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ABSTRACT
The Internet of Things (IoT) and "Smart Everything" trend is a re-
ality that is becoming part of our daily lives. Consequently, there
is a gradual increase in the deployment of real world IoT systems
that attempt to make use of the various possibilities and benefits
the IoT offers. However, the connection of billions of—usually in-
herently insecure—devices in a network, paired with the lack of a
clear security framework for the development of IoT systems and
platforms has widened the attack surface of these systems leading
to them being targeted by malicious actors. In this paper, we ex-
plore the problem and related research, devise an assets taxonomy
and focus on the security requirements for each asset category.
Then, we discuss countermeasures and good practices as well as
new approaches based on AI that improve security and intrusion
detection capabilities. We also introduce a metric that can be incor-
porated by automated security auditing methods. The relevance of
this metric is evaluated with respect to correlation across findings
from a real-world study.
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1 INTRODUCTION
The Internet of Things (IoT) is a complex network that interconnects
"things", i.e. uniquely identifiable programmable devices with phys-
ical sensing and/or actuation capabilities that form cyber-physical
systems. Such devices mainly sense data from the physical world
and take actions, with the possibility to also inter-operate with
processing services [15]. The benefits offered are quite a few and
they are currently being used in a wide range of use-cases, includ-
ing healthcare [20, 26], fitness [41], manufacturing [57, 58], and
agriculture industry [32, 49] among others. Ideas that would be
previously deemed far-fetched and futuristic, such as self driving
cars [17] and smart cities [34], are now realized.

The statistics related to the IoT are so far remarkable, and more
or less depict the impact they induce in the modern life. According
to IoT Analytics [30], in the end of 2019 the number of active IoT
devices was estimated to be 9.5B, without counting mobile devices,
or inactive ones; this number is continuously increasing. During the
period of 2017-2025 the Compound Annual Growth Rate (CAGR)
for the IoT connections is estimated to be 17% reaching 25 billion
in 2025 and a 1.1 Trillion USD global market revenue according
to FICCI/EY [48]. The total data volume by 2025 is projected to be
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79.4 ZettaBytes (ZB) [38], and the number of IoT products is also
rising, with publicly known IoT platforms in particular counting to
620 in 2019 [29]. Such information illustrate the size of the IoT po-
tential. Adoption and usage rates are continuously rising and such
solutions are used to reinforce important aspects of the production
processes, including automation, monitoring and data analytics,
towards sustainable and cost-effective processes.

Now, as with every disruptive technology, there are some chal-
lenges regarding IoT adoption as well. An important issue, that
mainly comes up due to efforts in reducing investment costs, is
increased security risks. Throughout the years, multiple vulnera-
bilities and security incidents have affected IoT ecosystems. Thus,
focus is put into mitigating existing weaknesses and improving
the security posture of such products. Research on IoT Cybersecu-
rity covers a wide range of aspects, including the incorporation of
security in the SDLC, auditing methodologies, surveys on attacks
and common vulnerabilities, studies on good practices, as well as
physical, hardware, software, and network security [1, 36].

In this work, we examine past research in the domain of security
for IoT, and present a high-level taxonomy of the assets that com-
pose a typical IoT ecosystem. Then, we briefly describe methods for
evaluating the security posture by focusing in each of the identified
assets, exploring insecure factors to assess desired requirements and
highlight the aspects that could be reinforced. We cover a variety
of ecosystem entities, since each of the assets performs differently
in the ecosystem, and provides diverse security propositions due to
the different nature of the various technology stacks incorporated.
We establish a security baseline for each asset and collectively for
the ecosystem itself. Additionally, we devise an index that combines
aggregate real-world vulnerability data and their respective stan-
dardized scores (CVSS) into a single numerical value. Such an index
can be incorporated in automated security assessment processes
to compare security awareness and preparedness capacity of large
IoT ecosystems. To illustrate applicability and effectiveness, we
perform a correlation analysis with data from a real-world study
providing cybersecurity statistics from many countries.

This paper is further structured as follows: In Section 2 we ex-
plore the previous related research. Section 3 provides a typical
Internet of Things ecosystem asset taxonomy, and highlights the
security requirements that need to be put in place, proposing con-
trols, countermeasures, and best practices that can be applied to
make each asset more secure. Section 4 presents a metric for cy-
bersecurity awareness comparison between large device groups
based on cumulative vulnerabilities to known attacks as well as
the results from an analysis on real-world data that validates the
metric’s applicability Finally, in Section 5 we conclude and discuss
our future intentions.



2 RELATEDWORK
Given the widespread adoption of IoT in business processes and
the every-day lives of individuals, an IoT product should not be
deemed ready to enter the market unless it fulfils some baseline
security requirements. Here, we provide an overview of related
work describing such sets of requirements and recommendations.

To begin, ENISA, the European Union Agency for Cybersecurity,
offers two significant reports providing baseline recommendations,
good practices, and guidelines for IoT product development, mainte-
nance, and end-of-life management. In both of the reports, a detailed
asset and threat taxonomy is presented, with a special emphasis in
the most critical parts, along with the impact and the stakeholders
that they affect. The first report [1] also performs a gap analysis,
and offers good practices and recommendations. However, the rec-
ommendations mostly focus on non-technical aspects and serve a
development, maintenance, and management strategy purpose. The
good practices report [2] of 2019 emphasises on the incorporation
of security in the software development life cycle of IoT products,
analysing each cycle phase, and presenting good practices. Three
types are recognized, the "People" which affect all stakeholders and
phases, the "Processes" that affect the mechanisms surrounding the
software project’s environment , and “Technologies” that consist
of countermeasures and development good practices.

