

83

Classical and Quantum Improvements of Generic Decision Tree
Constructing Algorithm for Classification Problem

Kamil Khadiev
a,b

, Ilnaz Mannapov
a

and Liliya Safina
a

a

Kazan Federal University, 18 Kremlyovskaya street , Kazan, 420008, Russia
b

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 10/7, Sibirsky tract, Kazan,

420029, Russia

Abstract
In the work, we focus on the complexity of the generic of a decision tree classifier

constructing algorithm. The decision tree is constructed in ((running

time in the classical case, where is a class numbers, is the input data size, is an

attributes number, is a tree height. We offer two options for improving the classical version

of the generic algorithm, the running time of using these options are ((general

case) and ((for independent attributes). After that we suggest a quantum

improvement, which uses quantum subroutines like the amplitude amplification and the Dȕrr-

Høyer minimum search algorithms. The running time of the quantum algorithms is

 (√ () that is better than the complexity of the classical algorithm in the

general case.

Keywords 1
Quantum machine learning, quantum decision trees, decision tree constructing, classification

problem

1. Introduction

Potentially, quantum algorithms can outperform the best known classical algorithms for many

problems [9, 13, 14, 15]. Moreover, quantum machine learning let us to speed up classical machine

learning algorithms [6, 17, 19, 23, 24].

Decision trees [16] are popular classification methods. CART [18], ID3 [20], C4.5 [21], C5.0 [2]

and others algorithms are the known algorithms to construct decision trees.

Generic decision tree constructing algorithm works in ((running time, where

 is the size of a training set, is a height of a tree, is a number of attributes, is a number of

classes. Note, many of the works related to decision tree constructing algorithms ignore the running

time of creating and clearing of memory needed to store additional information [1]. In fact, their

running time is the same as we have indicated above. Several authors have shown that finding a

minimal decision tree with the training set is NP-hard [22].

We present a new version of the classical algorithm that uses Fast Decision Tree Learning

Algorithm [25] and has (running time. It is useful for independent attributes case.

Secondly, we provide an improvement of the classical algorithm for the general case that uses a Self-

balancing binary search tree [8] and has (running time. Finally, we describe a quantum

improvement for a classical algorithm. The running time of the quantum version is

 (√). The algorithms are based on generalizations of Grover's Search algorithm [11]

that are amplitude amplification [7] and Dȕrr-Høyer algorithm for minimum search [10].

YRID-2020: International Workshop on Data Mining and Knowledge Engineering, October 15-16, 2020, Stavropol, Russia
EMAIL: kamilhadi@gmail.com (Kamil Khadiev); ilnaztatar5@gmail.com (Ilnaz Mannapov); liliasafina94@gmail.com (Liliya Safina)

ORCID: 0000-0002-5151-9908 (Kamil Khadiev); 0000-0003-0347-2137 (Ilnaz Mannapov); 0000-0001-7182-3731 (Liliya Safina)

 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

84

Presented quantum algorithm uses combination of known quantum algorithms and classical

computing. The Dȕrr-Høyer algorithm presented as a subroutine. We use query model algorithms as

quantum algorithms. It is based on making a query to a black box which can access to the input. A

running time is a number of the black box queries [3, 4, 6].

In Section 2 we set preliminaries. Section 3 contains the description of the classical version of

algorithms. We provide the classical improvements in Section 4 and the new quantum algorithm for

decision tree constructing in Section 5.

2. Preliminaries

Let be a training data set and be a set of corresponding

classes. One element from

 is a vector of attributes, where , is a

number of attributes, is the set of attributes, is the size of , is a size of the training data set. Let

us consider some element . An attribute
 is a real-valued variable or a categorical variable.

Let if
 is a real value, where or is the number of the partition of training set; and

 if
 is a categorical attribute, i.e.

 for some integer . Let be

the value with index of attribute , where for categorical attribute and for real-

valued attribute. Let be an index of a class of , where is a number of classes.

Let be a subset from training set which elements are satisfying to the restrictions, which

defined by a predicate . For example, is the subset from that belongs to the class with

number .

The problem is to construct a function that is called classifier. The

function classifies a new vector (. Let , be the notations to define the set of

indexes of categorical and real-valued attributes respectively.

3. The Observation of Generic Algorithm

3.1. The Tree Structure

Decision tree constructing algorithms use a method “divide and conquer” to build a suitable tree. If

all vectors in belong to (each vector from belongs to the same class), then the process of a

decision tree constructing is stopped, and a leaf is labeled by . In other case, let be some test (with

outcomes) that creates a partition of . A partition is the a of vectors from , it

corresponds to .

