
Multi-Attribute Similarity Search for Interactive Data
Exploration

Kostas Patroumpas
Athena Research Center, Greece

kpatro@athenarc.gr

Alexandros Zeakis
Athena Research Center, Greece

azeakis@athenarc.gr

Dimitrios Skoutas
Athena Research Center, Greece

dskoutas@athenarc.gr

Roberto Santoro
SpazioDati S.r.L., Italy
santoro@spaziodati.eu

ABSTRACT
We have developed SimSearch, a tool that simplifies data explo-
ration by enabling top-𝑘 similarity search over large collections
of entities involving multiple heterogeneous attributes from dif-
ferent sources. We present the supported modes for data access,
and the query mechanism orchestrating multi-attribute similarity
search over diverse types of attributes, including textual, numer-
ical and spatial. Users can specify their query parameters and
preferences through a web interface, and visually inspect and
compare the results through appropriate visualizations for the
different types of attributes involved. We demonstrate SimSearch
using a real-world, commercial dataset, highlighting its capabili-
ties for interactive, user-friendly, and intuitive data exploration.

1 INTRODUCTION
Data scientists spend a large portion of their time on data explo-
ration. Similarity search is a fundamental operation for exploring
massive data collections, e.g., documents in web search engines,
products in e-commerce marketplaces, photos in image hosting
services, etc. Given a user query (e.g., a set of keywords or an
image), the goal is to retrieve the entities most similar to it.

The problem becomes more challenging when the entities
being explored involve multiple attributes of different types. For
example, consider a collection of company profiles. Besides an
identifier and name, these may include various attributes, such
as a textual description, keywords characterizing the type of
business, annual financial figures (revenue, turnover, profit, etc.),
location(s) of the headquarters and possible branches, number of
employees, important dates (founding, change of status, change
of owner, etc.), etc. Hence, attributes can be of different types,
including numerical, textual, and spatial. Furthermore, different
attributes may reside in different sources. For instance, textual
data (keywords, descriptions, etc.) may be stored in Elasticsearch,
to take advantage of its full-text search capabilities; personnel
data may be stored in semi-structured format in a JSON file to
better reflect its hierarchical nature; financial data may be stored
in a relational database to enable fast extraction of statistics.

Similarity search over such multi-attribute entities needs to
combine similarity measures and scores over different types of at-
tributes. In the above example, the user may wish to find medium-
sized companies employing around 10 persons (employees), which
deal with Software, Technology, or Telecommunications (key-
words), are located in or near Milan (location), and have an annual
revenue of around 300,000 euros. To evaluate such queries, the

© 2021 Copyright for this paper by its author(s). Published in theWorkshop Proceed-
ings of the EDBT/ICDT 2021 Joint Conference (March 23–26, 2021, Nicosia, Cyprus)
on CEUR-WS.org. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0)

system needs to access the corresponding data source for each
involved attribute, and query the underlying data using an ap-
propriate index (e.g., R-tree for spatial, B-tree for numerical, and
inverted index for textual data). It will then employ a suitable sim-
ilarity measure (e.g., Jaccard coefficient for textual or Euclidean
distance for spatial and numerical attributes) to rank the results
according to each attribute. The individual rankings can then
be weighted and aggregated to produce the global top-𝑘 results.
After visually inspecting the results, the user may wish to modify
the attributes and/or the weights in the query, and repeat the
search to find more relevant information.

Currently, a data scientist needs to write a series of custom
scripts to perform all these steps, ranging from data access and
querying over multiple sources to similarity computations, ag-
gregations and visualizations of results. This is time consuming,
error-prone, and requires a sufficient level of data management
and programming skills. Notice that multi-attribute similarity
search is different from faceted search (e.g., [1]); instead of ap-
plying a conjunction of Boolean filters per attribute, we employ
similarity measures and scores to rank the results. Multi-attribute
similarity search is particularly useful for exploring and navigat-
ing the contents of a data lake; however, recent works like [2, 7]
focus mostly on finding similar datasets or related tables.

To simplify this task, we have developed SimSearch, an open-
source software for top-𝑘 similarity search over multi-attribute
entity profiles possibly residing in different, heterogeneous data
sources. SimSearch treats top-𝑘 multi-faceted similarity search
as a rank aggregation problem [5]. More specifically, we evaluate
top-𝑘 similarity search queries in two steps, as presented in [6].
First, an individual 𝑘-nearest neighbor (𝑘NN) query is executed
per attribute, fetching a ranked list of entities with respect to it.
Then, rank aggregation is performed to obtain the global top-𝑘
results taking into consideration all attributes. Each 𝑘NN query
is executed in parallel, reducing the overall response time. More-
over, it applies its own similarity measure and takes advantage
of corresponding index and query execution algorithm.

