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Abstract. This problem is ill-posed, and the process of adding information in 
order to solve it is needed (regularization). Several methods of deterministic 
regularization based on 2  -norm minimization of the unknown vector are con-

sidered. It is shown that such approaches do not take into account the petro-
physical properties of the reservoir and cannot cover all possible factorization 
combinations. Bayesian regularization is proposed to factorize the flow profile 
data. According to this method, all relative factors are defined by the corre-
sponding probability distribution functions. Core studies are used to determine 
the joint probability distribution of rock permeability and porosity. Layer pro-
ductivity ratio distributions are calculated separately for each well based on its 
log interpretation data. Bayesian statistical inference is used to obtain the gen-
eral drawdown ratio distribution for the entire field. This approach was tested 
on real data obtained from three fields. 
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1 Introduction 

In the process of analyzing the oil field development, it is required to solve the prob-
lems of determining the injected water front, assessing the oil recovery factor sepa-
rately for the producing formations, etc. In order to distribute the cumulative oil pro-
duction and the volume of injected water between the producing formations, it is nec-
essary to have the values of the oil and water flow rate for each formation separately 
[1-7]. 

Investigation of the flow profiles in formations allows obtaining the distribution of 
the produced and injected fluid over the entire cross-section of the pay zone. As a 
result, the dependence of the amount of produced or injected fluids on the depth of the 
completed interval is established. To obtain flow profiles over the formation thick-
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ness, the results of measurements by flow meters are usually used, as well as ther-
mometry data in the wellbore [8-15]. 

Bayesian methods are widely used in the practice of developing hydrocarbon 
fields: processing the results of well tests [5-6; 11] and well logging [9; 12-13], in 
reservoir simulation [7-8; 10], in statistical prediction of oil-field performance [3-4]. 

2 Materials and methods 

Formulation of the problem. 
The paper discusses the results of determining the flow profile for a two-layered res-
ervoir (Figure 1). It is also assumed that the inflow data from the investigated well 
interval contain the value of the total oil and water production rate without exact in-
formation about fractional flow of each fluid. 

 
Fig. 1. Well inflow model. 

 
Thus, as a result of the production log, the following flow rate ratio for 2 produc-

tion layers becomes known: 
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Where: 
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iJ  – productivity of i -th layer; iP  – drawdown for the i-th layer in the case of 

production ("+" sign) or injection ("–" sign), respectively. 
The problem is to factorize (1) resulted in decomposition of the known q flow rate 

ratio into the product of the following unknown ratios: 

q j p   (3) 

Where 1 2j J J  – productivity / injectivity ratio; 1 2p P P    – drawdown ratio. 

Possible interpretations of nonuniform recovery of reserves based on factorization 
(3) are: 

─ For relatively homogeneous reservoirs in terms of productivity, it can be approxi-
mately assumed that 1j  ; therefore, the observed flow profile will be determined 

mainly by the ratio p, which will depend on the initial reserve and dynamics of the 
reservoir energy consumption in relation to each reservoir; 

─ In the case of hydrodynamic equilibrium between the reservoirs and sufficiently 
fast process of repressuring between them, it can be assumed that 1p  ; therefore 

the main factor of the flow profile non-uniformity will be the heterogeneity of the 
reservoir properties, expressed as a ratio j. 

There may also be other possible values of the productivity and drawdown ratios, 
reflecting more complex hydrodynamic processes of multilayer reservoir develop-
ment. 

Obviously, under such conditions, factorization problem (3) has no solution with-
out additional information. In particular, if it is possible to directly calculate the pro-
ductivity iJ  of each interval, then with the known q, it is possible to obtain the draw-

down for each reservoir. However, direct calculation of 
iJ  requires knowing the 

transmissibility of each layer, the current inflow regime of the well, the reservoir ge-
ometry, etc. [15]. The absence or incompleteness of such information generally pre-
cludes this approach. 

