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Abstract  
In the work, we focus on the complexity of the generic of  a decision tree classifier 

constructing algorithm. The decision tree is constructed in  (  (            running 

time in the classical case, where   is a class numbers,   is the input data size,   is an 

attributes number,   is a tree height. We offer two options for improving the classical version 

of the generic algorithm, the running time of using these options are  (         (general 

case) and  (        (for independent attributes). After that we suggest a quantum 

improvement, which uses quantum subroutines like the amplitude amplification and the Dȕrr-

Høyer minimum search algorithms. The running time of the quantum algorithms is 

 ( √    (        ) that is better than the complexity of the classical algorithm in the 

general case. 

 

Keywords 1  
Quantum machine learning, quantum decision trees, decision tree constructing, classification 

problem 

1. Introduction 

Potentially, quantum algorithms can outperform the best known classical algorithms for many 

problems [9, 13, 14, 15]. Moreover, quantum machine learning let us to speed up classical machine 

learning algorithms  [6, 17, 19, 23, 24].   

Decision trees [16] are popular classification methods. CART [18], ID3 [20], C4.5 [21], C5.0 [2] 

and others algorithms are the known algorithms to construct decision trees.  

Generic decision tree constructing algorithm works in  (  (           running time, where 

  is the size of a training set,   is a height of a tree,   is a number of attributes,   is a number of 

classes. Note, many of the works related to decision tree constructing algorithms ignore the running 

time of creating and clearing of memory needed to store additional information [1]. In fact, their 

running time is the same as we have indicated above.  Several authors have shown that finding a 

minimal decision tree with the training set is NP-hard [22].  

We present a new version of the classical algorithm that uses Fast Decision Tree Learning 

Algorithm [25] and has  (        running time. It is useful for independent attributes case. 

Secondly, we provide an improvement of the classical algorithm for the general case that uses a Self-

balancing binary search tree [8] and has  (         running time. Finally, we describe a quantum 

improvement for a classical algorithm. The running time of the quantum version is 

 (     √      ). The algorithms are based on generalizations of Grover's Search algorithm [11] 

that are amplitude amplification [7] and Dȕrr-Høyer algorithm for minimum search [10].  
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Presented quantum algorithm uses combination of known quantum algorithms and classical 

computing. The Dȕrr-Høyer algorithm presented as a subroutine. We use query model algorithms as 

quantum algorithms. It is based on making a query to a black box which can access to the input. A 

running time is a number of the black box queries [3, 4, 6]. 

In Section 2 we set preliminaries.  Section 3 contains the description of the classical version of 

algorithms. We provide the classical improvements in Section 4 and the new quantum algorithm for 

decision tree constructing in Section 5. 

 

2. Preliminaries 

Let                 be a training data set and                be a set of corresponding 

classes.  One element from          
    

      
   is a vector of attributes, where          ,   is a 

number of attributes,   is the set of attributes,   is the size of  ,   is a size of the training data set. Let 

us consider some element      . An attribute   
  is a real-valued variable or a categorical variable.  

Let             if   
  is a real value, where   or   is the number of the partition of training set; and 

              if   
  is a categorical attribute, i.e.   

             for some integer   . Let      be 

the value with index   of attribute  , where            for categorical attribute and         for real-

valued attribute. Let               be an index of a class of    , where   is a number of classes.  

Let     be a subset from training set which elements are satisfying to the restrictions, which 

defined by a predicate  . For example,        is the subset from   that belongs to the class with 

number  . 

The problem is to construct a function                  that is called classifier. The 

function  classifies a new vector   (          . Let   ,    be the notations to define the set of 

indexes of categorical and real-valued attributes respectively. 

3. The Observation of Generic Algorithm 

3.1. The Tree Structure 

Decision tree constructing algorithms use a method “divide and conquer” to build a suitable tree. If 

all vectors in   belong to     (each vector from   belongs to the same class), then the process of a 

decision tree constructing is stopped, and a leaf is labeled by  . In other case, let    be some test (with 

outcomes           ) that creates a partition of  . A partition    is the a of vectors from  , it 

corresponds to   .  

