user to interact
with the HDFS of a remote cluster through the local file system
hierarchy. Its current implementation is in SQLite[10], a light-
weight, self-contained SQL database engine that does not require
a separate server process to operate and therefore is integrated in
the application itself. For each file and folder, a record is created
in the database consisting of the path, the most recent modifica-
tion time and the checksum of the local and respective copy on
HDFS. Each record also has an attribute specifying whether the
local object is a file, a link (see Section 3.4.3) or a directory.

3.4.2 Synchronisation. Synchronisation between the local
MRbox folder and HDFS is one-way as we can only monitor the
local folder for changes. Our current implementation makes use
of the Python Watchdog library [11], which monitors a desig-
nated local folder for changes. Depending on the type of the
event identified, one of the following actions will take place:

• on_created(): When a file, link or directory is created
locally, it is registered in the local catalogue. For the case

3https://owncloud.com/

https://eudat.eu/
https://owncloud.com/

of file or directory, a copy is created on the remote HDFS.
If the file created has a yaml extension, MRbox attempts
to run a MapReduce job on the remote Hadoop cluster, ac-
cording to the specification passed in the yaml file (Figure
2).

• on_deleted(): When a file, link or directory is deleted
locally, MRbox deletes the corresponding HDFS file and
the record from the local catalogue.

• on_modified(): When a file is modified locally, the HDFS
file is modified accordingly and the local and HDFS check-
sums on the local catalogue are updated.

• on_moved():When a file, link or directory ismovedwithin
the local MRbox folder, the corresponding file or directory
is relocated accordingly within the HDFS folder.

Handling Bidirectional Synchronisation. As discussed above,
the current prototype assumes that users do not necessarily have
full control over the remote resources. This means that, if files
on HDFS change by any means other than through interacting
with MRbox, MRbox will not have a way to track these changes,
therefore leading to inconsistencies. To handle such potential
inconsistencies between the local and HDFS MRbox folders an
offline synchronisation process should be scheduled to run peri-
odically. This is left for future work as low priority, sinceMRbox’s
main goal is to provide local views on remote HDFS resources,
hiding direct access from its users.

In the case of B2DROP, bidirectional synchronisation is achie-
ved through its desktop client, which is installed locally (Figure
2). To support special functionalities of MRbox (e.g. see Section
3.4.3), this client would have to be modified further.

3.4.3 Links. In MRbox, links are a special read-only file type
recognised by the link extension and registered in the local cata-
logue. Links are created to comply with local file size restrictions
when large data sets are generated on the HDFS cluster and need
to be made available locally. In the current prototype such files
are the outputs of MapReduce jobs on HDFS.

The local file size limit can be specified in the MRbox configu-
ration. After the completion of a MapReduce job, the local file size
limit is compared against the size of the output file produced on
HDFS. If the generated file is larger than the maximum allowable
size limit, a link file is created, which contains the path to the
remote file. This link can also be used in the browser to view the
file on HDFS, if this is supported by the remote cluster. Moreover,
if a link is deleted or moved within the local MRbox folder, the
corresponding remote file will be deleted or moved respectively.

Synchronisation of Links Between B2DROP and HDFS. In the
current prototype, a link file in the local MRbox folder is syn-
chronised verbatim onto B2DROP. However, this is not always
desirable, since users would expect the complete file to be avail-
able on a data exchange resource such as B2DROP. After all, the
users that need to access a file on B2DROP may not have access
to the HDFS cluster where it was created. To allow for special
synchronisation treatment for the case of large files that appear
as links locally, a customised synchronisation client would need
to be implemented.

3.4.4 File Checksums. Checksums are used to guarantee data
integrity in file transfers between the local and HDFS folder.
HDFS uses a 32-bit cyclic redundancy check based on the Castag-
noli polynomial (CRC32C). To perform end-to-end client side
validation, MRbox adopts a composite CRC file checksum intro-
duced in Apache Hadoop 3.1.1 that can be configured by setting

dfs.checksum.combine.mode to COMPOSITE_CRC. The compos-
ite CRC checksum is not applicable to links and directories. In
contrast to Hadoop’s default MD5 of MD5 of CRC file check-
sum computed across chunks and blocks, the composite CRC is
independent of chunk and block configurations and describes
only the logical file contents. As a result, it permits comparison
between striped and replicated files, between HDFS instances
with potentially different chunk and block size configurations,
as well as between HDFS and local files or other external storage
systems that implement Hadoop’s File System interface [7, 14].
At the end of each transfer, local file checksums are computed
and compared against the checksums computed on HDFS. If the
checksums do not match, the transfer is repeated.

3.5 Scheduling MapReduce Jobs
MRbox aims to highlight the functional aspects of MapReduce
by hiding the technical implementation details from users. In the
future, MRbox could be extended to support more computational
frameworks. To trigger a MapReduce job users need to:

• Implement the Map and Reduce functions in two distinct
files locally. Any programming language supported by the
Hadoop Streaming utility can be used [16].