It is known that, to control the development of oil and gas fields, in addition to the 
production log, well testing is carried out as well. The values of the productivity index 
and reservoir pressure obtained from the results of these studies, as a rule, are integral 
in nature and determine the properties of the multilayered system only as a whole. 
Thus, on the basis of well testing, only the total fluid flow rate (injection) can be fac-
tored: 

 

Q J P   (4) 

Where 1 2Q Q Q  , 1 2J J J   and weighted average drawdown: 
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Obviously, however, for an unambiguous factorization (3) one well-known expres-
sion in the form (4) is not enough. Moreover, this problem can be attributed to an ill-



posed problem, the solution to which requires some additional constraints to its condi-
tions (regularization) [16]. 

 
Deterministic regularization. 
When solving factorization problem (3) on the basis of (4), in fact, there is a vector of 
four unknowns: 

 T1 2 1 2J J P P  u  (6) 

And a system of three equations: 
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The system of equations (7) has many solutions; therefore, one of the methods for 
obtaining a unique solution is to impose an additional constraint on the norm of the 
vector space [16]. For example, consider the minimization of the 2 -norm of the 

vector (6): 
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min u u u  (8) 

Subject to the fulfillment of (7). 
Problem (8) formally belongs to the class of nonlinear programming problems [17] 

due to additional conditions (7), some of which are nonlinear functions with respect to 
variables. Therefore, a special solution method is required, suitable for constrained 
optimization problems [17]. 

Conditions (7) can be linearized by replacing the variables for drawdown as fol-
lows: 

 T1 2 1 21 1J J P P  x  (9) 

As a result, system (7) can be represented as: 

Ax b  (10) 
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Further, there are two essentially equivalent ways of solving the problem: 

2 T

2
min x x x  (12) 

Method 1 (optimization methods). On the one hand, problem (12) with constraints 
(11) is a quadratic programming problem [17]. Due to the fact that all constraints are 



equalities (there are no inequalities), it can be reduced to solving a system of linear 
equations: 
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Where I is the identity matrix, the elements of the main diagonal of which are 
equal to one; λ is the vector of Lagrange multipliers that appear along with the solu-
tion x. 

Method 2 (methods of linear algebra). On the other hand, system (10) itself be-
longs to the class of underdetermined systems of linear equations; therefore, one of 
the ways to solve it is to obtain a system of normal equations, in which the number of 
equations will already be equal to the number of unknowns: 

T TA Ax A b  (14) 

Unfortunately, for a given matrix A in the form (11), system (14) has no solution, 
since the determinant of a normal matrix ATA is 0. 

Nevertheless, solution (10) remains possible on the basis of special algorithms for 
decomposition of rectangular matrices: QR decomposition, singular value decomposi-
tion (SVD), etc. 

Thus, factorization problem (3) can be solved in the formulation of minimizing 2 -

norm of either vector u (8) or vector x (12). Table 1 shows the results of calculations 
in two ways. Here Q = 50 m3 / day and J = 1 m3 / day / bar. 

As follows from the results in table 1, the solutions obtained in two ways differ 
significantly from each other, with the exception of the case q = 1. This is due, of 
course, to the fact that in one case the values of the drawdown are minimized, and in 
the other case, their reciprocal values. 

Table 1. Solutions based on minimizing the 2 -norm. 

Solution in the form u Solution in the form x 
q  1J , 

m3/day/bar 

2J , 

m3/day/bar 

1P , 

bar 

2P , 

bar 

1J , 

m3/day/bar 

2J , 

m3/day/bar 

1P , 

bar 

2P , 

bar 

50/50 0.500 0.500 50.0 50.0 0.500 0.500 50.0 50.0 

70/30 0.637 0.363 54.9 41.4 0.501 0.499 69.9 30.1 

90/10 0.812 0.188 55.4 26.6 0.510 0.490 88.3 10.2 

99/1 0.955 0.045 51.8 11.2 0.833 0.167 59.4 3.0 

 
It is also interesting to note that for the most frequently encountered in practice 

range of 1 9q   values, the solution in the form of x corresponds to formations that 

are practically homogeneous in terms of productivity. It can also be noted that for 
both cases, when 1q   the values of j and p obtained in two ways are always greater 

than one. 
The main problem of factorization (3) based on regularization (8) or (12) is that it 

is, in fact, an artificial mathematical technique that is used to mechanically solve a 



problem without taking into account its specifics. In addition, with this approach, 
there is an incomplete coverage of possible combinations of relations j and p that may 
take place in reality. In fact, for cases 1q  , either it will always be that 1j   or 

1j  , which may contradict the petrophysical concept of the distribution of reservoir 

properties for different formations. 
 