We consider tests of two types. If    is a categorical attribute from         , then a test is         

with    outcomes, one for each value from         . 

If    is a real-valued attribute, then a test is        with two value options:      and      '. Here 

  is a value of threshold. 

 To construct a tree classifier, we consider a structure      that has next fields: 

                     is a condition field which indicates that node is a leaf or not;  

       is an attribute index for non-leaf nodes and a class index for leaf nodes; 

          is an array of key-valued pairs (defined as (      , where   is a predicate and 

    is a corresponding subtree). If an attribute is categorical, then a size of           equal 

to the count of attribute values. On real-valued attributes,          contains two items. 

Let             (Algorithm 1) be the main recursive function of the decision tree constructing 

process. On each call, the procedure creates a current node and checks of necessity to stop the 

construction process. 
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3.2. Test Selection Procedure 

To maximize a heuristic splitting criterion the generic decision tree constructing algorithm uses a 

greedy search for selecting a candidate test. In most decision trees inducers, an internal node is split 

according to the value of a single attribute. The inducer searches for the best attribute upon which to 

perform the split. There are various univariate criteria which can be characterized in different ways, 

such as: according to the origin of the measure (Information Theory, Dependence, and Distance); 

according to the measure structure (Impurity-based criteria, Normalized Impurity-based criteria, and 

Binary criteria [22]). Let us briefly review them. 

Impurity-based Criteria. Let   be a random variable with   values, distributed according to 

  (        , a function            is an impurity measure that satisfies the following 

conditions: 

  (    . 

  (   is the minimum if exists   such that component     . 

  (   is the maximum if for all  ,      , the following condition is true:    
 

 
 . 

  (    is symmetric with respect to components of  .  

  (    is smooth (differentiable everywhere) in its range. 
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The probability vector (from a given training set  ) of the set of corresponding classes   is 

defined as:   (   (
|      |

| |
   

|      |

| |
). 

The goodness-of-split due to selected attribute   is defined as a reduction in the impurity of the 

target attribute after splitting   according to the values          : 

  (      (   ∑
|   

      
 |

| |

|    |

   

 

(1) 

 

Normalized Impurity-based Criteria are normalized variants of usual Impurity-based Criteria. 

Sometimes it is useful to “normalize” the impurity-based measures. The famous decision tree 

constructing algorithms such as ID3, C4.5, C5.0, CART use impurity based-criteria, and normalized 

impurity-based criteria.  

Binary Criteria are used to build binary decision trees. These measures are based on a division of 

the input attribute domain into two subdomains. 

In this work, we consider impurity-based and normalized impurity-based criteria. 

Let us provide some information about  usage of impurity based criteria and applying  our 

improvements in practical cases. The decision tree model with impurity-based and normalized 

impurity-based criteria is used in the industry. Such algorithms as ID3, C4.5, C5.0, CART are used in 

well-known data processing frameworks, PC programs, and other machine learning algorithms as 

subroutines. 

ID3, CART use impurity-based criteria, C4.5, C5.0 use normalized impurity based criteria. 

Criteria of ID3, C4.5, and C5.0 are based on the Entropy criterion. CART uses the Gini Index as the 

impurity criterion.  (   for CART is defined by the formula: 

 (   ∑(
|      |

| |
)

 

 

   

 

For ID3, C4.5, and C5.0  (  (  ) is defined by the next formula: 

 (   ∑ 
|      |

| |
     

|      |

| |
   

  

3.3. Attributes Processing 

This subsection is based on the open-sourced code of C5.0 [2]. 

The function                uses abstract impurity-based criterion constructed by Formula 1. It 

calculates a reduction of impurity after a split. Categorical and real-valued attributes are processed 

differently. It checks what kind of the input attribute and calls                    (Algorithm 4) or 

            (Algorithm 3). 

 The arguments of               (         is an index of the processed attribute      and a 

training set   . It returns a triple (                . Here      is a maximal impurity reduction 

value,        is a set of subsets from training set splitting by selected attribute,     is selected 

threshold value. The variables        and     are used only for real-valued attributes. 