In another approach, the Infocomm Media Development Author-
ity presents an IoT Cybersecurity Guide that offers suggestions
for the implementation and operational phase of the product and
two checklists, a threat modelling checklist and a vendor disclosure
checklist [3]. By using such checklists, potential vendors and devel-
opers can perform a self-assessment on the security posture of a
product in development, evaluating if it is secure and market-ready.
Here, we provide links to a thorough checklist, categorized by the
taxonomy of the IoT ecosystem.

These works offer to vendors a defined set of requirements and
guidelines that should be applied to a newly developed IoT prod-
uct, so that it operates securely, adhering to privacy and safety
needs. This paper combines the identification of assets, the security
requirement assessment, and insecurity exploration, as well as a
proposition of measures to address such insecurities. We approach
the IoT ecosystem from a higher-level cyberphysical system’s view-
point and address all the types of co-existing stakeholders, including
developers, system administrators, deployment infrastructure and
end-users. We also focus on AI-related tools and programming
techniques that can be applied by the responsible teams to improve
the ‘marginal’ security of each asset.

2.1 The Attack Surface of IoT
An important aspect in the cybersecurity domain, is the “attack
surface”, i.e. the sum of insecure entry points that a malicious actor
could utilize in order to enter or attack an IoT system.

In [46], there is a focus on the network aspect of IoT deployments.
They decompose a network into trust zones, and categorize existing
devices into IoT domains (Finance, Home, Wellness etc.). Then, 14
common vulnerabilities are mapped to common attacks like Denial
of Service, Ransomware, and SCADATrojan horses. Finally, security
controls to mitigate these weak spots are presented, and a detailed

map of IoT domains with the vulnerabilities, attacks and security
controls associated with these domains is also given.

In [16], the Internet of Things security challenges is analysed
and security requirements are presented such as the CIA triad -
Confidentiality, Integrity, Availability. Then, a decomposition of the
IoT architecture into three basic domains is performed, the cloud
domain containing the IoT applications and services, the sensing
domain containing the devices and their communication means,
and the fog domain including everything that stands between the
sensing and cloud domains. Authors delve into security vulnera-
bilities and common attacks regarding these three domains, and
propose countermeasures for each of the cases explored.

Security is examined in different IoT layers in [51]. They assess
security based on systems software and hardware controls, as well
as anti-tampering physical security techniques. Emphasis is given
on the network layer, and in particular on encryption, authenti-
cation, secure routing, and key management for the encryption
mechanisms. Denial of service (DoS) and distributed denial of ser-
vice (DDoS) techniques are also referenced as a “popular” attack
against IoT devices. The application layer security is also examined,
and methods for security-by-design and run-time monitoring of
the new Internet of Things products are proposed.

Finally, [36], performs an in-depth survey on IoT vulnerability
research. The paper sums up a variety of research focused into the
attack surface of IoT architectures, and presents a taxonomy of
the collected results depending on different aspects—i.e., Layers,
Impact, Attacks, etc.—and maps the corresponding research to these
classifications. An empirical overview of the vulnerabilities is also
presented, and the survey concludes with a presentation of the
most important security challenges, paired with possible future
initiatives to fight against each one.

These threat analyses cover a wide range of the possible threats
concerning IoT infrastructures and products. Taking them into con-
sideration, in Section 3 we create a picture of the baseline security
requirements, and consequently the security measures that need to
be in place in order to protect IoT deployments from such threats.

2.2 Artificial Intelligence-based Approaches
Artificial Intelligence (AI) and Machine Learning (ML) techniques
are employed in a variety of methods for IoT security. Although
manual labour and configuration are not yet fully replaceable in
this domain, there is a number of aspects where AI techniques can
provide great results towards a secure IoT ecosystem. In [5], the use
of artificial neural networks (ANNs) as an intrusion detection sys-
tem to combat DDoS attacks is evaluated. A multilayer perceptron
neural network (MLP) is used to create an anomaly-based intrusion
detection system. Experiments in a custom IoT deployment shows a
great detection rate of 99%, while also providing a low false positive
rate, which is one of the most significant goals of an intrusion detec-
tion system. Other than neural networks, techniques that perform
well into network intrusion detection are 𝑘-NN, Random Forest,
and Support Vector Machines [35, 61].

Local malware scanning is also an aspect where artificial intelli-
gence techniques can be a great supplement to existing signature-
based techniques. While signature-based approaches can protect
against known malware, monitoring behaviour with AI techniques



can often protect against new or unknown malware. In [56] there is
a proposition for the use of 𝑘-NN and Random Forest classification
algorithms on collected traffic data to identify malware with a high
accuracy on standard datasets. The lack of resources in constrained
devices is also addressed, where the solution is to collect application
traces locally, and appoint the model training and predictions to a
capable and trusted external server.

In [56], two unique use-cases are also reported, where ML can
play a significant role in IoT devices. The first is for secure IoT
off-loading as a method to combat jamming and Man In The Mid-
dle (MITM) attacks. Using reinforcement learning, and specifically
the Q-learning technique, the model takes into consideration the
task priority, channel bandwidth, gain, and jamming power in or-
der to decide on off-loading policies according to a Q-value that
indicates the long term reward from choosing this policy. Using
this approach, the device can choose optimal offloading channels
and subbands in order to avoid interference and jamming as well
as spoofing attacks. Convolutional neural networks can also be
used for the same purpose but they require more computational
resources than Q-learning. The second case of [56] regards authen-
tication using ML methods in order to avoid spoofing attacks. By
using physical layer indicators, such as the received signal strength
or the channel state information, learning techniques are able to
exploit the indicators’ connection to spatial characteristics in order
to lure out connections that are initiated from outside a threshold
proximity, reducing this way spoofing rates. Other than Q-learning,
both supervised (distributed Frank Wolfe and incremental aggre-
gated gradient) and unsupervised algorithms (Infinite Gaussian
Mixture Model - IGMM) are used. For more resourceful devices,
deep neural networks can also be applied to further improve the
accuracy rates. IGMM is also reported as a useful algorithm for
authentication by fingerprinting [24], where it is used to validate
the credibility of the device by comparing the IGMM result with an
expected value depending on the device’s nature and shape. With
respect to environmental changes, the model is able to distinguish
a normal from a malicious one.