• Specify in a yaml file the absolute paths of the mapper
and reducer scripts in the local file system. Also, users
need to define the relative paths of the input as well as
the output location. The input path can point to a file or
a link. All paths are local and users do not need to know
the file structure of the remote HDFS cluster.

• Move or save the yaml file in the local MRbox folder to
trigger the execution.

MRbox will automatically issue the configured MapReduce
job to the remote Hadoop using the Hadoop Streaming utility.
The outputs will be fetched locally in the specified output path
as files or links. The ownCloud Desktop Client, will replicate the
output file to B2DROP, giving the user the possibility to share it
with people working on the same project.

3.6 Additional Tools
The current prototype enables users to get a live preview of data
sets residing onHDFS, by running mrview.py cmd path for a file,
link or directory in the local MRbox folder. If the specified path
corresponds to a file or directory, the supported UNIX command
is executed. If the path corresponds to a link, the data set does not
exist locally due to size constraints. Users can run head and tail
commands to get an overview of the HDFS data corresponding
to the link. The list of supported commands for links can be
extended to a complete suite of tools in the future.

4 RELATEDWORK
Scientific and business workflowmanagement systems andWork-
flow-as-a-Service platforms [1, 4, 9, etc.] often facilitate the pro-
cessing of big data across multiple e-infrastructures. However,
only a limited number of them integrate big data frameworks,
such as Hadoop, directly, without focusing on a certain data
organisation or field-specific problems [17]. In addition, these
systems still present challenges for big data analytics in the cloud
and when used across organisations with potentially heteroge-
neous resources and execution environments [8]. As a result,
the data operations that need to be performed are partially auto-
mated and professionals have to manually configure and use the
involved services and local and remote infrastructures. Finally,

alt

alt

alt

SQLite3 DB
Instance
(via Local

Catalog Class)

MRbox
(via Watchdog)

create obj in the
local mrbox folder

Remote HDFS

get HDFS path(local_path)

hdfs_path

update db record(loc_path, loc_chk)

create db record
(loc_path, hdfs_path, loc_chk, obj _type)

mkdir(hdfs_path)

get HDFS checksum(hdfs_path)

put(loc_path, hdfs_path)

update db record(event_path, hdfs_chk)

find type and checksum of local obj

find type, HDFS path, loc checksum

obj registered
in the

local catalog

else

HDFS file checksum

obj is dir
&& does not

exist on HDFS

obj is file &&
does not exist

on HDFS

obj is yaml file
job's outputs in the output dir, in link or file type

issue MapReduce job
(mapper, reducer, input file, output local path specified in yaml file)

Figure 2: Sequence of events after a file is created in the
local MRbox folder

identifying whether a workflow supports a specific data lake,
platform or tool is usually a challenging task and users need to
get familiar with a new Graphical User Interface (GUI) and the
specific workflow model to efficiently use the management sys-
tem [8, 17]. In contrast to workflowmanagement systems, MRbox
does not require that its users learn a new GUI or a workflow
model specification language.

Furthermore, MRbox borrows from and extends cloud storage,
synchronisation and data exchange services, such as Dropbox.
However, apart from synchronising files and folders and allowing
users to share their data, MRbox investigates the extension of
this interaction paradigm for data analytics and distributed pro-
cessing, as well as for synchronising amongst multiple resources.

5 CONCLUSIONS AND FUTUREWORK
For the processing and sharing of big data, researchers and data
analysts use a plethora of tools and heterogeneous infrastruc-
tures. As a result, performing data-intensive tasks is typically
non-automated and arduous and requires technical knowledge of
the underlying systems. MRbox aims to lower the barrier of tech-
nical expertise by hiding the complexity of big data technologies
from non-experts. Using the file system hierarchy of the local
operating system, MRbox provides a unifying view of local and
remote resources and the data residing in them, and enables users
to schedule computational jobs on remote infrastructures as if
they were local. In the current prototype, Hadoop and B2DROP
services are supported and MapReduce jobs can be scheduled.

This work can be improved in several ways. Firstly, we need
to test MRbox under heavier workloads. A more fine-grained
integration of ownCloud in MRbox will be implemented to en-
able users to directly connect to the B2DROP service without
installing a separate client. Secondly, the ownCloud client needs
to be modified and expanded further to support special func-
tionalities of MRbox, e.g. for the case of links, the complete data
set should be available on resources such as B2DROP. Thirdly,

according to a distribution policy, the connection to remote in-
frastructures, such as a Hadoop cluster, could be pre-configured,
saving the end user from even being aware of the configuration
specifics. Additionally, to verify our concept, we intend to mea-
sure the usability and performance of the current prototype via
user studies covering a range of uses andworkloads. Furthermore,
while maintaining simplicity, we will investigate expanding to
other resources and execution contexts, e.g. triggering the execu-
tion of numerical codes on MPI clusters.