For considering this process we have to describe an abstract impurity based function. It can be 

described with the next formula: 

 (    ∑ ̃

 

   

(         

(2) 

 

Note that  
 

 is some function with  (   running time. It is specific for any impurity-based 

criterion. Formula 2 is needed for analyzing the running time of this algorithm.  

Let us provide some detailed information about processing of a real-valued attribute. Firstly, the 

algorithm sorts a subset    by      . It is made by the procedure     (        . Note that the 

indexes in a result sorted order are (        , where   |  |. Now we can split vectors    by 
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   (
     

       
   

 
). After then there are two sets    {         } and    {           }, for 

           . 
The second step is computing a number of elements corresponding to each class.   

Let    [|      |   |      |]  be a sequence that contains object numbers calculated for  , 

      is a number of vectors    such that      for          ,        |      
  |. 

Let    [|       |   |       |] be a sequence that contains object numbers calculated for 

reversed  ,       is a number of vectors    such that      for          ,        |      
   |. 

Let        ({         })  and        ({         }) , where          ,      
    

                   ,          . The value       is used for pre-counting of an impurity 

for any threshold.       is used for pre-counting of an impurity for any threshold from the back side 

of the training set. These values are calculated using Formula 2. The value       is a prefix and 

      is a suffix, result value is                 . 
It is made by these formulas: 

                                                          

                                                          

       ∑ ̃

 

   

(        )           

       ∑ ̃

 

   

(        )           

The last step is choosing a maximum                (     , where  (       (    
 

 
 

             . As result we get                and          
       ,  (         , 

 (            and   (        . 
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Let us describe processing of a categorical attribute from   . We split all elements of   according 

to the attribute value. After that we can compute the value of the objective function. So          

        
    , for              . All vectors of    are processed one by one. 

Let us consider the processing of current  -th vector     such that       and      
    . Let us 

describe the variables used in the processing of categorical attributes. Let    be a size of   ; 

   |        | be a count of elements from   that belongs to the class  ;       |             
      | 

be a number of vectors from    that belongs to the  -th class;    be a notation of impurity value 

 (   ;   be an impurity of   .  
These variables contain values after processing  -th vector and                       contain 

values before processing  -th vector. The final values of the variables will be after processing all 

  |  | variables. We recalculate each variable according to the formulas (only variables that depend 

on   and   are changed): 

         
         

             

     
  (  ̃(  

      
 )   ̃(       ))   

     (  ̃(  
   )   ̃(    ))  

In the end, the procedure computes an impurity reduction by Formula 1. Finally, we obtain the 

                   procedure from Algorithm 4. 
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3.4. Running Time of the Generic Tree Constructing Algorithm 

Remind, that    is a set of indexes of numeric attributes (real-valued attributes) and    is a set of 

indexes of categorical attributes.  

Theorem 1 

The running time of the generic tree constructing algorithm is  (  (          .  (See 

Appendix A). 

4. Improvement of the Classical Algorithm 

Let us discuss an approach used for a classical improvement.  

4.1.A Fast Tree-Growing Algorithm 

We consider a Fast Tree-Growing Algorithm [25] for the Classical Generic Decision Tree 

Constructing algorithm. It is based on attribute independence assumption. This approach cannot be 

applied to all cases of classification problems. On the other hand, many practical cases can be solved 

faster because of the assumption of attribute independence. Remind that the key moment of decision 

tree constructing algorithms with impurity based criteria is information gain calculation. It is 

evaluated by the Formula 1. 

Let consider  (    for CART and ID3-family that is defined by the formulas:  (      

∑ (   (    
    and  (    ∑     (          (     ,  where    (   

|         |

|   |
. 

For training set partition  
  

       
   we can define   

  
       

  (   
|              |

|  
  
       

   |

.  

The tree-growing process is a recursive process of splitting of the training data. Let    be the 

training data associated with the considered node. Let us to make another view to the problem. The 

value  
  (   actually can be replaced by conditional probability  ( |  ) on the input training data, 

where    is the set of attributes along the path from the current node to the root, called path attributes, 

and    is an assignment of values to the variables in   . Similarly,   
  
       

  (   is  ( |       ) on 

the entire training data. 