ML and essentially supervised learning methods usually require
significant volumes of information termed as "Big Data" populating
datasets used in security AI [60]. Information, apart from being
the input that affects a model’s decision, also plays a significant
role in training, improving prediction accuracy and validating its
efficiency. In order to leverage the advantages AI has to offer, we
need to establish a way to collect, clean, and format corresponding
data. An infrastructure for collecting, storing and analysing big
data in IoT systems is presented in [47]. A data collection and
actuation layer is introduced, with the collection aspect comprised
of system- and application-level probes, a probe registry listing
all the used probes, and a data routing middleware to route the
data to the respective recipients. The actuation aspect includes
Security Policy Enforcement where the data collected can be used
to drive security decisions (e.g. disabling a service or closing a port)
and visualizations where collected data and analyses are being
displayed. The infrastructure also offers management agents and
configuration tools.

2.3 Security Evaluation on Existing IoT
Solutions

As IoT continuously evolves, it is useful to frequently perform
security evaluations of widely used IoT platforms, frameworks,
devices, products, and protocols. By reviewing the security controls
in products that are currently in use or available for sale across the
world, we can both see the common trends in security and their
impact, as well as highlight the needs for more robust solutions.

In [9] a survey is presented on the architecture, hardware and
software specifications, and security features regarding authen-
tication, authorization, and secure communications in multiple
IoT frameworks developed by popular vendors. These products
are AWS IoT (Amazon), ARMbed (ARM), AzureIoT (Microsoft),
Brillo/Weave (Google), Calvin (Ericsson), Homekit (Apple), Kura
(Eclipse) and Smart Things (Samsung). Considering the conclusions,
authors compare the chosen security controls and discover trends,
such as the universal use of TLS/SSL and the popularity of AES
cryptography and X.509 certificates.

The security of IoT products created for the Smart Home domain
is examined in [7], including televisions, bulbs, etc. After decom-
posing deployments into 4 parts, namely the device, the mobile
application, the cloud endpoint, and the communications, they pro-
ceed to explore existing research to identify the attack vectors of
each part. These are cross-referenced to a wide variety of home IoT
products. Next, by using the CVSS (Common Vulnerability Scoring
System) standard [33] and associating every product with known
CVEs (Common Vulnerabilities and Exposures) that are publicly
known, they evaluate each product’s security posture.

Meanwhile, there is research focusing in other domains as well,
such as the Healthcare domain, e.g. in [42], where an evaluation
of medical devices’ resiliency is performed to a plethora of attacks
with an emphasis on the significance of cryptography. In the case of
Industrial IoT domain the work of [4] focuses on the security of such
deployments to explore a method of continuous risk assessment.

3 SECURITY AUDITING METHODOLOGY
FOR IOT ECOSYSTEMS

The Internet of Things is a complex ecosystem that consists of mul-
tiple significant components that one should be aware of. Moreover,
as far as cyber-security is concerned, each of these components
introduces its own security concerns resulting to a wider attack
surface. In this section we present a coordinated methodology for
decomposing complex Internet of Things ecosystems into simpler
categories, and identify essential security controls and practices
that should be applied in these components in order to improve the
security of the overall ecosystem.

3.1 Asset taxonomy on a typical IoT Ecosystem
Despite the heterogeneity of IoT ecosystems that are currently
deployed in the real-world, there are some components that are
essentially the same in whichever ecosystem one decides to exam-
ine, and by identifying these components we can create an image
of a typical IoT ecosystem, and this way generalise on its various
assets and functionality. Figure 1 presents a typical IoT ecosystem
and enumerates its basic assets, providing an asset taxonomy; we
identify nine different basic assets, each with a separate role in the



Figure 1: Asset Taxonomy of a typical IoT ecosystem

ecosystem, associated with different stakeholders, and introducing
its own security risks. The asset taxonomy approach is definitely
not new [1]. Our taxonomy, however, takes into consideration the
human factor, as well as further decomposes the platform aspect
for more structured assessment of its parts, distinguishing the fol-
lowing asset categories:

Users. The entities that constitute the end-users of the ecosys-
tem, and who benefit from its use. Users can be individual persons,
organizations, companies, or even whole countries. Apart from
profit makers, this category also includes participants beyond de-
velopment or marketing professions.

Devices. Smart watches and smart home equipment, sensors,
surveillance cameras, and generally low-resource internet con-
nected devices, all fall under this asset category. The devices can
have both sensing and actuating capabilities.

Communication Channels. Communication channels are intan-
gible entities and present the mechanisms that allow the intercon-
nection and communication of users and devices to remote storage
and computation spaces called the cloud.

Message Brokers. The message brokers are entities that reside in
the platform part of the ecosystem and are the main entrypoints
for data coming from IoT devices. The message brokers typically
support many application protocols in order to promote interoper-
ability and allow communication with other IoT devices.

Web Applications. The web applications are the IoT platform’s
entry points for Users, i.e. typical web interfaces that allow logging
in and performing the various actions that each platform provides.
Examples include adding/removing devices, handling data and in-
corporating logic, or exporting respective data from the platform.