Bayesian regularization. 
Consider the factorization problem (3) from a probabilistic point of view. We will 
assume that the observed values of q for different wells are some finite sample from 
the generally unknown true distribution of a random variable Q. Accordingly, the 
variables j and p are also instances of random variables J and P. From the point of 
Bayesian statistics, regularization corresponds to the addition of some prior distribu-
tions on the required parameters, i.e. a method for calculating the distribution density 
functions  Jf j

 
and  Pf p is required. 

Neglecting the influence of different mobility of fluids flowing in or out of forma-
tions, different degrees of wellbore damage (skin factor), etc., we will assume that: 
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Where  n n l
k h  is the product of the absolute permeability and the thickness of the 

n-th interlayer for the l-th layer. 
The randomness of J is due to the uncertainty related to absolute permeability val-

ues. As it is known, according to the core study data, a positive correlation is ob-
served between the permeability and porosity of the samples, which can be repre-
sented as the density of the two-dimensional distribution of a random vector X = [K, 
F]T: 

 ,  ~ ,  K FX f k   (16) 

According to well log interpretation data, the values of the porosity are known for 
each interlayer. As a result, the distribution for the random values of the permeability 
of the n-th interlayer nK  can be interpreted as the conditional distribution density K at 

nF   obtained on the basis of (16): 
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Thus, for each w-th well, using (15) and (17), the distribution density  J wf j φ  is 

calculated, where wφ  is the vector of interlayer porosity values. 

The use of different distribution functions  Jf j
 
for different wells naturally takes 

into account the chaotic change in the reservoir properties of oil formations from one 



zone (well) to another [14]. However, assuming the continuity of the spatial change in 
reservoir pressure, its distribution across reservoirs is mainly determined by produc-
tion mechanism of a reservoir and well operation conditions that have been estab-
lished at the current stage of development. Thus, the main task is to statistically derive 
a single distribution function  Pf p  for the entire field. 

The calculation is attended with certain difficulties. On the one hand, it is possible 
to use well test data for wells that completed in only one layer. However, as a rule, the 
amount of such information is not enough to construct a sample distribution function. 
Instead, we use Bayesian inference to derive the posterior distribution function for P 

by combining all available observations wq and known functions  J wf j φ , where w 

is the well number. 
According to Bayes' theorem, the posterior distribution of P with respect to the 

available data q can be calculated as: 

     
 

PQ P

P Q
Q

f q p f p
f p q

f q
  

(18) 

Where  Q Pf q p  
 
is the likelihood of the data q at P = p;  Pf p  is prior distribu-

tion P;  Qf q  is the marginal likelihood of the data Q. 

The formula for a function  Qf q  
 
is not so important, since it plays the role of a 

simple normalization factor [1; 2]. An uninformative distribution of a random variable 
P whose values belong to an interval of finite length is used as a prior distribution. In 
this case the probability density of  Pf p  will be constant throughout this interval. 

The likelihood of observations wq  can be calculated as: 
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Where w is the well number. Thus, we get: 
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Where q is the vector of observations wq .  

Using a different likelihood function for each observation q differs from classical 
Bayesian statistical inference. This approach is typical for hierarchical models in 
which some of the prior distributions (so-called hyperdistributions) are shared as pa-
rameters of lower-level distributions [1]. In this case, the role of such a prior hy-
perdistribution plays  Pf p , through which information is exchanged between dif-

ferent groups of observations (flow profile and reservoir properties of the wells) to 
obtain a more stable (reduced) estimate of the posterior distribution [1]. 



In addition, let us explain some details of the practical implementation of the pro-
posed scheme. As it turned out, more stable estimates of the distribution parameters 
are obtained if we carry out a logarithmic transformation of problem (3): 

log log log .q j p   (21) 

Note also that, as a rule, the results of studies on the core are presented in the form 
of pairs of sample  log ,  k   values. 