In the process of tree-growing each candidate attribute (the attributes not in   ) is evaluated using 

Equation 1, and the one with the highest information gain is selected as the attribute for splitting. The 

most time-consuming part in this process is evaluating  ( |       ) for computing  ( 
  

      
   . It 

must pass through each instance in   
  

      
  , for each of which it iterates through each candidate 

attribute   . This results in a running time of  (|  |    . The union of the subsets on each level of 

the tree is the input data set that has a size equals to  , and the running time for each level is  (  
  . Therefore, the classical decision-tree learning algorithm has a running time of  (      , 

where   is a height of tree or a count of levels. 
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The key observation is the ability to skip of passing through    for each candidate attribute to 

estimate  ( |       ). According to probability theory, we have 

 ( |       )  
 ( |  ) (    |    )

 (    |  )
 

 ( |  ) (    |    )

∑  ( |  ) 
    (    |    )

  

Suppose, that each candidate attribute is independent of the path attribute assignment    given the 

class, i.e.,  (    |    )   (    | ). 

Then we have 

 ( |       )  
 ( |  ) (    | )

∑  ( |  ) 
    (    | )

 
(3) 

 

According to the paper [25], the information gain calculated by Equations 3 and 1 is called 

independent information gain (   ). Note that in Equation 3,  (    | ) is the percentage of instances 

     and class number   on the entire training data that can be precomputed and stored with a running 

time of  (    before the tree-growing process with an additional space increase of  (  , and 

 ( |  ) is the percentage of instances belonging to class   in    that can be computed by passing 

through    once taking  (|  | . Thus, at each level, the running time for computing  ( |       ) 

using Equation 3 is  (  . 

The value 
| 

  
       

   |

|   |
 in Equation 1 should be computed for computing    . If we examine the 

partition for each candidate attribute   , the corresponding running time would be  (    . 

Fortunately, 
| 

  
       

   |

|   |
can be approximated by ∑  ( |  ) 

    (    | ) taking  (  . 

The running time for selecting the splitting attribute using     is similar to using information gain 

in C4.5.    (       should be computed for each candidate attribute, it takes  (   for each node. 

The total running time for splitting attribute selection on the entire tree is  (    , where   is the 

number of internal nodes on the tree. Note that   depends on   (height of the tree), and it is a 

parameter of the algorithm. Note   can be bounded by  , because a number of rules in the tree cannot 

be more than a size of a training set. Thus, the total running time is (    .  

The total time for tree-growing is the sum of the time for probability estimation, partition, and 

splitting attribute selection. As result, the running time for tree-growing using     is  (    . 

 
Note that in the Algorithm 5, we do not cope with real-valued attributes for simplicity, we process 

real-valued attributes in the following way. In preprocessing, all real-valued attributes are discretized 

by  -bin discretization, where   √ . 

Note, that the splitting attribute real-valued attributes are treated the same as categorical attributes 

in selecting process. 

Once a real-valued attribute is chosen, a splitting point is found using the same way as in C4.5. 

Note that a real-valued attribute could be chosen again in the attribute selection on descendant nodes. 

For processing real-valued attributes this algorithm uses additional time as a classical version of 
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generic decision tree constructing algorithm (see Algorithm 3). In particular, we need to sort data set 

for selecting thresholds and splitting data by selected real-valued attribute. 

4.2.Using a Self-balancing Binary Search Tree 

We use such data structure as a self-balancing binary search tree to store        and     .  As a 

self-balancing binary search tree, we can use the Red-Black tree  [12] or the AVL tree [5]. A self-

balancing binary search tree contains only indexes with a non-zero value, and other values are zero. 

The running time of adding a new index (key) to the data structure is  (     , where   is  a number 

of indexes with non-zero values. The running time of removing and inserting is the same. The running 

time of removing all indexes from the data structure is  (  . 

Theorem 2 

The running time of generic decision tree constructing algorithm that uses a Self-balancing binary 

search tree is  (        .  (See Appendix B). 

