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Abstract 
Using the methods of regression analysis on the basis of simulation data, a model for predicting the 

queue size of the input self-similar packet flow, distributed according to the Pareto law when it is 

transformed into a flow having an exponential distribution, is constructed. Since the amount of 

losses in the general case does not give any information about the efficiency of using the buffer 

memory space in the process of transforming a self-similar packet flow, a quality metric (penalty) 

was introduced to get the quality of the models after training, which is a complex score. This 

criterion considers both packet loss during functional transformations and ineffective use of the 

buffer space in switching nodes. The choice of the best model for predicting the queue size when 

servicing a self-similar packet flow was carried out using the following characteristics: the 

coefficient of determination; root-mean-square regression error; mean absolute error; the penalty 

score. The best in terms of the investigated characteristics are the models using the isotonic 

regression and the support vector regression. 
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1. Introduction 

The main reason leading to a buffer overflow is the presence of a long-term dependence in network traffic 

due to its self-similarity, as a result of which the total cumulative effect in a wide range of delays can 

significantly differ from that observed in a short-term dependent process [1]. To eliminate self-similarity of 

network traffic, various models and traffic transformation devices are used, one of which is the asynchronous 

simulation model described in [2-4], for which there is a software implementation [5]. 

An important indicator of the operation of this model is the queue size used in the traffic transformation 

process. Since, due to limited computer resources, the queue cannot have an infinite size, the problem arises 

of predicting the queue size depending on the measure of self-similarity of the input traffic, which is the 

Hurst exponent. 

The solution to the problem of finding the optimal buffer size for a given value of the Hurst exponent H 

can be found using the methods of regression analysis, based on simulation data obtained using the 

developed software [5]. 

2. Statement of the problem 

Using machine learning methods, it is necessary to develop a model to predict the queue size depending 

on the Hurst exponent value based on the data obtained when performing the transformation of an input self-

similar flow distributed according to the Pareto law into a flow having an exponential distribution. 
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Since machine learning includes many methods, at the initial stage, for further comparison with more 

complex models built, in particular, using deep learning methods, it is advisable to consider only methods of 

pairwise regression analysis, isotonic regression and support vector machines. 

Let us involve a quality metric (penalty), which is a complex score and considers both packet loss during 

traffic transformation and inefficient use of buffer space.  

Next, we choose the best model for predicting the queue size, depending on the Hurst exponent of the 

input flow, using the following quality metrics: 

 coefficient of determination; 

 root mean square error of regression; 

 mean absolute error; 

 penalty score value. 

When setting the problem, special attention should be paid to testing the resulting models. In this case, the 

classical approach, which consists in dividing the entire data set into training and test samples, is not 

acceptable. Since on the test sample we will get the estimated number of lost packets and, therefore, the 

estimated penalty based on the difference between the predicted and actual buffer sizes, the obtained models 

must be tested by simulating traffic transformation with a queue size limitation, based on the results of 

applying the tested model for determining the size of the queue to the sequence being converted. This task is 

not trivial and will not be discussed in this article. 

3. The solution of the problem 

The simulation model presented in [2] provides transformation of the input flow of packets, which is 

obviously self-similar, into a given distribution law, in particular, into an exponential one. The object of 

transformation is a one-dimensional distribution density of time intervals between packets of the input flow. 

Using the developed model, 11,000 tests were carried out and data were obtained for statistical analysis. 

Since the amount of losses in the general case does not give any information about the efficiency of using 

the queue in the process of the transformation traffic, to assess the quality of the resulting model, we 

introduce a quality metric - the penalty score, which takes into account not only the amount of losses, but 

also not rational use of buffer memory. 

Let define iy  as the true value of the queue size in the sample, ˆiy  is the predicted value of the queue size 

in the sample corresponding to the true value iy . If ˆi iy y , we will penalize the learning system by 

 ˆi iy y   . If ˆi iy y , the amount of the penalty will depend on the value of the difference ˆi i iy y   , 

with i    the amount of the penalty will be  i     and 0 – otherwise. Let us illustrate this with an 

example (Figure 1).  
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Figure 1: Graph of the dependence of the amount of the penalty on the buffer volume 

 

Consider three cases, each of which corresponds to the true values of the queue sizes 1 2,y y  and 3y . 

Suppose the predicted values of the queue sizes coincide in each of the three cases, in other words 

1 2 3ˆ ˆ ˆ ˆy y y y   . Then, in the first case, 1 ˆy y  and the amount of the penalty is determined as  1 ˆy y   . 

In the second case 2ŷ y     and the penalty is 0, it is assumed that ŷ  is the preferred queue size for 

2y . In the third case 3 ˆy y  , the amount of the penalty is determined from the expression 

 3ŷ y    . 



