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ABSTRACT
Quantum control methods, like rapid adiabatic passage, stimulated
Raman adiabatic passage, shortcuts to adiabaticity and optimal con-
trol, have become an integral part of modern quantum technologies,
for example quantum computation and quantum sensing, since they
are exploited in order to find the optimal pulse-sequences which
drive quantum systems to the desired target state in minimum time
or with maximum fidelity, overcoming the undesirable environmen-
tal interactions which lead to decoherence and dissipation. In this
paper we quickly present our recent research activities regarding
the control of generic quantum systems and nanostructures, and
briefly discuss the possibility to use reinforcement learning as an
alternative method for quantum control.

CCS CONCEPTS
• Computing methodologies → Computational control the-
ory;Neural networks;Quantummechanic simulation; •Hard-
ware→ Quantum error correction and fault tolerance.
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1 INTRODUCTION
The development of quantum computation and many other quan-
tum technology applications, like quantummetrology and quantum
sensing, rely on the precise control of the basic quantum elements,
the two-level quantum systems and three-level quantum systems,
and the creation of the necessary quantum gates and entanglement
with high fidelity and robustness. Several methods have been de-
veloped over the years to succeed this purpose. A basic category
composes of adiabatic methods, like rapid adiabatic passage [1]
and stimulated Raman adiabatic passage (STIRAP) [2], which give
efficient and robust control against moderate variations of system
parameters but require long times for the adiabatic transfer, which,
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in general, leads to a degraded performance in the presence of un-
desirable interactions with the environment (decoherence effects).
Another important category that has been extensively studied in
the last decade includes several methods collectively referred to
as shortcuts to adiabaticity [3]. Their main concept is to bring the
quantum system to the same final state as the adiabatic methods in
shorter time; some of these methods simply bypass the intermedi-
ate adiabatic states, while others add an extra term in the system’s
Hamiltonian, which cancels the diabatic transitions and allows the
quantum system to evolve along the adiabatic trajectory of the orig-
inal Hamiltonian. A third basic method is based on optimal control
[4] of the quantum systems, where optimizations are performed
against system parameters, like, for example, minimum evolution
time or minimum pulse energy for performing a specific quantum
transfer with maximum fidelity. Our group has presented several
applications using the above methodologies in the quantum control
of either generic quantum systems or specific quantum nanostruc-
tures, see e.g. Refs. [5–12]. A summary of the above results will
be presented here. More recently, a different approach for quan-
tum control has been presented by applying deep reinforcement
learning techniques for the robust and high efficiency control of
quantum evolution [13–15]. Our research plans in this area will
also be discussed.

2 QUANTUM CONTROL METHODS
2.1 Adiabatic Passage Methods
The basic unit appearing in most modern quantum technologies
is the two-level system or qubit and several methods have been
developed for controlling the states of qubits. One of the simplest is
the resonant 𝜋-pulse. Using the familiar nuclearmagnetic resonance
(NMR) terminology, this pulse is resonant with the frequency of
the two-level system, is applied along the transverse direction (𝑥 or
𝑦), and its amplitude and duration are such that it rotates the qubit
state from up (+𝑧) to down (−𝑧) or vice versa. The drawback of this
method is that imperfections in the pulse amplitude or duration, or
even uncertainties in the quantum system, may degrade the fidelity
of population inversion.

A more robust method is the so-called adiabatic passage. Now
the qubit control is achieved using the longitudinal field, which is



gradually changed from the up- to down-direction. If the change
is slow enough (adiabatic), then the qubit state follows the instan-
taneous magnetic field and population inversion is accomplished.
Closely related to adiabatic passage is the method of stimulated
Raman adiabatic passage (STIRAP), applied to three-level quantum
system in the lambda or ladder configuration. The goal is to transfer
population from some initial to a final target state, without direct
coupling between them, through a lossy indermediate state, which
is coupled to the other two states with properly selected pulses. This
task is accomplished by applying the pulses in a counterintuitive
order, where the pulse coupling the intermediate and target states is
applied before the pulse coupling the initial and intermediate states.
If the change in the applied fields is again slow enough (adiabatic),
then the population transfer is accomplished through a temporary
eigenstate of the system, which initially coincides with the starting
state while at the end coincides with the target state. This method
is also known to be robust in moderate variations of the fields or
other experimental parameters.

