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Abstract. The article is devoted to the issues of using discrete dynamic models 
as an alternative to the classical methods of studying the basic processes of 
chemical technology. An adequate description of the phenomena of transfer of 
matter and energy is an extremely important task, both in theoretical terms and 
from the standpoint of their practical use. Studies of real processes using the 
equations of mathematical physics have shown that they allow correctly 
describing real processes only in homogeneous media and only under 
conditions closing enough to equilibrium. When modeling processes in 
heterogeneous environments, as well as when considering significant external 
influences, computational difficulties arise. The fundamental opposite of 
classical modeling methods should be considered approaches that use local 
sampling of the process under consideration, in particular, systems of cellular 
automata. The paper considers the capabilities of discrete dynamic models 
based on deterministic cellular automata. Models allow us to consider space as 
a combination of separate interconnected elements, the behavior of which obeys 
local rules. The basic techniques and general methodology for the development 
of discrete models are presented. Examples of their use for modeling heat 
conduction and diffusion processes are given, taking into account the non-
uniform of the material and the presence of volumetric sources. The data 
obtained do not contradict the data obtained by classical methods and the 
principles underlying the theory of transport phenomena. 
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1 Introduction 

Classical approaches to modeling the basic laws of transfer of matter and energy 
involve the use of partial differential equations [1-2]. Despite the significant 
contribution to the creation and development of engineering science, at present, the 
shortcomings of classical equations are increasingly noted [3]. These shortcomings 
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are based on the fact that the classical equations, being continual, consider the 
processes of mass and energy transfer in a continuous homogeneous medium and use 
constant transport coefficients (diffusion, thermal conductivity, etc.). These 
assumptions, as practice has shown, often lead to not entirely adequate results [4], 
especially in cases where: 

─ The properties of the environment are not constant in time and space; 
─ The object of modeling has a complex shape and curvilinear boundaries; 
─ The presence of discontinuous or threshold functions in the equations. 

These problems can significantly limit the use of continuous models, which 
requires a wider use of discrete approaches, which include cellular automata models 
[5-6]. 

2 Materials and methods 

2.1 Formalization of the cellular automaton 

The system of cellular automata is a dynamic model that defines a continuous 
environment in the form of a combination of discrete elements - cells, each of which 
is an abstract automaton. Within the framework of the theory of automata, a cell is 
defined as an object that can change its states under the action of input signals. The 
change of states is specified, as a rule, by a deterministic transition function . That 
is, the state of the automaton z(tk+1) at time k+1 is a function of only two variables: the 
state z(tk) and the input signal x(tk) at the previous time k. Consequently, an automaton 
cell is an object that operates in discrete time steps t0<t1<t2<…, tk. This makes it 
possible to describe the change in its state over time. Individual cells form a spatial 
lattice, the dimensions and shapes of which, in the general case, are arbitrary [7-8]. 

When passing from an individual cell to a set that makes up a system of cellular 
automata, the problem arises of determining the set of cells that fill the model space 
and describing the connections between cells. In cellular automata for modeling two-
dimensional processes, you can define a cell using its coordinates. Connections 
between cells can be introduced as follows. It is considered that each automaton cell 
has inputs, which are outputs of other cells - neighbors. At the same time, the 
neighbors are located in a certain limited neighborhood. In two-dimensional models 
of cellular automata, two types of neighborhoods of cells are most often used: the von 
Neumann neighborhood and the Moore neighborhood [9-10]. Further in this paper, 
we will consider systems with a von Neumann neighborhood on a square lattice, 
which is a collection of four cells that have a common side with the cell under 
consideration. Let's denote the set of neighbors of the i cell as O(i). Thus, if jO(j), 
then the cell named j is a neighbor of the cell i. 

Let us concretize the type of cellular automaton, for which we restrict ourselves to 
considering homogeneous deterministic elements of the system. Homogeneity means 
that all cells are equal and affect each other equally. Since the inputs of a particular 
cell are, in fact, the outputs of neighbors, it can be argued that the input signals of a 



cell are the states of its neighbors. Thus, the transition function for a homogeneous 
deterministic cellular automaton will have the form: 









 




)(
1 )(),()(

iOj
kjkiki tztztz   (1) 

Transitions between states are carried out in steps of model time for all cells 
synchronously. 

From expression (1) it can be seen that the rules of evolution of a system of cellular 
automata are local, since the state of each specific cell depends on the state of the 
nearest neighbors, and more distant cells do not have any effect on it. 

2.2 General modeling methodology 

Let us consider the main stages of applying the methodology for modeling substance 
transfer processes using cellular automata. 
Sampling of the model space. At the first stage of modeling, the continuous space is 
divided into cells using some kind of spatial lattice, for example, orthogonal [5]. At 
the same time, there is a fundamentally important point - the size should be set in such 
a way that the parameters of internal processes do not depend on spatial coordinates. 
In addition, cell division allows you to investigate processes in objects with curved 
boundaries. 