Thus, the amount of the penalty score will be determined from the equation: 
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The total penalty for all trials is determined as the arithmetic mean between the penalties for each trial: 

1

1 n

i

i

p p
n 

   

where n is the number of tests. In the process of training the model, it is necessary to ensure the minimum 

value of the penalty for all tests, in other words minp . 

The presented system of penalties provides for the introduction of three hyperparameters: ,     and  , 

where 0     and 0  . Let's set the hyperparameter values as follows: . 

3.1. The initial data analysis 

Figure 2 shows a scatter plot of queue size in dependence of Hurst exponent. The figure clearly shows 

that there is a certain correlation between the Hurst exponent and the buffer size [4]. 

Let us first group the tests by the value of the Hurst exponent and then select 30 groups to estimate the 

spread of the queue size.  

 

Figure 2: The scatter plot of queue size in 
dependence of the Hurst exponent 

Figure 3: The box-plot of the 30 analyzed groups 

Next, we can build a box-plot for each group. It follows from Figure 3 that the largest amount of outliers 

from above is observed for the first 10 groups, which corresponds to the Hurst exponent value close to 0.5. 

Consequently, at these values of the Hurst exponent, losses may occur due to the fact that the required buffer 

size will be greater than the predicted one. 

For groups from 28 to 30, there are significant outliers from the bottom, which leads to inefficient use of 

buffer memory. 

3.2. The regression analysis 

Machine learning is a subset of artificial intelligence that studies and explores algorithms that can learn 

without direct programming. Linear regression is a typical representative of machine learning algorithms [7].  

There are the following tasks solved by machine learning: supervised learning, unsupervised learning, 

reinforcement learning, active learning, knowledge transfer, etc. Regression (as well as classification) 

belongs to the class of supervised learning problems, when a certain target variable must be predicted for a 

given set of features of the observed object. As a rule, in supervised learning problems, experience E is 



represented as a set of pairs of features and target variables:   , 1...i i i
D x y n  . In the case of linear 

regression, the feature description of an object is a real vector mx R , where R is the set of real numbers and 

the target variable is a scalar y R . The simplest measure of the quality L for the regression problem is  

   
2

ˆ ˆ, ,L y y y y   

where ŷ  is an estimate of the real value of the target variable [7, 8]. 

Let us restore the dependence shown in Figure 2 using the methods of regression analysis. 

The basis of regression analysis is the method of least squares (OLS), according to which the function 

 y f x  is taken as the regression equation such that the sum of the squares of the differences would 

satisfy 

 
2

1

ˆ min.
n

i i

i

S y y


    

Using the methods of pairwise regression analysis, we will carry out a statistical analysis of the data 

obtained by transforming an input self-similar flow distributed according to the Pareto law into a flow having 

an exponential distribution. Let us examine the methods widely used in practice, which allow finding the 

buffer size for the input flow with a given Hurst exponent. 

3.3. The linear regression analysis 

In this case, the relationship between the Hurst exponent H and queue size ŷ  is determined according to 

the linear equation: 

0 1ˆ .y b b H   

We obtain the regression equation using the least squares method: 

          (1) 

The result of the fitting for the current model is shown on Figure 4. 

 
Figure 4: The linear model report is built using the statsmodels package of the Python programming 
language 

 Thus we obtained the statistically significant result. In Table 1 the quality metrics values are shown for 

the obtained linear regression model. 

Table 1 
Linear regression model quality metrics 

Quality Metric Value 

Coefficient of determination R2     0.584 
Root mean square error of regression RMSE 130.908 

Mean absolute error MAE    96.808 
Penalty score p     55.710 



The obtained value of the coefficient of determination suggests that only about 58% of cases of changes 

in the Hurst exponent lead to a change in the size of the queue within the framework of the linear model. The 

obtained result is unsatisfactory for practice, therefore, in the simplest case, it makes sense to consider other 

methods using the methods of linearization of nonlinear dependencies. As a result, the nonlinear dependence 

can be reduced to linear, and then, the least squares method can be used. 

3.4. The hyperbolic regression  

For the hyperbolic regression, the relationship between H and ŷ  can be described as follows: 

1
0ˆ .

b
y b

H
   

The linearization of the hyperbolic equation is achieved by replacing 
1

H
 with a new variable, which we 

denote by z [6]. Then the hyperbolic regression equation takes the form 0 1ˆ .y b b z   We obtain the 

regression equation using the least squares method: 

H
y

379.489
438.875ˆ                    (2) 

The result of the fitting for the current model is shown on Figure 5.  

 
Figure 5: The first hyperbolic model report is built using the statsmodels package of the Python 
programming language 

Thereby,  we obtained the statistically significant result. In Table 2 the quality metrics values are shown 

for the obtained first hyperbolic regression model. 