We consider tests of two types. If is a categorical attribute from , then a test is

with outcomes, one for each value from .

If is a real-valued attribute, then a test is with two value options: and '. Here

 is a value of threshold.

 To construct a tree classifier, we consider a structure that has next fields:

 is a condition field which indicates that node is a leaf or not;

 is an attribute index for non-leaf nodes and a class index for leaf nodes;

 is an array of key-valued pairs (defined as (, where is a predicate and

 is a corresponding subtree). If an attribute is categorical, then a size of equal

to the count of attribute values. On real-valued attributes, contains two items.

Let (Algorithm 1) be the main recursive function of the decision tree constructing

process. On each call, the procedure creates a current node and checks of necessity to stop the

construction process.

85

3.2. Test Selection Procedure

To maximize a heuristic splitting criterion the generic decision tree constructing algorithm uses a

greedy search for selecting a candidate test. In most decision trees inducers, an internal node is split

according to the value of a single attribute. The inducer searches for the best attribute upon which to

perform the split. There are various univariate criteria which can be characterized in different ways,

such as: according to the origin of the measure (Information Theory, Dependence, and Distance);

according to the measure structure (Impurity-based criteria, Normalized Impurity-based criteria, and

Binary criteria [22]). Let us briefly review them.

Impurity-based Criteria. Let be a random variable with values, distributed according to

 (, a function is an impurity measure that satisfies the following

conditions:

 (.

 (is the minimum if exists such that component .

 (is the maximum if for all , , the following condition is true:

 .

 (is symmetric with respect to components of .

 (is smooth (differentiable everywhere) in its range.

86

The probability vector (from a given training set) of the set of corresponding classes is

defined as: ((
| |

| |

| |

| |
).

The goodness-of-split due to selected attribute is defined as a reduction in the impurity of the

target attribute after splitting according to the values :

 ((∑
|

 |

| |

| |

(1)

Normalized Impurity-based Criteria are normalized variants of usual Impurity-based Criteria.

Sometimes it is useful to “normalize” the impurity-based measures. The famous decision tree

constructing algorithms such as ID3, C4.5, C5.0, CART use impurity based-criteria, and normalized

impurity-based criteria.

Binary Criteria are used to build binary decision trees. These measures are based on a division of

the input attribute domain into two subdomains.

In this work, we consider impurity-based and normalized impurity-based criteria.

Let us provide some information about usage of impurity based criteria and applying our

improvements in practical cases. The decision tree model with impurity-based and normalized

impurity-based criteria is used in the industry. Such algorithms as ID3, C4.5, C5.0, CART are used in

well-known data processing frameworks, PC programs, and other machine learning algorithms as

subroutines.

ID3, CART use impurity-based criteria, C4.5, C5.0 use normalized impurity based criteria.

Criteria of ID3, C4.5, and C5.0 are based on the Entropy criterion. CART uses the Gini Index as the

impurity criterion. (for CART is defined by the formula:

 (∑(
| |

| |
)

For ID3, C4.5, and C5.0 (() is defined by the next formula:

 (∑
| |

| |

| |

| |

3.3. Attributes Processing

This subsection is based on the open-sourced code of C5.0 [2].

The function uses abstract impurity-based criterion constructed by Formula 1. It

calculates a reduction of impurity after a split. Categorical and real-valued attributes are processed

differently. It checks what kind of the input attribute and calls (Algorithm 4) or

 (Algorithm 3).

 The arguments of (is an index of the processed attribute and a

training set . It returns a triple (. Here is a maximal impurity reduction

value, is a set of subsets from training set splitting by selected attribute, is selected

threshold value. The variables and are used only for real-valued attributes.

For considering this process we have to describe an abstract impurity based function. It can be

described with the next formula:

 (∑ ̃

(

(2)

Note that

 is some function with (running time. It is specific for any impurity-based

criterion. Formula 2 is needed for analyzing the running time of this algorithm.

Let us provide some detailed information about processing of a real-valued attribute. Firstly, the

algorithm sorts a subset by . It is made by the procedure (. Note that the

indexes in a result sorted order are (, where | |. Now we can split vectors by

87

 (

). After then there are two sets { } and { }, for

 .
The second step is computing a number of elements corresponding to each class.

Let [| | | |] be a sequence that contains object numbers calculated for ,

 is a number of vectors such that for , |
 |.

Let [| | | |] be a sequence that contains object numbers calculated for

reversed , is a number of vectors such that for , |
 |.