A valuable more theoretical follow-up work could be the for-
malisation of resource types and integration policies, which will
add to the extensibility of MRbox while minimising the risk of
data inconsistencies and resource mismanagement. This could
lead to future research towards a more general framework, to de-
scribe arbitrary computational and storage resources. An alterna-
tive direction could be the exploitation of the unifying file-based
view of heterogeneous resources to integrate widely used tools
and user interfaces, e.g. spreadsheet applications to transparently
make use of large data sets on remote HDFS clusters.

REFERENCES
[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. 2004. Ke-

pler: an extensible system for design and execution of scientific workflows. In
Proceedings. 16th International Conference on Scientific and Statistical Database
Management, 2004. 423–424. https://doi.org/10.1109/SSDM.2004.1311241

[2] Malcolm Atkinson. 2018. Pushing the Limits of Data Powered Research.
https://doi.org/10.5281/zenodo.1164420

[3] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Commun. ACM 51, 1 (2008), 107–113.

[4] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus: a Workflow Management System for Science
Automation. Future Generation Computer Systems 46 (2015), 17–35. https:
//doi.org/10.1016/j.future.2014.10.008 Funding Acknowledgements: NSF ACI
SDCI 0722019, NSF ACI SI2-SSI 1148515 and NSF OCI-1053575.

[5] Dropbox [n.d.]. What is Dropbox - Features Overview - Dropbox. Dropbox.
https://www.dropbox.com/features.

[6] EUDAT Collaborative Data Infrastructure 2019. B2DROP User Documentation.
EUDAT Collaborative Data Infrastructure. https://eudat.eu/services/userdoc/
b2drop.

[7] Google Cloud 2020. Validating data transfers between HDFS and Cloud Stor-
age. Google Cloud. https://cloud.google.com/solutions/migration/hadoop/
validating-data-transfers.

[8] Samiya Khan, Syed Arshad Ali, Nabeela Hasan, Kashish Ara Shakil, and
Mansaf Alam. 2019. Big data scientific workflows in the cloud: Challenges
and future prospects. In Cloud computing for geospatial big data analytics.
Springer, 1–28.

[9] Iraklis A. Klampanos, Chrysoula Themeli, Alessandro Spinuso, Rosa Filgueira,
Malcolm Atkinson, André Gemünd, and Vangelis Karkaletsis. 2020. DARE
Platform a Developer-Friendly and Self-Optimising Workflows-as-a-Service
Framework for e-Science on the Cloud. Journal of Open Source Software 5, 54
(2020), 2664. https://doi.org/10.21105/joss.02664

[10] Python Software Foundation 2020. sqlite3 — DB-API 2.0 interface for SQLite
databases. Python Software Foundation. https://docs.python.org/3/library/
sqlite3.html.

[11] Python Software Foundation 2020. watchdog 1.0.2. Python Software Founda-
tion. https://pypi.org/project/watchdog/.

[12] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
2010. The Hadoop Distributed File System. In 2010 IEEE 26th symposium on
mass storage systems and technologies (MSST). IEEE, 1–10.

[13] The Apache Software Foundation [n.d.]. Apache Hadoop. The Apache Software
Foundation. https://hadoop.apache.org/.

[14] The Apache Software Foundation 2019. Expose file-level composite CRCs in
HDFS which are comparable across different instances/layouts. The Apache
Software Foundation. https://issues.apache.org/jira/browse/HDFS-13056.

[15] The Apache Software Foundation 2019. Hadoop: Setting up a Single Node
Cluster. The Apache Software Foundation. https://hadoop.apache.org/docs/
stable/hadoop-project-dist/hadoop-common/SingleCluster.html.

[16] The Apache Software Foundation 2019. Hadoop Streaming. The Apache
Software Foundation. https://hadoop.apache.org/docs/r1.2.1/streaming.html.

[17] Jianwu Wang, Daniel Crawl, and Ilkay Altintas. 2009. Kepler + Hadoop: A
General Architecture Facilitating Data-Intensive Applications in Scientific
Workflow Systems. In Proceedings of the 4th Workshop on Workflows in Support
of Large-Scale Science. 1–8.

https://doi.org/10.1109/SSDM.2004.1311241
https://doi.org/10.5281/zenodo.1164420
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://www.dropbox.com/features
https://eudat.eu/services/userdoc/b2drop
https://eudat.eu/services/userdoc/b2drop
https://cloud.google.com/solutions/migration/hadoop/validating-data-transfers
https://cloud.google.com/solutions/migration/hadoop/validating-data-transfers
https://doi.org/10.21105/joss.02664
https://docs.python.org/3/library/sqlite3.html
https://docs.python.org/3/library/sqlite3.html
https://pypi.org/project/watchdog/
https://hadoop.apache.org/
https://issues.apache.org/jira/browse/HDFS-13056
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r1.2.1/streaming.html

	Abstract
	1 Introduction
	2 Assumptions and Use Cases
	3 System Overview
	3.1 A Sample Session With and Without MRbox
	3.2 Supported Resources
	3.3 MRbox Configuration
	3.4 Managing Files
	3.5 Scheduling MapReduce Jobs
	3.6 Additional Tools

	4 Related Work
	5 Conclusions and Future Work
	References