Table 2 
Quality metrics of a hyperbolic regression model 

Quality Metric Value 

Coefficient of determination R2 0.453 
Root mean square error of regression RMSE 150.218 

Mean absolute error MAE 110.511 
Penalty score p  63.841 

 

The obtained value of the coefficient of determination suggests that about 45% of cases of changes in the 

Hurst exponent lead to a change in the size of the queue. This is much worse than the value of the coefficient 

of determination of the linear model. For this reason, it makes sense to consider a different hyperbolic 

regression model: 

0 1

1
ˆ .y

b b H



 

Using the least squares method, we obtain the regression equation for this model: 



H
y




0397.00399.0

1
ˆ                  (3) 

The result of the fitting for the current model is shown on Figure 6. 

 
Figure 6: The second hyperbolic model report is built using statsmodels package of the Python 
programming language 

Accordingly we obtained the statistically significant result. In Table 3 the quality metrics values are 

shown for the obtained second hyperbolic regression model. 

Table 3 
Quality metrics of the modified hyperbolic model 

Quality Metric Value 

Coefficient of determination R2     0.591 
Root mean square error of regression RMSE 223.798 

Mean absolute error MAE     77.543 
Penalty score p       39.537 

The obtained value of the coefficient of determination is about 59%, which is slightly better than the 

linear model. 

3.5. The power regression 

In the case of the power regression, the relationship between H and ŷ  is: 

1
0ˆ .

b
y b H  

This equation is nonlinear in the coefficient 1b  and belongs to the class of regression models that can be 

reduced to linear form using transformations [6] 

0 1ln ln ln .y b b H   

The exponential function is internally linear, therefore, estimates of the unknown parameters of its 

linearized form can be calculated using the classical least squares method. The regression equation is: 

        (4) 

The result of the fitting for the current model is shown on Figure 7. 



 
Figure 7: The power model report is built using statsmodels package of the Python programming language 

 Thus we obtained the statistically significant result. In Table 4 the quality metrics values are shown for 

the obtained power regression model.  

Table 4 
Extent regression model quality metrics 

Quality Metric Value 

Coefficient of determination R2     0.699 
Root mean square error of regression RMSE 128.675 

Mean absolute error MAE    72.823 
Penalty score p      53.042 

 

The obtained value of the coefficient of determination is 70%, which is much better than the coefficient 

of determination of the linear model. 

3.6. The exponential regression 

For the exponential regression, the relationship between H and ŷ is: 

1
0ˆ .

b H
y b e  

This equation is non-linear with respect to the coefficient 1b  and belongs to the class of regression 

models, which are reduced to a linear form using transformations [6]: 

0 1ˆln ln ln .y b H b   

The exponential function is internally linear; therefore, estimates of the unknown parameters of its 

linearized form can be calculated using the classical least squares method. The regression equation is: 
Hey  089.5926.2ˆ               (5) 

The result of the fitting for the current model is shown on the Figure 8. 

 

,  In this way we obtained the statistically significant result. In Table 4 the quality metrics values are 

shown for the obtained exponential regression model. 



 
Figure 8: The exponential model report is built using statsmodels package of the Python programming 
language 

Table 5 
Exponential regression model quality metrics 

Quality Metric Value 

Coefficient of determination R2 0.745 
Root mean square error of regression RMSE 112.443 

Mean absolute error MAE 65.199 
Penalty score p  46.768 

 

The obtained value of the coefficient of determination indicates that about 74% of cases of changes in the 

Hurst exponent lead to a change in the size of the queue in the framework of the exponential model, which is 

the best result when using the methods of paired regression analysis. An analysis of the amount of the 

penalty gives the same result. 

Let us carry out a comparative analysis of the results obtained and then build graphs of the regression 

equations (1-5) (Figure 9). It is obvious that exponential regression most closely fits the relationship between 

the Hurst exponent and the buffer size. 

 
Figure 9: The comparative analysis of the results of paired regression analysis 



The trivial paired regression models described above do not adequately describe the dependence of the 

queue size on the Hurst exponent, so we complicate the model. One possible way is the isotonic regression 

usage. 

3.7. The isotonic regression 

In statistics, isotonic regression or monotonic regression is a method of fitting a free-form line to a 

sequence of observations under the following constraints: the fitted free-form line should be non-decreasing 

(or not increasing) over the domain, and should lie as close as possible to the observations [13]. In the 

process of constructing an isotonic curve, the following problem is solved [13]: 

 
2

ˆ min,i i ii
w y y   

where the value of the weighting factor is 0iw  . This gives a vector that consists of the non-decreasing 

elements that are closest in terms of the root mean square error. In practice, this list of elements forms a 

piecewise linear function. 

