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ABSTRACT

Data lakes are complex ecosystems where heterogeneity prevails.
Raw data of diverse formats are stored and processed, while
long and expensive ETL processes are avoided. Apart from data-
heterogeneity, data lakes also entail hardware-heterogeneity. Typ-
ical installations involve distributed infrastructures, where each
node is possibly equipped with hardware of different character-
istics. Especially for the case of storage, the various devices a
node possesses can be organized in a hierarchy that defines a
spectrum of performance-capacity-cost configurations. Given
the various configurations and the volatile workload landscape,
taking optimal placement decisions is a cumbersome task.

In this work, we propose a storage management solution for
the Smart Data Lake [12] platform. The proposed system takes
advantage of the available storage devices, while it abstracts away
data/hardware characteristics and provides a unified interface for
data accesses. This way performance is improved while tiering
complexity is hidden from the application layer.

1 INTRODUCTION

Data warehouse systems such as Teradata [14], Oracle [7] and
IBM DB2 [5] have been extensively used for processing analytical
queries at scale. Such systems first collect data from various
sources (e.g., sensors, logs, etc.) and then apply an expensive ETL
process to make it suitable for ingestion. However, ETL increases
query to answer time and results in unnecessary work when
queries target only a small fraction of the data set.

In contrast to warehouses, data lakes are raw data ecosystems
that manage data from multiple sources and process it in-situ,
avoiding the long and expensive ETL. Each data set preserves its
own format and execution is optimized to deal with heterogeneity.
Thus, there may be, for example, queries that combine CSV and
JSON data without having to transform and persist them first into
a common representation form. This allows for faster response
times and easier integration of new sources.

The volume of data and the inherently distributed nature of
a data lake require a decentralized architecture that involves
multiple compute and storage nodes. Conceptually, data is stored
in a shared pool, that is accessed over the network and is exposed
to the various applications. Large cloud vendors, such as Amazon
[1] and Microsoft [10] follow this approach and offer data access
on top of S3 or HDFS respectively.

Nevertheless, network access introduces additional latency
and misses optimization opportunities in cases where there is
temporal or spatial locality in the data access pattern. Thus, the
first challenge we need to deal with is to avoid unnecessary data
copies while keeping the flexibility of a decoupled architecture.
Moreover, we would like to cache intermediate results without
having to tune every individual engine involved in the data lake.
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The two above arguments mandate the need for more sophis-
ticated storage management in data lakes. We envision a system
that tracks user workloads and automatically identifies caching
opportunities independently of the source of origin of each data
set. Storage management should not be tightly coupled to a spe-
cific engine but equally serve them all. However, data placement
has not only performance-related implications. As main mem-
ory is still a more expensive and scarce resource than hard disk
drives, placement also affects available capacity and monetary
cost. With the hardware advancements in storage technologies,
the placement optimization problem becomes even more diffi-
cult; the choice is not anymore binary (memory or disk), but
several tiers are involved (e.g., SSD, NVM), each with its own
performance-capacity-cost offering. A properly designed storage
manager should be aware of the trade-offs the various tiers offer
and transparently move data across them based on a given policy.

Apart from being independent from the underlying data stores,
storage management should be also decoupled from the appli-
cation layer of the data lake. Existing storage systems expose
tiering information and decision making to the user. For example,
HDFS supports tiering by using the Archival Storage [3] and lets
the user select the right tier. We argue that in a data lake, where
a multitude of different users and query engines coexist, permit-
ting each of them to define its own policy would result in a too
complicated design where conflicting decisions would undermine
opportunities for data-sharing and multi-engine optimization.

This work addresses the aforementioned problems and presents
the preliminary design of a storage manager specifically tailored
for data lakes. The proposed system is being developed as part of
the Smart Data Lake (SDL) [12] project. SDL is a scalable, elastic
and hardware-conscious data lake that supports analytical tasks.