Let ({ }) and ({ }) , where ,

 , . The value is used for pre-counting of an impurity

for any threshold. is used for pre-counting of an impurity for any threshold from the back side

of the training set. These values are calculated using Formula 2. The value is a prefix and

 is a suffix, result value is .
It is made by these formulas:

 ∑ ̃

()

 ∑ ̃

()

The last step is choosing a maximum (, where ((

 . As result we get and
 , (,

 (and (.

88

Let us describe processing of a categorical attribute from . We split all elements of according

to the attribute value. After that we can compute the value of the objective function. So

 , for . All vectors of are processed one by one.

Let us consider the processing of current -th vector such that and
 . Let us

describe the variables used in the processing of categorical attributes. Let be a size of ;

 | | be a count of elements from that belongs to the class ; |
 |

be a number of vectors from that belongs to the -th class; be a notation of impurity value

 (; be an impurity of .
These variables contain values after processing -th vector and contain

values before processing -th vector. The final values of the variables will be after processing all

 | | variables. We recalculate each variable according to the formulas (only variables that depend

on and are changed):

 (̃(

) ̃())

 (̃(
) ̃())

In the end, the procedure computes an impurity reduction by Formula 1. Finally, we obtain the

 procedure from Algorithm 4.

89

3.4. Running Time of the Generic Tree Constructing Algorithm

Remind, that is a set of indexes of numeric attributes (real-valued attributes) and is a set of

indexes of categorical attributes.

Theorem 1

The running time of the generic tree constructing algorithm is ((. (See

Appendix A).

4. Improvement of the Classical Algorithm

Let us discuss an approach used for a classical improvement.

4.1.A Fast Tree-Growing Algorithm

We consider a Fast Tree-Growing Algorithm [25] for the Classical Generic Decision Tree

Constructing algorithm. It is based on attribute independence assumption. This approach cannot be

applied to all cases of classification problems. On the other hand, many practical cases can be solved

faster because of the assumption of attribute independence. Remind that the key moment of decision

tree constructing algorithms with impurity based criteria is information gain calculation. It is

evaluated by the Formula 1.

Let consider (for CART and ID3-family that is defined by the formulas: (

∑ ((
 and (∑ ((, where (

| |

| |
.

For training set partition

 we can define

 (
| |

|

 |

.

The tree-growing process is a recursive process of splitting of the training data. Let be the

training data associated with the considered node. Let us to make another view to the problem. The

value
 (actually can be replaced by conditional probability (|) on the input training data,

where is the set of attributes along the path from the current node to the root, called path attributes,

and is an assignment of values to the variables in . Similarly,

 (is (|) on

the entire training data.

In the process of tree-growing each candidate attribute (the attributes not in) is evaluated using

Equation 1, and the one with the highest information gain is selected as the attribute for splitting. The

most time-consuming part in this process is evaluating (|) for computing (

 . It

must pass through each instance in

 , for each of which it iterates through each candidate

attribute . This results in a running time of (| | . The union of the subsets on each level of

the tree is the input data set that has a size equals to , and the running time for each level is (
 . Therefore, the classical decision-tree learning algorithm has a running time of (,

where is a height of tree or a count of levels.

90

The key observation is the ability to skip of passing through for each candidate attribute to

estimate (|). According to probability theory, we have

 (|)
 (|) (|)

 (|)

 (|) (|)

∑ (|)
 (|)

Suppose, that each candidate attribute is independent of the path attribute assignment given the

class, i.e., (|) (|).

Then we have

 (|)
 (|) (|)

∑ (|)
 (|)

(3)

According to the paper [25], the information gain calculated by Equations 3 and 1 is called

independent information gain (). Note that in Equation 3, (|) is the percentage of instances

 and class number on the entire training data that can be precomputed and stored with a running

time of (before the tree-growing process with an additional space increase of (, and

 (|) is the percentage of instances belonging to class in that can be computed by passing

through once taking (| | . Thus, at each level, the running time for computing (|)

using Equation 3 is (.

The value
|

 |

| |
 in Equation 1 should be computed for computing . If we examine the

partition for each candidate attribute , the corresponding running time would be (.

Fortunately,
|

 |

| |
can be approximated by ∑ (|)

 (|) taking (.

The running time for selecting the splitting attribute using is similar to using information gain

in C4.5. (should be computed for each candidate attribute, it takes (for each node.