SimSearch includes a graphical interface, allowing users to
select desired attributes, specify preferred values and weights,
and then visually inspect the results through appropriate visual-
izations, such as maps, histograms and word clouds. Results for
several weight combinations can be retrieved with a single query
and visualized side-by-side, providing valuable insight on the un-
derlying data characteristics and enabling users to calibrate their
preferences and progressively navigate and explore the data.

The remainder of the paper is structured as follows. Section 2
outlines the processing flow of SimSearch. Section 3 discusses
the back-end mechanism. Section 4 outlines how multi-faceted
similarity search is executed. Section 5 presents the user interface.
Finally, Section 6 outlines a demonstration scenario.



Figure 1: SimSearch architecture.

2 SYSTEM OVERVIEW
Given a query entity described by multiple attributes, SimSearch
retrieves a ranked list of the top-𝑘 most similar entities. Sim-
Search1 consists of three main components, as shown in Figure 1:

• Data Manager. This component keeps track of the avail-
able data sources and the queryable attributes in each
one, specified in a configuration file. Attribute values may
be ingested or queried in-situ, if supported by the under-
lying data store. For ingested data, suitable indices are
constructed in-memory.

• Query Engine. Based on the attributes involved in the query
and the user’s preferences (values, weights, number of re-
sults), the Query Engine handles execution in two stages.
First, a ranked list of candidate entities is retrieved sep-
arately for each attribute based on individual similarity
queries at the respective data sources or internal indices.
Then, these individual ranked lists are combined to com-
pute the final top-𝑘 results and their aggregate scores.

• User Interface. A web-based interface allows users to spec-
ify their query parameters, including the attributes to be
used and the preferred value and weight per attribute. User
requests are submitted to the server via a REST API. Query
results can be viewed as lists, as well as through different
types of visualizations per attribute (maps, word clouds,
histograms) to offer better insight on their relevance. The
REST API can also be used by administrators to define and
configure new data sources or remove existing ones. The
API also returns a catalogue of the configured sources and
the types of their respective attributes.

Next, we describe each component in more detail.

3 DATA MANAGER
The Data Manager keeps track of the available data sources and
their queryable attributes. It supports different types of attributes,
including numerical (e.g., integers, floats, dates), spatial (e.g., coor-
dinates, geometries) and textual (e.g., keywords, tags). Attribute
values may come from heterogeneous and remote sources. Two
access modes are supported:

– Ingest mode. Attribute values are ingested by the Data
Manager, which builds a corresponding index (e.g., B+
tree for numerical, R-tree for spatial, inverted index for
textual attributes). Such indices reside in memory to allow
executing 𝑘NN queries with low latency. Thus, this mode
is preferable for interactive exploration and visualization.

– In-situ mode. In this case, the Data Manager uses an ex-
ternal query endpoint, rather than an internal index, to

1Source code publicly available at https://github.com/smartdatalake/simsearch

retrieve results for the specific attribute. If the data re-
sides already in a DBMS or a RESTful web service that
can process 𝑘NN queries over the desired attribute, then
the Data Manager can retrieve a ranked list of results by
submitting a query to that endpoint instead of requiring
to ingest and index the data internally. This mode avoids
data replication and offers the ability to scale according to
the scalability of the accessed DBMS or RESTful service.

The Data Manager is implemented in Java and employs suit-
able JDBC and REST API connectors to external data sources. It
currently supports ingesting data from CSV files, but it is straight-
forward to extend it with importers for other data sources (e.g.,
JSON). For in-situ queries, it can connect to any DBMS (e.g., Post-
greSQL ) via a JDBC connection, thus taking advantage of their
provided indices and query execution capabilities. Connectivity
through REST APIs can be used to retrieve data from remote
search engines, such as Elasticsearch.

Thanks to its own REST API, a SimSearch instance can also
employ another SimSearch instance as an external query end-
point. This important feature provides an additional means for
SimSearch to scale horizontally. Recall that in the in-situ mode,
SimSearch relies on external engines (DBMS, REST API) to satisfy
scalability requirements, whereas in the ingest mode its scalabil-
ity is limited, since the indices for the ingested properties need
to be kept in memory. However, using this feature, it is possible
to use different SimSearch instances in several machines to in-
gest and index different attributes, and then query them from a
“master” instance to answer requests combining all attributes.