5. Quantum Improvement 

We use  the Dȕrr-Høyer's algorithm  for maximum search [10] and modification of Grover's search 

algorithm [7]. This quantum algorithm help us to speed up decision tree building process. 

Lemma 1 

Let function             be a function that the running time of computing  (   is  (  . A 

quantum algorithm can be constructed that finds argument    of maximal  (   , the expected running 

time of the algorithm is  (√   (  ) and the success probability is at least  
 

 
. 

Using this lemma we can replace the maximum search in             function and use  

               as a  function  . We call the             . For reducing an error probability, we 

repeat the maximum finding process      times. After that we choose the best solution. The 

procedure is bellow (Algorithm 6). 

 
Theorem 3 

The running time of the quantum algorithms is  (    (   √      ). The success probability 

of the quantum algorithms is  (  
 

  
), where   is a number of inner nodes of a tree. (See Appendix 

C). 

6. Conclusion 

We suggest a version of the generic decision tree constructing algorithm with a self-balancing tree 

which works faster than known classical algorithms. After that, we have presented the quantum 

version of the generic decision tree constructing algorithm for classification problem. Our algorithm 

works in  (    (   √      ) versus  (  (           in classical generic case. 
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9. Appendix 

A The Proof of Theorem 1 

Theorem 1 

The running time of the generic tree constructing algorithm is  (  (          .  

Proof 
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The subroutine                takes the main time. That is why we focus on analyzing this 

procedure. 

The running time for computing element counts by classes for real-valued attributes is  (|  | . 

The running time for the subroutine      is  (|  |     |  | . The running time of computing the 

best reduction for one threshold is  (  . The running time of calculating the best reduction for all 

thresholds is  (|  |    . Additionally, we should initialize    array that takes  (  . The total 

complexity of this processing a real-valued attribute is  (     |  |    |  | . 

Let us consider a discrete-valued attribute. The running time of cases processing is  (|  | . An 

impurity reduction   (       for some discrete attribute    is calculated with  (    running time, 

where     is a number of attribute values. An impurity before cutting  (    is calculated with 

 (   running time, an impurity after cutting is calculated in  (   . Therefore, the running time of 

processing of one discrete-valued attribute is  (|  |     . 

Note that if we consider all    sets of one level of the decision tree, then we collect all elements of 

 . Therefore, the total complexity for one level is  ( (          , and the total complexity for 

the whole tree is  (  (          . 

B The Proof of Theorem 2 

Theorem 2 

The running time of generic decision tree constructing algorithm which is based on Self-balancing 

binary search tree is  (        . 

Proof 

The proof of this theorem is followed from the proof of Theorem 1. On calculating the values 

       and      an algorithm should reassign the unchanged values for every class on each new 

object processing, then this procedure takes (|    |  steps. With this improvement, we can skip this 

reassigning operations and the running time for processing a real-valued attribute becomes 

 (            = (      , and for a discrete-valued attribute, it is  (      because we 

process each vector one by one and recompute variables that take only  (      steps for updating 

values of      and  (   steps for other actions. Therefore, the total complexity is  (        . 

 

C The Proof of Theorem 3 

Theorem 3 

The running time of the quantum algorithms is  (    (   √      ) . The success  

probability of the quantum algorithms is  (  
 

  
), where   is a number of inner nodes (not leaves). 

Proof 

The running time of                is  (|  |     |  | . So the running time of maximum 

searching is  (√  |  |     |  |). With repeating the algorithm, the running time is  (√  

|  |     |  |     (   ) . If we sum the running time for all nodes, then we obtain 

 (    (   √      ). 

The success probability of the Dȕrr-Høyer's algorithm is 
 

 
. We call it  (           times and 

choose a maximum among    (    values of gain ratios. Then, we find a correct attribute for one 

node with a success probability  (  
 

       )   (  
 

  
). We should find correct attributes for 

all nodes except leaves. Thus, the success probability for the whole tree is equal to  ((  

 

   )
  

)   (  
 

  
), where   is a number of internal nodes (not leaves). 