Database Systems. The database systems are responsible for stor-
ing data. They can be relational or non-relational, depending on the
platform, and they are key components for various mechanisms,
such as authentication and authorization, data management, and
the provisioning of data to IoT applications.

Internet of Things services/applications. This asset refers to ap-
plications that perform logical operations on data provided by IoT
devices, or databases and output results that benefit the Users. Most
platforms provide a set of predefined services, and some of them
also allow the creation of custom applications which are usually
executed into virtualized environments.

Back-end Servers. The back-end orchestrates the functionality
of IoT platforms. It handles the interconnection and logical opera-
tion of the different assets, specifically the databases, the message
brokers, the web applications, and other IoT services.

Deployment Infrastructure. This layer constitutes the basis of IoT
platforms, either on edge, or cloud level. It refers to the physical
servers where the platforms run, and the network deployment (
routing, DNS etc.) that allows the communication between users
and devices, with the remote platform services. It also provides
connectivity capabilities to the platforms as well as bandwidth
management.

3.2 Asset security requirements and
countermeasures

The assets of this taxonomy can be found in the majority of IoT
ecosystems and can be used to decompose a specific ecosystem re-
spectively, regardless of the different implementation and technical
specifications. Such an approach makes the security assessment
simpler, as it focuses on the sub-surface that a researcher has to
audit each time. Now, each asset should be assessed sequentially
and the methodology should inform the researcher of requirements
that need to be satisfied. Next, recommendations and best practices
can be provided that will make each individual asset, and collec-
tively the whole ecosystem, more secure. The propositions should
provide a secure and trusted baseline that the stakeholders of each
asset can build upon. Overall, there are some security measures
and practices that are applicable to almost any asset category, and
for that reason we discuss them first, in order to avoid repetition.

(1) Keep everything up to date. Commercial systems and
programs are constantly updating with new versions and
patches, often addressing one or more CVEs. Thus, it is im-
portant to update the software versions regularly, since an
internet search is enough for a malicious actor to inspect
and possibly harm a vulnerable system.

(2) Backups. Frequent backups is an essential good practice
that needs to be followed. Source code, database informa-
tion, configurations and other data that might be deleted
by mistake or malice should be kept in separate storage
medium, as backups with controlled access. This allows for
quick recovery of production and even identification of a
vulnerability in the event of a security incident.

(3) Monitoring andLogging.Keeping information about change
in states of assets is important. Logging significant events is
useful for debugging, or, in our case, for inspecting security
incidents. Monitoring is similar to logging, nevertheless pre-
senting results in more intuitive ways (e.g. real-time graphs),
and raising alerts when behaviour deviates. Often, ML tech-
niques build models based on such values to predict and
avoid unwanted situations, such as DoS attacks.



Based on the security control propositions that follow, we have
compiled thorough checklists that summarize these measures.1

3.3 Users
In the ICT domain, the human factor is widely assumed to be the
most weak and exploitable one. The occasions in which the human
factor becomes the reason for a security breach, mainly fall under
three categories: insider threats, careless and unaware personnel
or users, and lack of business security culture/strategy.

One measure that is applied at scale for this type of asset, is
the signing of NDAs (Non Disclosure Agreements), legal contracts
signed by the employees, that forbid them from disclosing infor-
mation regarding the company to third parties, protecting this way
the intellectual property of the organization. Another measure is
the strict access control over the company’s assets; this can be
achieved by monitoring access, logging, and analysis. Company-
wide policies for least privilege and segregation of duties can also
be applied, so that access is given to only the assets that are abso-
lutely necessary for the completion of each employee’s function.
In this regard, AI technology can also contribute through User and
Entity Behavioral Analytics (UEBA), that monitor user behaviour
to identify anomalies and potentially prevent malicious actions.
Tools like IBM QRadar UBA are able to monitor human factor be-
haviour, assign roles and identify role behaviour deviations to alert
on occasions like tool misconfigurations, sharing of credentials, or
admins changing user attributes [39].

Security awareness training is used to cultivate the personnel’s
security culture, awareness of good practices and sense of respon-
sibility. Occasional briefing on security and simulation of attacks
such as phishing from the security teams of companies to the rest
of the teams, can help create good practice habits on the employees
that can collectively improve the security posture of the company.
The power of machine learning can also be leveraged here, as algo-
rithms such as kNN, SVM, Random Forest, Neural Networks as well
as unsupervised and similarity learning techniques perform well
into detecting social engineering attacks such as phishing [6, 43]
and malicious URL links [50, 52].

Regarding management strategies, which are not purely tech-
nical but could improve the security of the company significantly,
responsible vulnerability disclosure programs can be incorporated.
Here, external researchers or regular users that manage to find a
bug in a product can disclose it to the engineering teams of the
product so that it is quickly patched before it is exploited. In such
cases, the individual can be rewarded financially, or in another way,
depending on the severity of the found bug. This gives an incentive
for researchers to disclose the bugs responsibly and not person-
ally profit from them with malicious activities. Another significant
measure is periodic company-wide risk and threat assessment, by
either the company’s internal security team or employment of ex-
ternal “red” teams and penetration testers. Finally, security incident
scenario strategies should be in place in order to define the actions
that will take place in the worst case of a security breach so that
the company can identify a potential security hole, patch it and
recover from the breach as soon as possible.

1https://github.com/EvangelouSotiris/Security-Assessment-in-IoT-
Ecosystems_Summary-tables/raw/master/Summary_tables.pdf

3.4 Devices
The Devices asset consists of every IoT device in the ecosystem.
From a security perspective, the aspects of hardware, software
architecture and physical security of the device should be examined.