 
Methodology of factorizing the flow profile data. 
As a result of Bayesian regularization, posterior distributions j and p are calculated, 
which can be used as additional constraints when solving the factorization problem 
(3). For example, one can solve this problem in the following form: 

   2 2

MAP MAP minj j p p     (22) 

Subject to fulfillment of (3), where MAPj , MAPp are the maximum aposteriori esti-

mates; α is weight coefficient. 
In fact, under condition (3), problem (22) is reduced to finding a real positive root 

of the quartic equation: 

4 3 2
MAP MAP 0j j j qp j q      (23) 

In some cases, equation (23) can have two real positive roots. This situation arises 
with an equivalent contribution of the first and second terms to the total sum (22), i.e. 
the problem has two equivalent solutions. 

Further, on the basis of (4), one can calculate the individual parameters of the lay-
ers: 
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(24) 

3 Results 

Examples of real fields. 
Let us consider the application of Bayesian regularization for the factorization prob-
lem (3) on the example of three fields. At each of them, productive formation consists 
of two conditionally distinguished layers, designated as C2vr (upper layer) and C2b 
(lower layer). For some wells of the fields, a production logging tests were carried out 
to determine the flow profile. If there were several studies for the same well, then 
only the latest flow profile results were used. 

In total, 15, 87 and 65 flow profile results were used for fields No. 1, 2, and 3. Fig-
ure 2 shows the distributions for all three fields, obtained using kernel density estima-



tion (KDE) method. The bandwidth was 3 for q and 0.2 for log q . All distributions 

also have 0.25, 0.5 and 0.75-quantiles. 
As it can be seen, among all fields, the distribution shape log q  for field No. 3 is 

closest to the normal curve, and its center (median) is located above zero. At the same 
time, field No. 2 demonstrates a two-modal distribution type log q , i.e. perhaps there 

are two groups of wells, for one of which the most probable values of log q
 
will be 

less than zero, and for the second, on the contrary, they will be above zero. Regarding 
field no. 1, the only thing that can be said is that for about 75% of the samples there 
is log 0.5q  . In addition, for all field the percentage of observations, for which 

log 0q  , is higher than 60%. 

The results of the core study to determine the open porosity and absolute perme-
ability of core samples for various formations of the fields are shown in figure 3. Dots 
denote pairs of values  log ,  k  , which are assumed to have a joint normal distribu-

tion. Thus, according to (16) we use: 

 
log

~ N ,  
 
  

μ Σ
K

 (25) 

Where μ is the vector of mean values for log k
 
and φ; Σ  is covariance matrix 2×2; 

 N ,  μ Σ  is the probability density function of the bivariate normal distribution. 

To determine the parameters of the normal distribution (25), a Bayesian inference 
procedure similar to (18) was used. The following prior distributions of parameters 
were used: 
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Where logˆ k , ˆ  are sample means for log k  
 
and φ, respectively;  Exp   is the 

probability density function of the exponential distribution with a parameter 0  ; 

 LJK   is the probability density function of the LKJ-distribution with a parameter 

1  ; C is the correlation matrix 2×2 for which  Σ D CD ; σ is the vector of stan-

dard deviations for log k
 
and φ; D  is the diagonal matrix with values σ on the main 

diagonal. A reasonable choice is 1  , 1   and 2   [18]. 

 



 
a) field number 1 

 
b) field number 2 

 
c) field number 3 

Fig. 2. Distributions of q for fields. 



 
a) field number 1 

 
b) field number 2 

 
c) field number 3 

Fig. 3. Distributions of  log ,  k  of core samples for fields. 



Figure 3 also shows the values of the coordinates of the distribution center MAPμ
 

and the correlation coefficient MAP
 
corresponding to the maximum of the posterior 

distributions μ and C. For fields No. 1 and 2, core samples from the C2vr formation 
have, on average, higher porosity and permeability than for the C2b formation. In 
turn, for field No. 3, the core samples of the C2vr formation, although on average 
have a higher porosity, their average permeability is lower than for the C2b formation. 
It is interesting to note that for all fields, the correlation coefficient between porosity 
and permeability is highest for the C2b reservoir. 

 
a) field number 1 

 
b) field number 2 

 
c) field number 3 

Fig. 4. Distributions of log j  for fields. 