4 QUERY ENGINE
The Query Engine is also developed in Java and is loosely cou-
pled with the Data Manager. It receives a top-𝑘 similarity search
request through the SimSearch REST API, and identifies the at-
tributes involved. It then consults the Data Manager to find their
corresponding data sources and prepares a suitable 𝑘NN query
specification per attribute. For instance, if an attribute concerns
ingested data (e.g., keywords), a search will be executed against
the respective in-memory index (e.g., an inverted index). If the at-
tribute data resides in a DBMS, an SQL query will be constructed
and executed over a JDBC connection to the database. If attribute
data is accessible through a RESTful service (e.g., Elasticsearch
or another instance of SimSearch), an HTTP request will be sent
to fetch candidate entities most similar to the given query value.

In SimSearch, we apply a uniform approach that allows rank-
ing of entities by their similarity to a given query independently
and in parallel for each attribute. Thus, a separate ranked list of
candidate entities is fetched by each individual query. Entities
in each list are sorted by their respective scores as computed
by a respective scoring function. As detailed in [6], similarity
measures may differ per attribute, hence an exponential decay
function is employed for normalizing the scores per attribute.
Nonetheless, each list should provide a sufficient number𝑀 of
candidates (typically, 𝑀 ≫ 𝑘) to ensure that the top-𝑘 results
with the highest aggregate scores are finally returned to the user.

Combining the various ranked lists produces the final results
with aggregate rankings according to user-specified weights per
attribute. This rank aggregation process is agnostic of whether
the underlying data sources are ingested or queried in-situ by
the Data Manager, as long as identifiers of entities in each ranked
list can be matched. However, top-𝑘 rank aggregation against
multiple lists may employ different access paradigms [5]. The

https://github.com/smartdatalake/simsearch


main difference is whether random access to attribute values is
allowed or not. SimSearch can be configured with three alterna-
tive ranking algorithms for the aggregation stage. Each of them
iterates in parallel over the ranked lists to find matching entities
and compute aggregate scores. We briefly outline them below:
– Threshold Algorithm (TA) [3]. Thismethod employs unrestricted
random access to the full contents of the underlying attribute
values. It maintains a threshold 𝑇 that represents an upper
bound for the aggregate score of unseen entities. Once the
aggregate score of an entity exceeds the current 𝑇 value, this
entity is issued as the next result. However, random access
may be costly (e.g., numerous SQL queries to a remote DBMS)
or even prohibited (a RESTful service may be limiting for API
calls to mitigate denial-of-service attacks).

– No Random Access (NRA) [3]. In contrast to TA, this algorithm
iterates strictly over the sorted items in each ranked list. No
exact scores can be issued formissing values, so NRAmaintains
a lower and an upper bound for the aggregate score of each
seen entity. This may incur significant overhead, especially for
ranked lists of considerable size (i.e., larger𝑀 values).

– Partial Random Access (PRA) [6]. This hybrid variant of TA
employs random access not to the full attribute data, but only
to items already retrieved in the much smaller ranked lists.
However, exact aggregate scores may not always be available
(unless an entity appears in all ranked lists), so PRA employs
bounds on the aggregate scores per entity as in NRA.
We are currently extending the Query Engine with a pivot-

based multi-metric indexing mechanism [4], which can signifi-
cantly speed up query execution. However, this is feasible only
when all involved attributes are ingested and indexed internally.

5 USER INTERFACE
SimSearch provides a Web interface, which is developed with
Python’s Dash open-source framework2. The user interface is il-
lustrated in Figure 2 and allows specification of query preferences
and values, interactive modification of weights per attribute, and
visualization of the returned results.

More specifically, clicking on button Settings, the user can
connect to a SimSearch service deployed over some data sources,
inspect the queryable attributes, and optionally specify parame-
ters controlling the rank aggregation process (ranking method,
decay factor, etc.) Once connected, the user can specify top-𝑘
similarity search queries involving any combination of the avail-
able attributes. The user can specify her preferred value on any
attribute to include it in the search (e.g., a comma-separated list
of keywords, a numerical value, a date, etc.). Locations can be
specified either directly with the Well-Known Text representa-
tion of the query point or by clicking on the globe button to
display an interactive map and pick the desired coordinates. In
case of data regarding named entities (e.g., company names), the
user can instead search for an entity and readily fill in the search
preferences with its respective attribute values.