The total running time for splitting attribute selection on the entire tree is (, where is the

number of internal nodes on the tree. Note that depends on (height of the tree), and it is a

parameter of the algorithm. Note can be bounded by , because a number of rules in the tree cannot

be more than a size of a training set. Thus, the total running time is (.

The total time for tree-growing is the sum of the time for probability estimation, partition, and

splitting attribute selection. As result, the running time for tree-growing using is (.

Note that in the Algorithm 5, we do not cope with real-valued attributes for simplicity, we process

real-valued attributes in the following way. In preprocessing, all real-valued attributes are discretized

by -bin discretization, where √ .

Note, that the splitting attribute real-valued attributes are treated the same as categorical attributes

in selecting process.

Once a real-valued attribute is chosen, a splitting point is found using the same way as in C4.5.

Note that a real-valued attribute could be chosen again in the attribute selection on descendant nodes.

For processing real-valued attributes this algorithm uses additional time as a classical version of

91

generic decision tree constructing algorithm (see Algorithm 3). In particular, we need to sort data set

for selecting thresholds and splitting data by selected real-valued attribute.

4.2.Using a Self-balancing Binary Search Tree

We use such data structure as a self-balancing binary search tree to store and . As a

self-balancing binary search tree, we can use the Red-Black tree [12] or the AVL tree [5]. A self-

balancing binary search tree contains only indexes with a non-zero value, and other values are zero.

The running time of adding a new index (key) to the data structure is (, where is a number

of indexes with non-zero values. The running time of removing and inserting is the same. The running

time of removing all indexes from the data structure is (.

Theorem 2

The running time of generic decision tree constructing algorithm that uses a Self-balancing binary

search tree is (. (See Appendix B).

5. Quantum Improvement

We use the Dȕrr-Høyer's algorithm for maximum search [10] and modification of Grover's search

algorithm [7]. This quantum algorithm help us to speed up decision tree building process.

Lemma 1

Let function be a function that the running time of computing (is (. A

quantum algorithm can be constructed that finds argument of maximal (, the expected running

time of the algorithm is (√ () and the success probability is at least

.

Using this lemma we can replace the maximum search in function and use

 as a function . We call the . For reducing an error probability, we

repeat the maximum finding process times. After that we choose the best solution. The

procedure is bellow (Algorithm 6).

Theorem 3

The running time of the quantum algorithms is ((√). The success probability

of the quantum algorithms is (

), where is a number of inner nodes of a tree. (See Appendix

C).

6. Conclusion

We suggest a version of the generic decision tree constructing algorithm with a self-balancing tree

which works faster than known classical algorithms. After that, we have presented the quantum

version of the generic decision tree constructing algorithm for classification problem. Our algorithm

works in ((√) versus ((in classical generic case.

7. Acknowledgements

A part of the reported study was funded by RFBR according to the research project No.20-37-

70080. The research from Section 4.1 is funded by the subsidy allocated to Kazan Federal University

for the state assignment in the sphere of scientific activities, project No. 0671-2020-0065.

8. References

[1]. Decision trees. https://scikit-learn.org/stable/modules/tree.html.

https://scikit-learn.org/stable/modules/tree.html

92

[2]. C5.0: An informal tutorial (2019), url=https://www.rulequest.com/see5-unix.html

[3]. F. Ablayev, Ablayev M., Huang J., K. Khadiev, N. Salikhova, D. Wu , On quantum methods for

machine learning problems part i: Quantum tools. Big Data Mining and Analytics pp. 41-55

(2019)

[4]. F. Ablayev, Ablayev M., Huang J., K. Khadiev, N. Salikhova, D. Wu, On quantum methods for

machine learning problems part ii: Quantum classification algorithm. Big Data Mining and

Analytics pp. 56-67 (2019)

[5]. G. M. Adel'son-Vel'skii and E. M. Landis. An algorithm for organization of information. In

Doklady Akademii Nauk, volume 146, pages 263-266. Russian Academy of Sciences, 1962.

[6]. A. Ambainis. Understanding quantum algorithms via query complexity. arXiv:1712.06349,

2017.

[7]. G. Brassard, P. Hyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation.

Contemporary Mathematics, 305: 53-74, 2002.

[8]. T. H Cormen, C. E Leiserson, R. L Rivest, and C. Stein. Introduction to Algorithms. McGraw-

Hill, 2001.

[9]. Ronald De Wolf. Quantum computing and communication complexity. 2001.

[10]. C. Durr and P. Hoyer. A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014,

1996.