Then, for each well, the following sequence of actions was implemented: 

─ According to the data on perforations for each layer, a group of interlayers com-
pleted on the date of the flow profile was formed; 

─ According to well log interpretation data, for each interlayer, the value of porosity 
was taken and the distribution log k  was calculated 

 
based on (25) and (17); 

─ According to well log interpretation data, for each interlayer, distribution kh was 
calculated based on the obtained distribution log k  and interlayer’s thickness; 

─ For each layer, the distribution of the sum of all interlayer’s kh obtained at the 
previous step was calculated; 

─ The distribution of log j  was calculated 
 
based on (15). 

Figure 4 shows the results of calculating the distribution of log j
 
separately for 

each well, as well as the averaged distribution curve
 
for the entire field. The plots also 

show the value of the mode of the averaged distribution of log j . Thus, for fields 

No. 1 and No. 2, the productivity of the C2vr formation is on average about 10 and 4 
times higher than the productivity of the C2b formation, respectively. At the same 
time, for field No. 3, the productivity of C2vr is on average approximately 2 times 
less than the productivity of the C2b formation. For all fields, the maximum value of 
the distribution mode of log j  does not exceed 2, while the minimum value of the 

distribution mode of log j  is higher than -2. 

4 Discussion 

As a result of Bayesian inference base on (18), the posterior distributions of log p  for 

all the fields are obtained and are shown in figure 5. The mean value and highest den-
sity interval (HDI) of 94% are also indicated there. Thus, for fields No. 1 and No. 2 

MAP 1p  , i.e. the drawdown for the C2vr formation is on average almost 2.5 times 

lower than the drawdown for the C2b formation. At the same time, it is the other way 
around for deposit No. 3, for which MAP 1p  , i.e. it is possible that even at a lower 

productivity of the C2vr formation, the reservoir pressure in it is higher than in the 
C2b formation. As a result of which, a greater inflow from / injection into C2vr is 
observed. It is also interesting to note that the range of the posterior distribution of 
log p  is the highest for field No. 1, which is possibly due to the small volume of ob-

servations of log q . 

Figure 6 shows the results of testing the convergence of the procedure for Bayesian 
inference of the posterior distribution. Trace diagrams on the right in Fig. 6 looks like 
white noise, which indicates a good mixing of the statistical inference engine. In this 
case, the NUTS sampler was used, which generated four parallel chains of independ-
ent samples from the posterior distribution. The size of each sample was 5000 ele-
ments. In addition to them, 2000 elements in the chain were intended for automatic 
tuning of the sampling algorithm. 



5 Conclusion 

The problem of factorization of the results of flow profile of a two-layered reservoir 
using well test data is formulated. It is shown that this problem is ill-posed, and addi-
tional restrictions on its conditions (regularization) are required. 

Several methods of deterministic regularization based on the minimization of the 

2 -norm of the vector of unknowns are described. It is shown that such approaches 

do not take into account the petrophysical properties of formations and have limita-
tions on the coverage of possible factorization solutions. 

 

 
a) field number 1 

 
b) field number 2 

 
с) field number 3 

Fig. 5. Posterior distributions of log p  for fields. 

 



 
a) field number 1 

 
b) field number 2 

 
c) field number 3 

Fig. 6. Convergence results of the Bayesian inference procedure for fields. 

 
A Bayesian regularization is proposed for factorizing the results of the flow profile. 

According to it, for all relative factors the corresponding probability distribution func-
tions are formed. For this, data from core studies are used to determine the permeabil-
ity and porosity of the samples. Calculation of the distributions of the ratio of reser-
voir productivity is carried out separately for each well, taking into account the well 
log interpretation data. Bayesian statistical inference is used to obtain the general 
distribution of the drawdown ratio for different reservoirs. 

This approach was tested on the example of three real fields. All calculations were 
carried out in Python using the PyMC3 probabilistic programming library. Visualiza-
tion and exploratory analysis of the results were carried out using the Matplotlib and 
ArviZ libraries. 
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