Physical security is defined by the controls that exist in place to
protect against malicious activities from actors with physical access.
There are a lot of techniques that users and device vendors can
apply in order to improve the physical security of their product, e.g.
make sure that the device is not accessible, or not leave physical
ports exposed. AI biometric access control to the IoT devices is
encouraged when combined with rule-based access such as pass-
words, as AI substantially improves the accuracy of fingerprint,
facial or iris scans [59]. Additionally, tampering prevention mecha-
nisms [19] should be considered, that make it difficult for someone
to physically tamper the device, e.g. boards encapsulated, or coated
with specific materials such as epoxy or silicone. Security fuses
are also widely used, and they are mechanisms of access control to
the on-chip memory. These mechanisms are usually built in a way
that they destroy stored data in the case that someone attempts
to erase or reprogram them, as can happen for example with UV
lights in semi-invasive attacks. In many cases, tampering detectors
are also installed into the device. This way many types of physical
attacks can be detected and be handled accordingly. Side channel
attacks [8] are also a major threat for embedded devices. Passive
Side channel attacks resort to analysing times, power consumption
and temperature during cryptographic operations in order to iden-
tify properties, algorithms used or even keys. Countermeasures
insert randomness in order to render the analysis useless, by time
skewing, random heating, cache flushing, disabling or bypassing
and many more methods.

Internet of Things devices can also be severely susceptible to
Denial of Service attacks. Vampire attacks [55] attempt to drain the
battery of ad-hoc wireless devices to induce DoS, where the nodes
shut down and do not communicate with the rest of the deployment.
Mitigation controls include the ability to reroute at each node if a
shorter route is known or introducing a no-backtrackingmetric that
ensures the gradual progress network packets and avoids loops. DoS
can also be avoided through frequency hopping, using directional
antennas, or by spectrum spreading [16].

Trusted computing [54] is another aspect of the embedded IoT
devices’ security. Trusted Execution Environments (TEEs) are pro-
cessing units that ensure the protection of included code and data.
Usually this is achieved by dedicated co-processors where security
tasks are being offloaded from the main processor, and secure mem-
ory (dedicated on-chip RAM). Also, since outside the TEE data are
not secure, there should be integrity checks for detecting modifica-
tions while outside. Secure booting is a significant feature of a TEE,
as it verifies an image before it is executed, and in order to be suc-
cessful secure storage of signatures and secure code for verification
must be ensured. Therefore, the keys and signatures are written
into protected read-only memory called hardware root of trust, that
usually is on-SoC (System on chip) OTP (one-time-programmable)
hardware that acts as anchor for the chain of trust.

Firmware updates is another issue that should be addressed.
It is suggested that firmware updates should be encrypted and
authenticated as well as be installed over the air (OTA) via secure

https://github.com/EvangelouSotiris/Security-Assessment-in-IoT-Ecosystems_Summary-tables/raw/master/Summary_tables.pdf
https://github.com/EvangelouSotiris/Security-Assessment-in-IoT-Ecosystems_Summary-tables/raw/master/Summary_tables.pdf


protocol channels. Finally, application whitelisting is a popular
method for avoiding malware installed inside the device. In [21], a
store of binary checksums collected at a clean device state is used
to block untrusted software execution and prevent its spreading.
Malware detection in IoT devices can also be performed by static
analysis of high level features using multiple classifiers like RIPPER,
SVM, neural networks and more [37].

3.5 Communication Channels
Inside an IoT ecosystem, devices need to communicate. The data
exchanged within the communication channels can be sensitive
and private, thus eavesdropping and tampering must be avoided.
Cryptography is the method that is widely used in order to avoid
typical MITM attacks, and Transport Layer Security (TLS) is the
standardized solution for secure encrypted communication. Specifi-
cally, TLSv1.2 and TLSv1.3 are the standardized (defined in RFC5246
[44] and RFC8446 [45] respectively) non-deprecated protocol ver-
sions used at the moment. The use of TLS assures confidentiality,
authentication, and integrity. TLSv1.3 provides faster and more se-
cure communication than 1.2, with more features such as Forward
Secrecy. Lastly, TLS provides the capability for two-way authenti-
cation. Servers carry X.509 certificates to be trustworthy but clients
can also carry certificates signed by a trusted CA. This can be useful
in the ecosystem of IoT in order to authenticate devices that send
data to the cloud applications. When TLS client certificates are not
preferred, the devices can be authenticated through the use of AI
algorithms for proximity-based or fingerprint-based authentication,
where IGMM, Q-learning and neural networks are found to produce
highly accurate results [24, 56].

The use of cryptography, however, presents the engineers with a
significant tradeoff in the case of Internet of Things devices. Over-
heads in time and processing power happen during the calculations
for encrypting, decrypting and key generating and exchanging.
Consequently, there is a need to use lightweight algorithms for
these security tasks that will not compromise the security posture
of a potential IoT device, neither will it compromise the device’s
performance and latency in performing its functionalities.

Starting off with assymetric cryptography, between the two op-
tions in Diffie-Hellman (DH) and RSA, the first is preferred, and
mostly its version leveraging elliptic curves (ECC) and featuring for-
ward secrecy - Elliptic Curves Diffie Hellman Ephemeral (ECDHE).
On symmetric cryptography, AEAD algorithms that encrypt and
authenticate in one pass are gaining popularity, with AES-GCM and
the ChaCha20-Poly1305 combination being the most secure, fast
and least resource intensive options. ChaCha20-Poly1305 is pro-
posed in [10] as the favorable option for smart devices in TLSv1.3,
but in TLSv1.2 AES-GCM is proposed, especially with the perfor-
mance spike in devices with specific instructions for hardware
acceleration in specific cryptographic steps.