[11]. L. Grover, A fast quantum mechanical algorithm for database search. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing, pp. 212-219 (1996)

[12]. L. J Guibas and R. Sedgewick, A dichromatic framework for balanced trees. In Proceedings of

SFCS 1978, pages 8-21. IEEE, 1978.

[13]. S. Jordan, Bounded error quantum algorithms zoo. https://math.nist.gov/quantum/zoo.

[14]. K. Khadiev, D. Kravchenko, and D. Serov, On the quantum and classical complexity of solving

subtraction games. In Proceedings of CSR 2019, volume 11532 of LNCS, pages 228-236. 2019.

[15]. K. Khadiev and L. Safina, Quantum algorithm for dynamic programming approach for dags.

applications for Zhegalkin polynomial evaluation and some problems on DAGs. In Proceedings

of UCNC 2019, volume 4362 of LNCS, pages 150-163. 2019.

[16]. R. Kohavi and J. R. Quinlan, Data mining tasks and methods: Classification: decision-tree

discovery. Handbook of data mining and knowledge discovery. Oxford University Press, 2002.

[17]. D. Kopczyk, Quantum machine learning for data scientists. arXiv preprint arXiv:1804.10068,

2018.

[18]. L. Breiman, J. H. Friedman, R. A. Olshen, C. J and Stone, Classification and regression trees,

1984.

[19]. M. A Nielsen and I. L Chuang. Quantum computation and quantum information. Cambridge

univ. press, 2010.

[20]. J. R. Quinlan, Induction of decision trees. Machine learning, pages 81-106, 1986.

[21]. J. R. Quinlan. Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence

Research, pages 77-90, 1996.

[22]. L. Rokach and O. Maimon, Data mining with decision trees: theory and applications, World

Scientific Publishing Co. Pte. Ltd, 2015.

[23]. M. Schuld, I. Sinayskiy, and F. Petruccione, The quest for a quantum neural network. Quantum

Information Processing, 13(11):2567-2586, 2014.

[24]. M. Schuld, I. Sinayskiy, and F. Petruccione, An introduction to quantum machine learning.

Contemporary Physics, 56(2), 172-185, 2015.

[25]. J. Su and H. Zhang, A fast decision tree learning algorithm, volume 1, 2006.

9. Appendix

A The Proof of Theorem 1

Theorem 1

The running time of the generic tree constructing algorithm is ((.

Proof

93

The subroutine takes the main time. That is why we focus on analyzing this

procedure.

The running time for computing element counts by classes for real-valued attributes is (| | .

The running time for the subroutine is (| | | | . The running time of computing the

best reduction for one threshold is (. The running time of calculating the best reduction for all

thresholds is (| | . Additionally, we should initialize array that takes (. The total

complexity of this processing a real-valued attribute is (| | | | .

Let us consider a discrete-valued attribute. The running time of cases processing is (| | . An

impurity reduction (for some discrete attribute is calculated with (running time,

where is a number of attribute values. An impurity before cutting (is calculated with

 (running time, an impurity after cutting is calculated in (. Therefore, the running time of

processing of one discrete-valued attribute is (| | .

Note that if we consider all sets of one level of the decision tree, then we collect all elements of

 . Therefore, the total complexity for one level is ((, and the total complexity for

the whole tree is ((.

B The Proof of Theorem 2

Theorem 2

The running time of generic decision tree constructing algorithm which is based on Self-balancing

binary search tree is (.

Proof

The proof of this theorem is followed from the proof of Theorem 1. On calculating the values

 and an algorithm should reassign the unchanged values for every class on each new

object processing, then this procedure takes (| | steps. With this improvement, we can skip this

reassigning operations and the running time for processing a real-valued attribute becomes

 (= (, and for a discrete-valued attribute, it is (because we

process each vector one by one and recompute variables that take only (steps for updating

values of and (steps for other actions. Therefore, the total complexity is (.

C The Proof of Theorem 3

Theorem 3

The running time of the quantum algorithms is ((√) . The success

probability of the quantum algorithms is (

), where is a number of inner nodes (not leaves).

Proof

The running time of is (| | | | . So the running time of maximum

searching is (√ | | | |). With repeating the algorithm, the running time is (√

| | | | () . If we sum the running time for all nodes, then we obtain

 ((√).

The success probability of the Dȕrr-Høyer's algorithm is

. We call it (times and

choose a maximum among (values of gain ratios. Then, we find a correct attribute for one

node with a success probability (

) (

). We should find correct attributes for

all nodes except leaves. Thus, the success probability for the whole tree is equal to ((

)

) (

), where is a number of internal nodes (not leaves).