The proposed storage manager is a self-tuning and elastic
component that enables efficient data placement and access. We
can think of it as a middleware between storage and compute
nodes. It supports direct access to raw data but it can also create
on-demand intermediate representations of various formats (e.g.,
CSV, columnar binary, etc.) and persist them in the appropriate
tier. SDL considers several different storage alternatives, each
featuring a different set of characteristics. Our storage hierarchy
includes remote cloud storage, local spinning disks, SSDs, NVMs
and DRAM, which depending on the use-case can be either shared
between different processes or private.

In addition, the proposed architecture offloads the tiering pol-
icy from the application layer to the storage manager. This way,
we enable shared optimizations and relieve the user from the
burden of fine tuning storage configurations. To simplify the
interaction with both the storage and compute nodes, storage
manager exposes an object store-like APL Data is seamlessly
exchanged in both sides (storage/compute nodes) through simple
primitives, while all the complexity of the different data formats
and locations is abstracted away.

The remainder of the paper is organized as follows: Section 2
gives an overview of the SDL architecture, Section 3 discusses the
design decisions for the storage manager and Section 4 presents
a preliminary evaluation. Finally, Section 5 concludes the paper.
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Figure 1: SDL architecture.

2 SDL ARCHITECTURE

SDL features a data lake system that supports the full stack of
operations required in typical analytics tasks. Namely, it provides
efficient access methods for both on premise and cloud storage,
in-situ processing of diverse data, a rich set of data mining algo-
rithms and a visualization layer that enables comprehensive data
exploration. More specifically, as Figure 1 shows, SDL comprises
three main components: SDL-Virt, SDL-HIN and SDL-Vis.

SDL-Virt lies at the core of the data lake. It provides all the
necessary mechanisms for virtualizing data and processing it
over heterogeneous hardware. Since data access always goes
through SDL-Virt, it acts as a storage and query interface for
the other components, that abstracts away the complexity of
the various data formats and locations. For managing the ever-
increasing data volume, a distributed architecture is used while
the employed resources are elastically allocated to meet demand.
SDL-HIN is an extensible suite of algorithms for the scalable
analysis and mining of heterogeneous information networks [13].
It is offered as a library and runs on top of SDL-Virt. SDL-Vis
comprises a set of tools for visually exploring unknown data sets
and interpreting the results returned by SDL-HIN and SDL-Virt.

Since the SDL data lake engine is empowered by SDL-Virt, we
delve into its internals and give further details about the design
and the architectural choices. SDL-Virt features a distributed
architecture that consists of multiple nodes that collaboratively
process large data sets in a data-parallel manner. Each node runs
two collocated instances of a storage and a compute node: (i)
RAW [11] and (ii) Proteus [2] respectively.

RAW is a commercial system able to access and process data
sets of various formats. No matter whether data resides in ex-
ternal infrastructures (e.g., Amazon S3, Dropbox, etc.) or in an
in-house database, RAW can seamlessly access and load it through
a proprietary query language.

Although RAW also provides basic processing capabilities it-
self, it does not take advantage of modern hardware. For the
efficient execution of analytical operators, SDL-Virt employs Pro-
teus: our just-in-time (JIT) compiled engine for fast, in-memory
analytics. Performance in Proteus comes through customization
and hardware heterogeneity. By JIT-ing code, we customize data
access for the query/data set at-hand, and by using hybrid ex-
ecution plans that involve both CPUs and GPUs, we increase
parallelism and reduce end-to-end execution time.