Further, in dependencies of type (1), it is required to indicate the explicit form of 
the functions . This allows you to establish a connection between external influences 
and the state of cells. The formalization of this connection is ensured by using the 
fundamental laws of a particular modeled process. For example, in the study of 
transfer processes, the state of cells can be compared with phase variables of a 
potential type. Temperature will play such a role for thermal processes, and 
component concentration for diffusion processes. As external influences (input 
signals), it is advisable to take flux quantities - heat flux, mass flux, etc. As a result, it 
is possible to obtain a cellular system, the behavior of which will obey the laws of a 
specific modeled process. 
Derivation of the laws of cell functioning. To obtain the transition function (1) in an 
explicit form, the technique described in detail in [11] was used. The conclusion was 
based on the use of one of the forms of recording the laws of conservation of 
substance (energy, mass), according to which the flow of transfer of a substance is 
associated with a potential gradient. In the derivation, the specific (per unit volume) 
flows of a substance were considered, associated with the potential difference by 
transport (kinetic) coefficients. When specifying the flows of substance, it was 
assumed that the cells under consideration have a von Neumann neighborhood and 
exchange flows. As a result, an equation was obtained that is valid for describing the 
processes of transfer of energy or mass, which are carried out by the microscopic 
movement of particles of matter: 
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Where: Fi(tk) - state (potential value) of the i cell at the k time step; Fi(tk+1) - the 
same at the k+1 time step; t - time quantization interval; h - step along spatial 
coordinates; ai,j - transport coefficient taking into account the properties of the 
material of the i cell; gi,j(tk) is the flow of substance between neighboring cells in a 
discrete time step tk. 

Expression (2) allows you to analyze the dynamics of changes in the state of the 
cell in time. 

It is easy to see that this approach allows you to simulate processes in an object, 
the physical properties of which are inhomogeneous. Indeed, the characteristics of the 
substance are included in the local dependence (2), which already makes it possible to 
take into account the spatial heterogeneity. If the properties of the material change 
over time, or depend on the state of the cell, then these effects can be taken into 
account using additional expressions. 
The existence of special cells. It is easy to see that expression (2) will be valid both 
for inner cells surrounded by exactly four neighbors and for edge cells with less than 
four neighbors. In general, when using this expression, the presence or absence of 
exchange of a substance with the environment should be taken into account. 

Situations are possible when it is necessary to simulate an object containing local 
sources or sinks of a substance, that is, zones where energy or mass is generated or 
absorbed. In this case, it is convenient to introduce an additional term into the 
expression for the transition function: 
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Where (tk) is the specific power of the source (drain) of the potential. 
After the formation of an array of cells and determination of the laws of their 

functioning of the form (2) - (3), the values of the necessary constants characterizing 
the parameters of a particular process and the initial states of the cells should be set. 
The modeling process will consist in determining the values of the array elements for 
successive moments of discrete time. 

3 Simulation results 

3.1 Modeling the heat conduction process 

Consider the process of heat transfer caused by microscopic (molecular) movement of 
matter - the process of heat conduction. 

Concretization of the physical essence of the process allows us to indicate that the 
transported substance here will be heat energy. Therefore, in this particular case, the 
temperature should be taken as the transfer potential, which will correspond to the 
state of the cells of the automata system. Cells in the process of heat transfer will 
exchange flows of heat. A set of indicators of thermal conductivity, heat capacity and 
density of the cell material will act as the transport (kinetic) coefficient. In this case, 
the equation of the transition function (3) takes the form: 
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Where Ti,j(tk+1) and Ti,j(tk) are the cell temperature at times tk+1 and tk; I,j, Ci,j and 
i,j are the thermal conductivity, heat capacity and density of the material of the cell i, 
j, respectively. 

Example 1. Consider an imitation of the combustion process. For this, we use 
equation (4), in which the specific power of the volumetric source is proportional to 
the temperature: 

(T) = kT (5) 

Where k is a constant. 
Thus, we arrive at a quasilinear problem in which heat transfer occurs under 

conditions of heat release. 
As a model object, a plate was chosen, broken with a step of 1 mm into 1681 

(4141) cells. The following material characteristics were used: thermal conductivity 
1.5 W / (mK), specific heat 1000 J / (kgK), and density 1500 kg / m3. The constant k 
in expression (5) was equal to 0.025. The initial temperature of the plate was taken 
equal to 0 conditional degrees. The simulation step in time was 0.005 s. There was no 
heat exchange between the plate and the environment. Combustion was initiated by an 
instantaneous heat pulse in the center of the plate. 