2.2 Shortcuts to Adiabaticity
The drawback of adiabatic passage methods is the long necessary
times, in order to satisfy the adiabatic approximation, leading to a
degraded performance in the presence of undesirable environmen-
tal interactions which cause dissipation and dephasing in quantum
systems. In order to overcome this problem and accelerate quantum
adiabatic evolution, several methods have been proposed, collec-
tively known as shortcuts to adiabaticity. Two major approaches
can be distinguished among these methods. In the first approach,
the main idea is to reach the same final state as with a slow adia-
batic process, but without necessarily following the adiabatic path
during the whole time. In the second approach, an extra Hamilton-
ian is added to the original Hamiltonian so the system, under the
influence of the total Hamiltonian, can follow the eigenstates of the
original (reference) Hamiltonian even for very fast evolutions. The
extra counterdiabatic Hamiltonian cancels the diabatic terms arising
for short evolutions when the reference Hamiltonian is transformed
to the adiabatic basis.

In our recent works [5–7, 10] we have successfully used both
methods in order to efficiently control various quantum systems.
Specifically, we have used the first approach in order to maximize
entanglement in a bosonic Josephson junction [5], between exciton-
polaritons [6], and coupled spins [7], while we have evaluated the
performance of themethod for the three-level STIRAP system under
the presence of Ornstein-Uhlenbeck noise processes in the energy
levels [10].

2.3 Optimal Control
Optimal control theory [4] was developed during the cold war to
answer questions related to the space race, for example what is
the minimum-fuel trajectory to the moon. Through the years it
has found a broad range of applications in a variety of systems
including aerospace, electrical, biomedical and nuclear, but also
has been successfully applied in quantum systems. In the quantum
context, usually the goal is to find the electromagnetic field which
can drive a quantum system from some initial state to a desired

target state, in theminimum possible time or withmaximumfidelity,
reducing thus the unwanted effect of noise.

For low-dimensional quantum systems, for example two- or
three-level systems, analytical methods like Pontryagin’s Maxi-
mum Principle [4] have been successfully used to calculate the
optimal pulses. For more complicated systems with larger number
of states, it is often necessary to recourse to numerical optimization.
Numerical optimal control methods are divided into two major
groups, gradient algorithms and direct methods. The methods of
the first group have a high accuracy and assure that the obtained
solution satisfies the necessary optimality conditions. But they also
present several drawbacks. For example, one needs to calculate
the gradients of the problem by hand. Additionally, the radius of
convergence is usually small, thus a good initial guess is needed.
A similar guess is also necessary for the Lagrange multipliers. In
the direct methods on the other hand, the continuous optimal con-
trol problem is discretized in time and is eventually transformed
to a nonlinear programming problem with thousands of variables,
which nevertheless can be solved by using commercially available
software programs. The drawback of direct methods is that they
are not as accurate as the gradient methods, but they have a larger
radius of convergence and there is no need to initially guess the La-
grange multipliers. In our research works involving computational
optimal control, we use the optimal control solver BOCOP [16],
implementing a direct method. Some very useful practical charac-
teristics of BOCOP are that it can easily incorporate constraints on
the state and control variables, while the control functions can be
expressed in terms of trigonometric series.

In our recent work [8, 9] we used optimal control theory to
accelerate adiabatic passage in a two-level system, and derived
a modified Roland-Cerf protocol, where recall that the original
Roland-Cerf quantum protocol was developed in order to accelerate
Grover’s quantum search algorithm. We have also used numerical
optimal control in some of the entanglement generation problems
discussed above [5, 7], as well as for the more efficient generation
of single photons from a bosonic Josephson junction [11]. The
BOCOP program was also used for the fast initialization of the spin
in a composite nanostructure, made of a quantum dot in the Voigt
geometry coupled to a transition metal dichalcogenide monolayer
[12].

2.4 Quantum Control with Reinforcement
Learning

Deep reinforcement learning techniques have been recently em-
ployed in order to efficiently control quantum systems, with ex-
amples including among others many body quantum systems [13],
quantum gates [14], and coherent transport of quantum states in a
STIRAP-like quantum system [15]. The advantage of reinforcement
learning compared to the previously discussed control methods
appears to be that the neural network, whose output are the control
fields, can be trained in the presence of realistic noise processes. As
a result, the control fields obtained using reinforcement learning
can achieve better fidelities than the other methods under realistic
noise conditions.



Our ongoing research efforts are concentrated to apply deep
reinforcement learning in quantum systems where coherently con-
trolled adiabatic passage methods (coherently controlled STIRAP)
are used, for example quantum systems where continuum of states
are involved [17], quantum control of degenerate states [18], and
purification of mixtures of right-handed and left-handed chiral
molecules [19, 20]. We intend to apply this method not only in
model quantum systems but also in real molecules and nanostruc-
tures [21]. We also expect reinforcement learning to be particularly
suitable for computationally demanding quantum control appli-
cations, like for example the control of large chains or arrays of
coupled qubits [22]. It is our furthest ambition to apply this method
in such systems.

3 CONCLUSION
We have briefly presented our recent an ongoing efforts regarding
the control of quantum systems using various methodologies, and
discussed the challenge to enrich our computational arsenal using
the powerful technique of deep reinforcement learning.
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