Regarding hashing algorithms, the performance evaluation gen-
erally seems to have minimal significance compared to e.g. the
latency and energy consumption of asymmetric algorithms. Nev-
ertheless, in [40] there is a study on hashing algorithms in IoT
platforms and embedded devices, where Blake2 [12] is found to
be more lightweight, energy efficient and fast. Other lightweight
hashing families of algorithms are Photon [23] and Quark [11].

So far, we have assumed that the devices have the capabilities of
establishing a TLS connection with a remote server. In some low-
resourced devices though this is not the case, and the minimum
threshold for TLS-based solutions is 10KBs of RAM and 100KBs of
ROM. In these situations a middleware is needed to provide the
TLS-based communication for the constrained IoT devices [27].

3.6 Message Brokers
Message brokers are the entry points of IoT device data to the IoT
platform, and they usually work with multiple application layer
protocols such as HTTP (REST), MQTT and CoAP. TLS and X.509
certificates are the way to secure communication between devices
and message brokers, as already discussed. If mutual authentication
is configured, this is the asset to perform device authentication and
determine access rights. Otherwise, authentication with passwords
or tokens can also be implemented, where the broker can rely on
the back-end for authentication purposes.

Another security measure that can be typically implemented
here, is authorization and access control, so that IoT devices can
publish to a particular topic, with their data are used by the intended
subscribers alone, and vice versa so that subscribers ensure that
the data originate from specific trusted publishers. Each Message
Queue/Broker server usually provides a certain way of defining
access control and authorization policies, but the two most common
approaches are Access Control Lists (ACL) which are lists that
associate users with permissions and Role-Based Access Control
(RBAC) where roles are associated with permissions and users can
have one or multiple roles, inheriting their permissions. Genetic
Algorithms can be used for role-mining in order to automatically
create roles and define RBAC policies [18]. [28] also presents some
other authorization trends such as UCON (Usage control) which
is used for continuously mutating authorization factors such as
pay-per-view or metered payment situations and CapBAC which
uses tokens to associate users with specific capabilities.

3.7 Web Application Interfaces
Web applications usually are the asset that offer the largest attack
surface since they provide a wide range of functionalities triggered
by user actions, and they are fully visible to the public. There are
numerous ways to “harm” a web application, and there are also
various tools available to help to this end. Here as well, encryption
between users and the front-end is essential.

Awell known category is the injection attacks. This refers to com-
mands being passed to an interpreter or another program, where
part of the commands is derived from user input. SQL, NoSQL,
LDAP, and OS injections belong to this category. User input valida-
tion and sanitation is needed to constrain the choices the user has in
the data entered. Moreover, access control should be implemented
correctly and carefully so that users only have access to authorized
content. The authorization is mostly implemented with middleware
software between function calls that acknowledges whether the
user is authorised to access the functionality after the middleware.
General web application attacks are also relevant here, such as cross-
site scripting, external XML entities (XXEs), information-exposing
error reporting, unprotected assets and more.



The identification of such vulnerabilities is based into detecting
the entrypoints of user input and applying validation and escaping
when this input is going to be used into HTML, CSS, Javascript
and generally any interpretable content, or using modern frontend
frameworks that tend to provide automatic sanitization e.g. Angular.
The use of security tools for web applications testing is applicable
here as well, such as Arachni, OWASP ZAP, W3af and Wfuzz. Fi-
nally, web application firewalls can help mitigate lots of attacks
through a mixture of the traditional signature-based approach and
supervised or unsupervised Machine Learning techniques to handle
unknown injection attacks [22, 31].

3.8 Database Systems
Databases are the assets that hold the majority of the data of the IoT
ecosystem, as well as the functionality to access it. The information
stored should be protected in terms of confidentiality and integrity.
Starting with the SQL injection vulnerability mentioned previously,
stored procedures was proposed as a way to limit outer effect to
internal queries. Access control in query capabilities is also essential.
The user that makes the queries should not be ‘root’, but should only
have restricted authorization. Furthermore, the databases should
not be directly exposed to the internet where remote malicious
actors could potentially gather information, as well as send payloads
for penetration testing.

Data, and essentially sensitive data should be protected, e.g. in
the incident of an information leakage; credential information such
as passwords should be hashed, and the authentication should be
performed by comparing the hash of the password given by the
login form with the password hash located in the database, so that
even if the case that this hash is leaked, the malicious actor cannot
discover the original password without bruteforcing. Additionally,
the whole database could be encrypted though that does come with
a trade-off in the latency (and potential insecurity) that the middle-
ware application that encrypts and decrypts the data introduces.

Cryptographic key management is also an issue that should be
tackled in the database asset level. Private, Symmetric and Hash
keys that are used to encrypt, decrypt or digitally sign data need
to be kept on a secure storage where they are accessed only by
authenticated users, mostly developers. First and foremost, these
keys should not be kept in the database with the data they protect,
and if possible not even in the same server. In the case they are
placed in the same server, they should be given appropriate read-
write-execute permissions. A solution heavily proposed, although
expensive, are Hardware Security Modules (HSMs) which are hard-
ware solutions for keeping keys and performing cryptographic
tasks for the server.

3.9 Processing Services
The driving force of IoT are applications and services that process
incoming data from the devices and forward results to users, or
other devices and applications. A range of preset applications is
usually provided by the platform to the users, but most of the com-
mercial platforms also allow users to create their own applications,
deploy, and share themwith the community. As with any user input
and especially executable content in this case, several security risks
are posed for the platform and should be carefully handled.