Let us train the isotonic regression model using the scikit-learn package of the Python 3 programming 

language [9] and build a graph corresponding to the model built using isotonic regression (Figure 10) 

In Table 6 the quality metrics values are shown for the obtained isotonic regression model. 

Table 6 
Isotonic regression quality metrics 

Quality Metric Value 

Coefficient of determination R2 0.928 
Root mean square error of regression RMSE 54.437 

Mean absolute error MAE 39.501 
Penalty score p  21.269 

 

The obtained value of the coefficient of determination suggests that about 92% of cases of changes in the 

Hurst exponent lead to a change in the size of the queue within the framework of this model, which is much 

better than the models built on the basis of pair regression methods. Moreover, the value of the penalty for 

isotonic regression is two times less than the corresponding value for paired regression. 

 
Figure 10: Plotting an isotonic curve to a dataset 

 

 



3.8. The support vector regression 

Support Vector Machines (SVM) is a linear algorithm used in classification and regression problems (for 

regression problems it is called SVR - Support Vector Regression). The main idea of the method is to 

construct a hyperplane that separates the sampled objects in an optimal way [10-12]. 

Support vector machines maximize the padding of objects, which is closely related to minimizing the 

likelihood of overfitting. Moreover, it makes it very easy to go to the construction of a nonlinear dividing 

surface due to the nuclear transition [10, 119]. 

Let us train the model based on SVR. The nonlinear nature of the relationship between the Hurst 

exponent value and the queue size indicates the need to choose a radial basis kernel for the SVR model. This 

model was trained using the scikit-learn package of the Python 3 programming language [12]. In Figure 11 

the graph of the relationship between queue size and Hurst exponent is shown. 

 

 

Figure 11: Plot corresponding to trained support vector machine 

In Table 7 the quality metrics values are shown for the obtained support vector regression model. 

Table 7 
Support vector model quality metrics 

Quality Metric Value 

Coefficient of determination R2 0.901 
Root mean square error of regression RMSE 63.868 

Mean absolute error MAE 52.506 
Penalty score p  18.374 

 

The obtained value of the coefficient of determination is about 90%, which is slightly worse than that of 

the method using isotonic regression. However, the penalty for this method is less than for isotonic 

regression. 

3.9. Comparative analysis of models 

The research results are presented in Table 8 for estimating and choosing the best method for predicting 

queue size from the Hurst exponent. 



Based on the data of the pivot table, it can be concluded that the best predictive ability based on the 

introduced quality metric is a model built using the support vector machine. Within the framework of this 

study, it can be concluded that the complication of SVR by transition to the rectifying space does not lead to 

an improvement in the quality of learning. 
 

Table 8 
The comparison between considered regression methods for 0.5<H<1 

 Coefficient of 
determination 

R2 

Root mean square 
error of regression 

RMSE 

Mean absolute 
error MAE 

Penalty 
score p  

Linear regression 0.584 130.908 96.808 55.710 
Hyperbolic regression 1 0.453 150.218 110.511 63.841 
Hyperbolic regression 2 0.591 223.798 77.543 39.537 

Extent regression 0.699 128.675 72.823 53.042 
Exponential regression 0.745 112.443 65.199 46.768 

Isotonic regression 0.928 54.437 39.501 21.269 
Support vector machine SVR 0.901 63.868 52.506 18.374 

4. Conclusions  

Thus, we investigated seven models that allow to predict the size of the queue when transforming an input 

flow with a Pareto distribution into an output flow with an exponential distribution depending on the Hurst 

exponent of the input flow, built on the basis of regression analysis methods. 

The unacceptability of the classical approach, which consists in dividing the entire dataset into training 

and test samples, is shown. Since, within the framework of the set task, the obtained models must be tested 

by simulation modeling of traffic transformation with a limit on the queue size, based on the results of 

applying the tested model for determining the queue size to the sequence being converted. 

Since the amount of losses in the general case does not give any information about the efficiency of using 

the queue in the process of converting traffic, to assess the quality of the resulting model, a penalty was 

introduced that takes into account not only the amount of losses, but also not rational use of buffer memory. 

The best for the selected quality metrics are the isotonic regression and the support vector regression. It 

managed to to reduce the penalty score for these models by more than two times in comparison with the 

trivial linear model. The use of these models will make it possible to more efficiently use the buffer space of 

the RAM of telecommunication network switching nodes. The usage of these models will make it possible to 

more efficiently use the buffer space of the RAM in telecommunication network switching nodes. 

Nevertheless, the obtained models do not belong to strong machine learning models, therefore, the additional 

researches are required using decision trees ensembles and neural networks. 
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