To coordinate the execution of the RAW-Proteus nodes, SDL-
Virt includes a Query Planner and a Resource Manager. As in
any database system, the Query Planner parses SQL queries and

generates first a logical and then a physical plan of execution. In
order to do so, it takes into account hardware availability, data
location and data set characteristics. Similar to YARN [16] or
Mesos [6], our Resource Manager is responsible for allocating
resources (e.g., CPU cores, GPUs, memory) upon query execution.
The description above implies that for every submitted query,
RAW accesses a remote data set and retrieves it over the network.
Such a process would severely harm performance, as it does not
take into account the temporal and spatial locality of data access
patterns. To deal with this issue, our design also includes a Stor-
age Manager. Storage Manager detects recurring patterns in data
accesses and caches data accordingly. Moreover, the plethora
of available storage devices (e.g., HDD, SSD, NVM, DRAM, etc.)
offers the opportunity to explore the performance-capacity-cost
continuum in a more fine granular way. Each node of the consor-
tium organizes devices in a hierarchy and data sets are moved
across different storage tiers in order to maximize throughput.
Albeit storage management plays a key role in the perfor-
mance of data lakes, it has not been extensively investigated yet.
Existing solutions either ignore the underlying storage hierarchy
or expose it to the applications and put the burden of tiering to
the user. To remedy this, we opt for a transparent solution where
data/hardware complexity is hidden from the user.

3 STORAGE MANAGEMENT

Storage Manager acts as a middleware between the storage and
compute layers of a data lake and can serve read/write requests
from both sides. In the SDL architecture, we install a storage
manager instance in every node along with the Proteus and
RAW processes. This way, we favor locality and reduce network
traffic. Although in this work we focus on Proteus and RAW,
Storage Manager is not coupled to them and can work with any
storage/compute engine that implements its interface.

Upon query execution, a compute node contacts its local Stor-
age Manager instance to get information on data location: if data
is locally available, it does not need to contact RAW and directly
access it from the corresponding tier. As storage devices, we
consider both local (e.g., SHM, SSD, HDD etc.) and remote (e.g.
HDFS, Amazon S3 etc.) resources.

3.1 Architecture

Figure 2 illustrates an overview of the architecture of a single
Storage Manager instance. It comprises (i) an interface that ex-
poses basic data access primitives, (ii) a lock-free message queue
for the communication with Proteus and RAW, (iii) a local catalog
and (iv) a tiering policy. Yellow arrows reflect data flow, while
blue ones metadata flow and the interaction between the various
componentns. Next, we elaborate on each of these separately.
Object store interface. For accessing data, we expose object
store-like reader and writer interfaces. Object stores provide
generic get/put primitives that are compatible with a wide range
of data formats and query engines!. This way, we offer an unified
interface that minimizes the complexity between data access and
computation. Each dataset can be stored as a set of objects. The
semantics and size of an object are arbitrary and are defined and
managed by the corresponding query engines. In our architecture,
objects are grouped into segments and each segment is placed in
specific storage layers/tiers (we use the terms interchangeably).
For allocating segments and grouping objects into segments, we
have implemented special storage allocators, one for each tier.

!For simplicity, we use “query engines” to refer to both Proteus and RAW at once.
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Figure 2: The anatomy of Storage Manager. Yellow arrows
represent data flow while blue ones metadata flow.

Lock-free queue. As Storage Manager physically lives in its
own process, the read/write requests for the various objects need
to be exchanged via an inter-process communication (IPC) mech-
anism. To minimize latency, for IPC we use a queue allocated
in shared memory. However, even when using such a fast IPC
mechanism, the shared queue defines a critical section in the
communication between the query engines and the storage man-
ager. To reduce the synchronization cost, we design a lock-free
protocol based on GCC atomics. Moreover, while the requests
queue is shared, to further reduce contention, we use separate
response queues for each query engine.

Another issue we need to deal with stems from the unpre-
dictability of the arrival rate of I/O requests. Existing storage
systems follow two common approaches: polled I/O and interrupt-
driven I/O. The former has lower latency and higher throughput
when processing high-frequency requests, while the latter con-
sumes less CPU cycles in the case of low-frequency requests [15].