Whenever the execution of a process needs to be controlled,
there is a need for isolated environments, and the solution is usu-
ally through virtualization. These types of environments are capable
of running non-trusted programs or opening non-trusted files that
could potentially be malicious inside a controlled environment with-
out directly affecting the server in which they reside. Containers
are heavily preferred for application deployment as they are fast
to deploy and kill, and easier to control. Containers have some
inherent security characteristics but there is a number of measures
that can be taken to protect the system whenever containers run
non-trusted user code. [53] propose to run containers inside a VM
in order to add the virtual kernel layer of security in the case of a
container escape. Other measures to increase security are running
the programs created by the user as non-root and with least privi-
leges, and in secure minimal container images containing just the
necessary binaries that each program functionality requires. Also,
restricted versions of programming languages are usually employed,
in order to avoid language-specific capabilities such as execution of
shell commands. Lastly, in some cases the spawned services might
attempt to starve the host of resources for prolonged timeframes.
Thus, there should be a time and resource (CPU, Memory, Storage)
quota on the spawned containers in order to avoid this kind of DoS
incidents. Also, the network accessibility of the containers should
be controlled and constrained to the extent possible.

3.10 Backend Servers
Backend is the asset where the functionality of the different parts of
the IoT platform is orchestrated. Data is received there and stored
into databases, or sent to processing services. Also, communications
with the Frontend Web Applications are facilitated to address user
requests. The backend also provides functionality over the Internet,
mostly through Application Programming Interfaces (APIs). Web
application and Database Security have already been discussed in
their respective sub chapters, so here the focus is to the APIs used
either by other assets or external users.

First, the publicly exposed APIs should be protected with encryp-
tion in order to avoid eavesdropping. Also, authentication should
be enforced in order to use the API, usually through API tokens.
Authorization should also be kept in mind since, the APIs must
ensure that the user only accesses and uses the content he is au-
thorized for. The rate of the requests is another factor that needs
to be accounted for in order to avoid DoS situations and make
the API scalable. Rate limiting can be implemented in many ways,
with the most popular being putting the request in message queues
and process each one in a specific rate, or throttling of the user’s
connection (bandwidth limiting) upon detection of surpassing the
request rate. Input parameter validation should be made in the API
requests as with any entry point, using rules to enforce consistency
with the API’s expectations. The validation could be implemented
as a middleware receiving the requests at an API gateway which
could be used for other reasons as well, such as monitoring API
traffic and applying machine learning and AI to find deviations
from normal behaviour and flag possible attack attempts.



3.11 Deployment Infrastructure
A substantial part of the IoT ecosystem is hosted on cloud or edge
infrastructure. Starting from physical security, the infrastructure is
expected to have strict access control with multi-factor authenti-
cation to the machines and other assets, camera surveillance and
a great resiliency to physical disasters. Device and network mon-
itoring is also imperative, with alerts triggered in case of strange
behaviour. Strict control should also exist in the application level,
with secure, authenticated, and authorised management software
on the provider’s side. On deployment, CSPs should ensure VM
quotas are met, and VMs are isolated when the deployment is not
on a dedicated machine.

Cyberthreat detection is also required in order to provide ap-
propriate protection. Multi-technology systems are deployed in
strategic network locations for this purpose, such as Network Intru-
sion Detection systems (NIDS) and Network Intrusion Prevention
Systems (NIPS) that essentially combine the NIDS real-time threat
detection with linkage to firewall rules in order to block those
threats. These systems are based on anomaly detection techniques
to detect deviations from normal behaviour and block untrusted
data packets before they reach the hosts. This approach allows not
only protection against known attacks, which could very well be
avoided by the firewall rules, but also against unknown attacks
in some cases. Many machine learning techniques perform well
in intrusion detection including Neural Networks (CNNs, MLPs),
SVMs, Naive Bayes, Decision Trees and Logistic Regression [14].

Having defined the security controls for each asset in the taxon-
omy, in what follows, we present a metric that can be used to col-
lectively assess the security awareness in large pools of IoT-enabled
devices, in order to highlight the vulnerabilities to be addressed.

4 LACK OF SECURITY AWARENESS RATIO
We hereby define a metric that can be incorporated to show how
well protected an IoT ecosystem is, by examining a number of
indicators that can be retrieved without authorized access to assets.

The data used to compute our metric are collected using Shodan,
a global crawler for Internet-connected devices. It scans global IPs,
collects information such as the organization name, location, do-
main name, open ports, services, and attempts to grab the banner of
the audited services to learn more specific information, e.g. version,
and then map it with specific CVE vulnerabilities. Using Shodan
API, we initially collect information about the number of internet
connected devices globally categorised by country, for the top 200
results, excluding those with population of less than 300,000.

First, we determine the number of devices found vulnerable with
specific vulnerabilities with CVE identification numbers. Next, the
weighted sum of them was computed for each country using as
weights their CVSS score, and their exploitability score. From the
calculated vulnerabilities with less than 6.0 CVSS score or Local/-
Physical attack vector were excluded in order to keep only severe
and relatively easily remotely exploitable vulnerabilities. In that
regard, it was assumed that devices with vulnerabilities in that
category would most likely become a cyber-attack target because
of the ease of exploit and impact that a malicious actor can deliver.

Dividing the weighted sum of vulnerabilities per country with
the number of internet connected devices in each, results to a metric

that can indicate how updated and secure against harmful remote
cyberattacks a country’s systems are, and, consequently, assess each
country’s security awareness. This measure is termed as LSAR, for
Lack of Security Awareness Ratio. In theory, high values of LSAR
indicate greater density of vulnerable and exploitable devices in a
group of devices, deeming that group as a more possible target of
malicious actors than one with a smaller LSAR.