Weights per queried attribute to be used in rank aggregation
can be chosen using the sliders. Multiple combinations of weights
can be configured (e.g., four combinations shown in Figure 2)
with values specified by the user. For each such combination, a
separate list of top-𝑘 results will be returned. Weights calibrate
the importance of each attribute in the final rankings, hence
results may differ among those lists not only in terms of their
constituent entities, but also in their rankings and scores. For
2https://dash.plotly.com/

instance, if the user wishes to mostly find similar entities nearby
the query location, the weight on this attribute should be set very
close to 1, with reduced weights on the rest. In another combina-
tion, keywords may be considered more important, increasing
the weight on this textual attribute while diminishing the rest.

When the Search button is pressed, a top-𝑘 similarity search
request is sent to the server with the given parameters to calcu-
late the results. We stress that this is not a Boolean match query
typically supported in a DBMS; users actually wish to find enti-
ties that are mostly similar to their specified preferences, even if
result values deviate in some attribute(s). Once the response is re-
ceived, the listings of most similar results (one listing per weight
combination) are displayed. Most importantly, comparative vi-
sualizations of these lists are offered, each involving a particular
attribute in its results (Figure 2). As SimSearch currently supports
queries on spatial, textual and numerical attributes, the front-end
provides different views of results, respectively for each attribute
type, as described below.

If a spatial attribute is involved in the query, map views of the
locations of the results are plotted side-by-side. Such alternative
views include heatmaps, clustered markers, and cluster polygons,
so that the user can inspect how each specified weight has in-
fluenced the geographical extent (captured with the Minimum
Bounding Rectangle) and spatial distribution of the results. Even
results with locations far away from the query point can be iden-
tified in some cases. These results may qualify for a particular
list, if their aggregate score is high enough, due to having strong
similarity to the query in other attributes.

For results with a textual attribute involving keywords, a word
cloud or histogram can be depicted per list. Keywords are shown
in varying sizes in word clouds depending on their frequency in
each respective list. Again, this provides insight on how weights
affect the returned results, allowing the user to identify at a glance
whether the most frequent keywords match her preferences in
the query. Alternatively, histograms can provide more details
regarding the top-10 keyword frequency in the results.

For numerical attributes, histograms show the distribution of
their values in results per weight combination. Also, box plots
enable a user to instantly observe if results are concentrated
around her query value or deviate significantly from it.

Overall, if multiple combinations of weights are employed,
the user can identify which results are closer to her intentions.
She can then modify some weights (or add another combina-
tion) using the respective sliders and issue a new request. Any
changes in the results are directly reflected on the visualizations
per weight combination. Furthermore, SimSearch allows users to
examine correlations in results. First, a similarity matrix captures
the pairwise similarity between entities in the same list obtained
for a given weight combination (intra-list correlation). In addition,
inter-list correlations between the rankings of two lists can be
calculated. For all pairs of result listings, the application pro-
vides three types of rank correlation coefficients: Spearman’s 𝜌 ,
Pearson’s 𝑟 , and Kendall’s 𝜏 . These coefficients can quantify the
statistical dependence of rankings between the lists, i.e., indicate
the similarity of their respective results.

6 DEMONSTRATION SCENARIO
We will demonstrate the current functionality of SimSearch
against the ATOKA knowledge base3 owned by SpazioDati. This
real-world data concerns companies in Italy and includes many

3https://atoka.io/

https://dash.plotly.com/
https://atoka.io/


Figure 2: User interface in SimSearch for specifying
queries and visualizing their results.

different types of attributes (company size, type of business, loca-
tion, annual revenue, etc.). From this dataset, we have extracted
selected attributes regarding 5,747,638 companies active during
2019 across Italy. Our scenario assumes a setting where some
attributes are ingested while others are queried in-situ, so ex-
tracted attribute data is stored in different systems and formats
(CSV files, PostgreSQL, Elasticsearch). Nevertheless, all entities
(i.e., companies) retain their original identifiers in each source, so
that data for the same entity can be identified across sources. We
have deployed a “master” SimSearch web service that supports
top-𝑘 similarity search queries specified via its REST API and
involving up to four representative attributes:

• Keywords describing the industrial sector(s) of each com-
pany. This textual attribute is ingested from a CSV file and
an inverted index is built to support relevant queries.