To get the best of both worlds, we support adaptive switching
between the two I/O modes. Normally, Storage Manager works in
the interrupt-driven mode, i.e., it sleeps and waits for requests. We
implement interrupts with signals. After pushing a request to the
queue, the corresponding reader/writer sends a signal to notify
Storage Manager. After it has been notified, Storage Manager
works in polled mode: it loops and checks for new requests. This
happens for a configurable amount of time (e.g., 10msec) before
it returns back to the interrupt mode. Thus, we use polled mode
for high-frequency arrivals and interrupts for low-frequency.

Local catalog. For managing data placement, Storage Man-
ager uses a local catalog. The catalog maps each object identifier
to a unified logical address space that spans all available tiers
and facilitates indexing. Each object is assigned a logical address
that consists of three parts: a storage layer id (8-bits), a segment
id (24-bits), and a relative offset (32-bits) within the segment. For
indexing layers, we use a bit per tier and hence, we currently
support up to 8 tiers. A segment id can be a pointer in case of
memory-based tiers or a file descriptor for disk-based ones. The
translation process between logical and physical addresses is
depicted in Figure 3 and is based on a two-level lookup table.
In the first step, we search by layer id in order to identify the
segments that exist in the specific layer. Then, in a second step
we lookup the segment id. The result of this search is the physical
address of the desired segment. By adding the relative offset, we
reconstruct the full physical address of the requested object.

While it is the catalog that maintains logical addresses, the
translation takes place within the query engines and not the
Storage Manager. Each query engine has all the layer and segment
ids cached. For every I/O request, Storage Manager responds with
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Figure 3: Translation between logical and physical ad-
dresses

the corresponding logical address and then the query engine
computes the physical address and directly reads/writes data,
with zero-copy and by-passing Storage Manager completely.

Tiering policy. The tiering policy is an easily plugable com-
ponent that defines the placement of each object: it decides the
right tier for a new object and triggers data moves, across the
storage hierarchy, for existing ones. In the literature, there are
many approaches for taking such decisions (e.g., heuristics [9],
ML [4]). In our system, while we have implemented all the APIs
and mechanisms for supporting such a policy, the design of a
sophisticated data placement algorithm is part of ongoing work.

In contrast to existing solutions, we hide tiering from the appli-
cation layer. We argue that this decision has several advantages.
First, it simplifies implementation in the application layer. Users
do not have to provision for tiering or put effort on fine-tuning
storage configurations. Second, policies are re-usable and do not
need to be implemented separately by each query engine. For ex-
ample, Proteus and RAW do not have to implement the same data
placement algorithm. Last but not least, by taking decisions based
on the global access patterns we can support multi-engine opti-
mizations. Data that is often accessed by multiple query engines
is automatically pushed to the top of the storage hierarchy.

To identify interesting access patterns, we should also have in
place a workload tracking mechanism. The tracking mechanism
is also part of the Tiering Policy module. The more fine granular
tracking is, the more elaborate decisions we can take. For example,
consider a relational table where we only access a single column.
In that case, we need to only cache this column and not the table.
Although our example focuses on columns, in general the data
container of interest depends on the data format. However, our
object-store design is format-agnostic and of size that depends
on the application. Therefore, an object can be anything from a
single tabular record to a whole graph data set.
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Figure 4: Data object structure

To solve this problem and provide fine-granular tracking, we
devise slices. Each object comprises multiple slices of fixed size
as depicted in Figure 4. Slices are not exposed through Storage
Manager’s API and readers/writers are unaware of their existence.
As we use buffered I/O, each time a buffer flushes, a new slice is
transparently created. In the example of Figure 4, let us assume
that the object is persisted in a SSD drive and that slices 52, 54
are frequently accessed. Then, the tiering policy is responsible
to create a new object containing only S2 and 54 and store it in
a higher-level tier (e.g., DRAM). Please note that this happens
independently of the data semantics and format.



Table 1: IPC max throughput (messages per ms)

shared queue | sockets | pipes | System V mq
2406.5 186.6 150.8 365.8

3.2 Read/Write Workflow

Having described all the components of Storage Manager’s ar-
chitecture, for better understanding how they work, we now
describe the workflows for the write and read access paths.