𝐿𝑆𝐴𝑅 =

∑
𝑖 (#𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠𝑖 ×𝐶𝑉𝑆𝑆𝑠𝑐𝑜𝑟𝑒𝑖 × 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑠𝑐𝑜𝑟𝑒𝑖 )

#𝐷𝑒𝑣𝑖𝑐𝑒𝑠

where
𝑖 ∈ {CVE-X|𝐶𝑉𝑆𝑆𝑠𝑐𝑜𝑟𝑒𝑖 > 6.0 ∩𝑉𝑒𝑐𝑡𝑜𝑟𝑖 ∉ 𝐿𝑜𝑐𝑎𝑙, 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙}

The resulting LSAR values are shown in Table 1:

Table 1: Top 20 countries by LSAR

0 HTI 1.422832 10 MYS 0.404316
1 UZB 1.164537 11 TWN 0.398422
2 ZWE 0.782047 12 PER 0.397818
3 HKG 0.721822 13 TJK 0.392794
4 ETH 0.636363 14 ZAF 0.379868
5 JOR 0.522041 15 SEN 0.372707
6 PNG 0.455162 16 GTM 0.348438
7 LBN 0.451086 17 CHN 0.331362
8 MRT 0.441238 18 SLE 0.323695
9 KGZ 0.405626 19 BTN 0.321850

Results include the countries with the biggest LSAR metrics,
meaning the countries with the least security preparedness against
known exploits and remote cyberattacks, hence least security aware-
ness. To validate LSAR, we compare it with results from a sur-
vey [13] for the best and worst security in countries. The survey
includes data up to March 2020, which is adequately close to data
collection from Shodan for the LSAR computation (late April, 2020).
In this survey, countries are ranked for the percentage of mobile de-
vices and computers infected with malware, the number of financial
malware attacks, the percentage of all telnet attacks by originating
country, of users attacked by cryptominers, and the best-prepared
countries for cyber attacks.

Combining this survey’s results with LSAR, 65 countries belong
in both of the datasets and thus can be compared. We explore the
correlation between the LSAR feature and the features introduced
by the Comparitech survey. Results are shown in Fig. 2 and Fig. 3,
for the Pearson and Spearman correlation coefficients, respectively.

LSAR has a moderate uphill relationship with cryptomining
attacks (+0.52,+0.54 correlation coefficients). This means that a high
LSAR is correlated with a high percentage of cryptomining attacks.
These, being one of the most popular uses of botnets, tend to target
remotely exploitable devices, in order to amass computing power
for mining operations in blockchain cryptocurrencies.

LSAR has a moderate uphill relationship with financial malware
attacks, malware targeting bank accounts to steal money from
victims (+0.58,+0.46 correlation coefficients). While this correlation
validates the relationship of high LSAR with high percentage of
malware targeting the victim, we require additional data which are
hard to acquire to explore whether this assumption is valid.



Figure 2: Pearson correlation coefficient

Figure 3: Spearman correlation coefficient

LSAR and the best-prepared metric of the Comparitech survey
have a moderate downhill relationship (-0.28,-0.30 correlation co-
efficients), which is expected. This further validates our findings
rendering LSAR as a metric to check the security posture of a sum
of devices, in this case a country. The coefficients are not very
high, which could be explained from the specificity of the use case
of the Shodan findings (external attacks) compared to the best-
prepared feature which is derived from the Global Cybersecurity
Index scores [25]. The GCI score performs a general security evalu-
ation on a country’s cybersecurity including factors such as cyber
crime legislations and information extracted from questionnaires,
hence the index is not fully consistent with our case.

LSAR has a weak uphill relationship with mobiles infected with
malware. Additionally, there is a non-significant relationship of
LSAR with computer malware which could be explained from the

fact that most of it deviates from attacks like phishing, downloaded
malware disguised as a useful program or infected drives. The case
of the Shodan findings is the vulnerability to external cyberattacks
so a huge proportion of the variability that could be explained is
missed, thus the insignificant correlation with mobile and computer
malware. Telnet attacks and LSAR also have insignificant correla-
tion which is explained from the fact that they are bruteforcing
attacks, not CVE-specific exploits.

Summarizing, we can see that even the omission of a simple
activity such as consistent updating of software to secure versions
can compromise the security of a device, and collectively widen the
attack surface of the device’s environment. The LSAR is a metric
that can be used to assess the security posture of a large group
of internet connected devices, owned and handled by different
individuals or organizations by checking the exposure to potential
common vulnerabilities (CVEs). Apart from countries, large groups
of machines/devices could also be considered to be Wide Area
Networks (WAN), geographical regions such as cities, or even large
data centers were the VM could take the place of devices, and in
those cases LSAR can provide a general view of the awareness of
security as well as the density of vulnerable points inside the group.

5 CONCLUSIONS
In this paper, we established a structured methodology towards
assessing the security posture of an Internet of Things ecosystem
and reinforcing it. This is achieved through a divide and conquer
approach where we decompose the ecosystem into the assets that
compile it, inspecting each asset’s attack surface, defining security
requirements, and proposing mitigations or good practices. This
work aspires to become a handy guide for developers, researchers,
engineers or managers working on the IoT domain, and contribute
to the vast research towards secure IoT deployments and products.
Potential future work includes a practical application of the defined
methodology into a real IoT ecosystem focused on a specific use-
case, such as a power-grid or a vehicular Ad-hoc network. Such
an approach could validate the methodology’s applicability and
usability as well as yield potential insecure factors that this work
has not yet taken consideration of.
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