Figure 1 shows the simulation results. The abscissa and ordinate axes show the 
dimensions of the plate, and the applicate axis shows the temperature in arbitrary 
units. The physical time in seconds is indicated in the upper right corner. 

Analysis of Figure 1 shows a picture typical in real conditions for the initial period 
of the combustion process. At first, the heat spreads over the plate rather slowly. And 
then, in the area of influence of the initial pulse, the temperature rises sharply. 

Example 2. In order to demonstrate the capabilities of the discrete approach, let us 
consider heat transfer in an inhomogeneous material. Let's make the following 
changes to the previous task. 

Let us assume that the investigated plate contains a section, the material of which 
has a much lower ability to conduct heat than the rest of the object's mass. For this, let 
us assume in equation (4) that the thermal conductivity of the anomalous section is 
two orders of magnitude lower than for the main part of the plate. Leave all other 
parameters of the problem unchanged. 

The results are shown in Figure 2. As you can see, the temperature of the area with 
lower thermal conductivity stands out sharply against the general thermal field. In this 
case, the temperature of the anomalous area changes weakly with time, and the 
heating of the plate under study are noticeably slower than that observed in the 
previous example (Figure 1). 



 
Fig. 1. Results of the study of the quasilinear model of thermal conductivity. 

3.2 Simulation of the diffusion process 

Let us turn to the consideration of the application of systems of cellular automata for 
modeling the mass transfer by the molecular mechanism. As a first approximation, we 
will assume that the process takes place in a single-phase system at a constant 
temperature and in the absence of external forces. 

In this case, the laws of functioning of the cells of the automaton should take into 
account that the mass of the substance becomes the transferred substance. Hence it 
follows that the cells will exchange flows of mass, and concentration will act as the 
transfer potential. The transport coefficient in the above expressions (2) and (3) will 
be the molecular diffusion coefficient. 

Now the equations of the transition function (3) can be written as follows: 
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Where Mi,j(tk+1) and Mi,j(tk) is the concentration of the component in cell i,j at times 
tk+1 and tk ; Di,j  is the diffusion coefficient of the cell material. 

Example 3. To illustrate the possibilities of equation (6), let us consider the 
imitation of the diffusion process in a two-dimensional object in the presence of mass 
sources in it. There was a rectangular plate divided into (2131) cells with a step of 



1 mm. The diffusion coefficient was taken equal to 0,110-6 m2 / s. The initial 
concentration of the substance in the plate is equal to 0 conventional units. The time 
sampling step corresponded to 0.2 s. 

 

 
Fig. 2. Results of the study of the quasilinear model of heat transfer in a plate with a zone of 

anomalous thermal conductivity. 

When simulating the process, it was assumed that there was a mass source located 
on one of the plate boundaries. The source maintained a constant concentration of the 
substance, equal to 1 conventional unit. The model assumed that there is no mass 
transfer with the environment. 

In order to make the problem less trivial, we introduce the following complication. 
Let us assume that the investigated plate contains a kind of obstacle - a non-
conductive area with a zero diffusion coefficient. The results of the model experiment 
are shown in Figure 3. The applicate axis is the concentration in arbitrary units. 

The results obtained make it possible to investigate the distribution of matter in an 
object containing areas that impede the normal course of the process. 

4 Discussion 

The presented examples illustrate the possibilities of a discrete approach to modeling 
transport processes using cellular automata systems. The results obtained in all cases 
correspond to the generally accepted ideas about the nature and course of the 



processes under consideration. It should be noted that the same program was used to 
simulate both thermal conductivity and diffusion. The latter follows from the physical 
analogy of processes obeying the gradient laws of the connection between the 
transferred potential and the flows of substance. 
 

Fig. 3. Results of modeling the diffusion of matter in a plate with an obstacle. 

Equally important is the fact that when moving from one example to another, the 
simulator underwent very minimal changes. Only the dependencies were changed, 
according to which the parameters of the sources, the characteristics of the material 
were calculated, and, if necessary, the coordinates of the anomalous zones were 
introduced. 

The convenience of using discrete approaches to simulate and analyze various 
technological processes was noted by a number of authors [12-15]. At the same time, 
it was pointed out that these approaches allow avoiding many of the difficulties 
inherent in classical methods, which are mentioned above in this article. 

5 Conclusion 

The approach based on systems of cellular automata makes it possible to create 
effective models for the study of dynamic spatial phenomena, in particular, the 
processes of molecular transfer of substances. Models based on cellular automata 



make it possible to study processes in inhomogeneous media in a nonlinear and non-
uniform setting. 

The use of cellular automata systems for the analysis of complex technological 
processes can be recommended. In this case, the physical essence of the problem 
becomes extremely clear and logically correct. It should be said that this statement is 
true not only for systems of cellular automata, but also for most other research 
methods that imply the sampling of space according to a functional feature. 
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