Write. Let us assume that a query/storage engine (e.g.,RAW)
sends a write request to the storage manager for persisting an
object with unique identifier X. The request is sent through the
lock-free shared queue. Storage Manager receives the request
and based on the tiering policy decides on the tier that the object
should be placed (e.g., SSD). Then, the manager contacts the
storage allocator of the specific tier, in order to get a segment id
and the position of the new object within the chosen segment.
Having a tier identifier, a segment id and an offset within the
segment, we can form a logical address L and Storage Manager
persists the mapping X — L to its catalog. Finally, the manager
returns the logical address to the engine that issued the request.

Read. Upon a read request, Storage Manager checks the cat-
alog and retrieves the logical address for the specific object id
and returns it to the query engine in order to read the object
from the corresponding tier, without waiting for data copying
around tiers. Hardware-conscious systems (e.g., Proteus) need
to prefetch data into a privately managed CPU/GPU memory in
order to unleash their full potential. To enable this behavior, our
Storage Manager provides two additional operations: load and
unload. The first one prefetches data while the second one evicts
objects from the private memories , which are not managed by
Storage Manager. Thus these APIs are not against our overall
goal of storage virtualization.

4 EXPERIMENTAL EVALUATION

We perform a set of microbenchmarks to evaluate our design
decisions for serving I/O requests and accessing data. More specif-
ically, we assess the proposed IPC mechanism (lock-free queue)
and the importance of zero-copying while accessing data. As this
is a primitive version of our system, and tiering policies are not
yet in place, we leave end-to-end evaluation for future work.

The experimental setup is a 2-socket server with Intel Xeon
E5-2650L v3 CPU 1.80GHz, 24 threads/socket and 256GB DRAM.
In these experiments, all data objects are cached in memory.

Lock-free shared queue. We compare, in terms of through-
put, our lock-free message queue with other IPC methods by
sending 8-byte sized 10 million packets. The results are shown in
Table 1. In case of IPC between two processes, we achieve 6.6X
the throughput of a System V mgq [8].

We also assess the impact of adaptive I/O when processing
queue requests. We send 1K read requests to the queue as fast
as possible and measure response latency and CPU utilization.
When in polled I/O mode, the response latency is 6.4usec and
CPU usage 100%; we need an entire hardware thread just to
poll the queue. When using interrupts, CPU utilization drops
near to 0%, but we get a 5.7X latency (36.5usec). By switching
between the two modes, we ensure both low latency and resource
efficiency.

Zero-copy. IPC mechanisms involve from zero to multiple
data copies. Techniques that buffer data in kernel space (e.g.,

Table 2: Data access latency for various IPC protocols

protocol 0-copy | 1 copy | 2 copies grpc
Avg. latency (us) 6.6 1996.8 | 3478.0 | 20790.2

pipes, sockets) usually need two copies, while shared memory-
based approaches require one or no copies at all. Reading data
from Storage Manager follows the zero-copy approach. To quan-
tify the potential gain in data access latency, we conduct the
following experiment: a process reads 10MB of data from Storage
Manager and we measure the elapsed time between sending the
request and starting to consume data at the reader’s side. To sim-
ulate the various IPC methods, we artificially add extra rounds
of copying on top of our zero-copy mechanism. Moreover, we
compare against grpc: a widely used protocol based on http and
protobufs. Results are shown in Table 2. We observe that even a
single copy increases access latency by 3 orders of magnitude.

5 CONCLUSION

In this paper, we present a storage management solution es-
pecially tailored for data lakes and build the proposed system
on top of the Smart Data Lake platform. Our design hides the
data/hardware complexity of a data lake and provides unified
and transparent access to different tiers of the storage hierar-
chy. Although all the mechanisms that enable the proposed idea
are in place, we still lack sophisticated tiering policies. Our fu-
ture plans focus on this aspect, i.e., algorithms that lift workload
characteristics in order to better exploit the underlying storage.
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