• Number of employees is a numerical attribute that is queried
in-situ in a PostgreSQL database using its B-tree index.

• Annual revenue data is held in Elasticsearch and is queried
in-situ with requests to its REST API.

• Location lat/lon coordinates are stored in PostgreSQL and
an R-tree index is built to support in-situ queries. How-
ever, this spatial attribute is available through another
instance of SimSearch, which handles connections to the
underlying database and provides results to the “master”
SimSearch service through REST API communication.

The demonstrated similarity search queries can involve any
of these attributes with flexible combinations of their respec-
tive weights. Suppose that the data scientist wishes to identify
possible competitors or potential clients to a given company. To
formulate a query, she is able to retrieve a company by its name
and use its attribute values as query parameters. Alternatively,
she can directly type her preferences in the various fields, e.g., to
search for the top-50 most similar tourism-related companies (ho-
tels, restaurants, etc.) located in or near Florence, which have an

annual revenue of around 1 million euros. Note that these are not
Boolean, conjunctive criteria, but should be regarded as the user’s
preferences for similar entities. Thus, the user may discover in
a serendipitous fashion companies similar to as many prefer-
ences as possible, which she would not be able to find through
crisp filters. In this case, she can activate each related attribute in
the interface and specify her query preferences (e.g., keywords,
location coordinates, revenue) as illustrated in Figure 2.

Furthermore, one or more combinations of weights can be
defined per attribute, which will be used to calculate the aggre-
gated scores of the results and thus their final rankings. If the
user is mostly interested in finding companies close to the query
location, then weights on this attribute should be much higher
than those on other ones. In another weighing scheme, the user
can specify high weights on keywords, thus expecting that top-𝑘
results would be companies mostly characterized by tags similar
to those in the query. In the same manner, increased weight on
revenue will retrieve results mostly biased towards a similar nu-
merical value. Of course, the user can also specify a combination
with equal weights to all attributes to get more balanced results.

Given a query, SimSearch will compute a ranked list of com-
panies that are mostly similar to these criteria for each weight
combination. Then, several visualizations of the returned results
are rendered via charts, maps, and word clouds, as well as calcu-
lated statistics regarding correlation of results within each list
and between them. Using such plots, the user can get a better
insight of the results and directly assess the impact of weights in
each case. For instance, in the example query shown in Figure 2,
the spatial distribution of results strongly depends on the applied
weights. A similar situation occurs with the revenue data, since
some results may deviate a lot from the query value when the
respective weight has been relaxed. Thus, the user may suitably
adjust the weight(s), add or remove weight combinations, change
any query value, include extra attributes (e.g., number of employ-
ees) in the query or even deactivate a previously applied attribute,
and repeat the search to get new results. Furthermore, one of the
returned entities can be picked from a listing and used as the
new query, thus steering the next steps of the search according
to it. This way, SimSearch allows users to examine correlations
in results, progressively explore the data, and intuitively extract
valuable knowledge about its properties.

ACKNOWLEDGMENTS
This work was partially funded by the EU H2020 project Smart-
DataLake (825041).

REFERENCES
[1] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarunas Mar-

ciuska, and Dmitriy Zheleznyakov. 2016. Faceted search over RDF-based
knowledge graphs. J. Web Semant. 37-38 (2016), 55–74.

[2] Adriane Chapman, Elena Simperl, Laura Koesten, George Konstantinidis, Luis-
Daniel Ibáñez, Emilia Kacprzak, and Paul Groth. 2020. Dataset search: a survey.
VLDB J. 29, 1 (2020), 251–272.

[3] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci. 66, 4 (2003), 614–656.

[4] Maximilian Franzke, Tobias Emrich, Andreas Züfle, and Matthias Renz. 2016.
Indexing multi-metric data. In ICDE. 1122–1133.

[5] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. 2008. A survey of
top-k query processing techniques in relational database systems. ACMComput.
Surv. 40, 4 (2008), 11:1–11:58.

[6] Kostas Patroumpas and Dimitrios Skoutas. 2020. Similarity search over enriched
geospatial data. In GeoRich. 1:1–1:6.

[7] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
SIGMOD. 847–864.


	Abstract
	1 Introduction
	2 System Overview
	3 Data Manager
	4 Query Engine
	5 User Interface
	6 Demonstration Scenario
	Acknowledgments
	References

