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ABSTRACT
The intensification and expansion in cultivation of olives have con-
tributed to the significant spread of verticillium wilt, which is the
most important fungal problem affecting those trees. Recent studies
confirm that practices such as the use of innovative natural miner-
als (Zeoshell ZF1) and the application of beneficial microorganisms
(Micosat F BS WP), restore health in infected trees However, for
their efficient implementation the above methodologies require the
marking of trees in the early stages of infestation; a task that is
impractical with traditional means (manual labor) but also very
difficult as early stages are difficult to perceive with the naked eye.
In this paper we present the results of the MyOliveGroveCoach
project which uses multispectral imaging from unmanned aerial
vehicles to develop an olive grove monitoring system that is able
to a) collect large amount of data that is particularly important in
relation to the evolution of tree infestation b) quickly detect the
problem, using innovative signal processing methods, multispectral
imaging and computer vision, in combination with machine learn-
ing techniques, providing accurate spatial identification of affected
trees c) guide the farmer / agronomist when required, with a com-
munication and decision-making support system, with appropriate
interventions and providing maps of quantitative and qualitative
characteristics of the grove.

KEYWORDS
Precision Agriculture, Intelligent Management of Agriculture Pro-
duction, multi-spectral sensing, co-registration and fusioning of
multispectral and spectroscopy data in agriculture

1 INTRODUCTION
Olive cultivation in Greece is widespread. Olive groves occupy
an area of 7.16 million acres, numbering about 130 million olive
trees. This represents a large percentage of the total agricultural
land and a very large percentage of agricultural land that would
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be, considering territorial characteristics such as low fertility and
sloping, difficult or impossible to exploit from other crops.

Verticilliumwilt is the biggest fungal problem of olive cultivation.
It contributes to serious reduction in olive productivity, plant capital
destruction and soil degradation. Verticillium wilt causes a gradual
malfunction and eventually a complete blockage of the vessels of
the tree, in part or in whole, interrupting the movement of water
from the roots to the leaves, resulting in interruption of the water
supply in the affected part of the tree. This reduction inwater supply
leads to nutritional deficiencies and even starvation of the leaves.
Before the complete blockage and total necrosis of the affected
tissue associated with the part of the root that has been infected,
there precedes a stage of temporary water stress, a reversible stress,
which is due to the closure of the mouths of the affected plant
tissue [4].

In this stage of temporary stress, a deregulation is caused in
the process of photosynthesis which results in a slight light-green
discoloration of the leaves; a discoloration that is very subtle and
very difficult to detect with the naked eye.

Thermal and multispectral surveying has shown high correla-
tions of leaf’s spectral characteristics to the degree of infestation, as
measured in the 11 point scale of Table 1 [39]. On this basis, using
aerial imaging by unmanned aerial vehicles, we create the platform
“My Olive Grove Coach” (MyOGC)

The main goal of MyOGC is the development of an intelligent
system that will monitor olive groves and support farmers in the
detection and treatment of Verticillium, using multispectral sen-
sors and spectrophotometers. With MyOGC it will be possible to a)
collect important data on the progress of tree infestation b) quickly
detect the problem, using innovative signal processing methods,
multispectral imaging and computer vision, in combination with
machine learning techniques, providing accurate spatial identifica-
tion of affected trees c) guide the farmer / agronomist when required,
with a communication and decision-making support system, with
appropriate interventions and providing maps of quantitative and
qualitative characteristics of the grove.



0 Healthy tree
1 Tree looks healthy (slight crown discolloration)
2 Chlorotic hair (yellow-bronze color)

slight twisting or curving of the extreme leaves
3 Dry inflorescence - inflorescence - dehydration of twigs
4 Drying of a twig or a branch
5 Dry arm - section or half of the tree
6 A main branch or arm of a tree retains vegetation
7 75 % of the tree has died
8 A branch of the tree retains vegetation
9 A small section or a branch of the tree retains vegetation
10 Drying of the whole tree

Table 1: Verticillium infection scale [39]

2 RELATEDWORK
Remote sensing of agricultural crops that facilitate the timely pre-
diction of plant infestation by diseases has developed rapidly. Both
in Greece and abroad, companies have been set up to provide ser-
vices that monitor and support farmers and their fields. Figure 1
presents platforms available to farmers and producers that offer
remote monitoring of their fields and collection of agricultural data
by remote sensing. Figure 2 presents a comparison of some systems
and data capturing sensors that are on the market, available as
commercial solutions for monitoring vegetation and crops.

Apart from commercial applications targeting farmers and other
specialists of the field, there is significant research interest in using
remote sensing data [9, 17, 19, 22, 35] in relation to automating and
facilitating all aspects of crops management, like disease monitor-
ing, predicting and preventing [4, 16], to crops yield monitoring
and optimization [18, 20, 37]

Specific applications include computer vision algorithms target-
ing productivity monitoring through tree counting / tree crown
delineation [9, 17, 22, 36] and health assessment through calcula-
tions of vegetation indices [15, 24].

In the detection and delineation of individual tree crowns, deep
learning and machine learning approaches [6, 22, 36] also exhibit
commendable results. A recent semi-supervised approach [36], em-
ploying a convolutional neural network (CNN), combines LIDAR
and RGB data, yielding similar outcomes with classical unsuper-
vised algorithms. CNNs were also used with multi-spectral imaging
data [6, 33]. In [6], a deep network was employed to differentiate
trees, bare soil and weeds. Li et al. [21] developed a CNN framework
to detect oil palm trees. Even though they provide accurate results,
they need a large amount of training data.

There is also significant research going on the use of visible
and infrared spectroscopy for disease detection in plants in a fast,
non-destructive, and cost-effective manner. The visible and infrared
portions of the electromagnetic spectrum provide the maximum
information on the physiological stress levels in the plants, even
before the symptoms can be perceived from the human eye. Dif-
ferent studies have been conducted for disease detection in plants
using this technology [5, 7, 8].

Lastly, on sourcing data for remote sensing, there exist a variety
of active, passive and mixed sources like GEOSATs, LIDARs and,
more recently, UAVs [11, 14, 15, 35, 37] (Figure 3). Of those three

main sources, non provide a clear advantage, rather they comple-
ment each other on the fronts of cost, resolving power, easiness
of use and other relevant metrics. MyOGC uses Unmanned Aerial
Vehicles (UAVs), recognizing their low cost, ability for regular up-
dates and resolving power as key advantages towards the goal of
early infestation detection.

3 CONCEPTUAL ARCHITECTURE
MyOGC integrated system provides an overall automation solution
for detecting the Verticillium wilt from aerial multi-spectral images.
The basic user requirements for the MyOGC platform is to support
different ways of data insertions, manually from the user or direct
from the camera located to the drone. Thus, it combines Cloud
and Edge Computing technologies, ensuring a highly efficient and
scalable high-demanding data processing system and the execution
of adapted AI prediction models in an embedded platform in user’s
edge devices. The functional module ofMyOGC platform is depicted
in Figure 4.

MyOGC system consists of four main sub systems: a) The Core
has coordination role, it provides the interfaces to the users and edge
devices and it accepts and schedules data processes requests for
execution in the other subsystems; b) The Data Storage combines a
classical RDBMS and File System to store metadata, multi-spectral
images and calculated results; c) Containers Execution Engine initi-
ates containers which execute a specific data processing task during
a data processing pipeline; and d) the Drone which hosts the Edge
device, a Coral Edge TPU device from Google, deployed for execut-
ing region of interest detection and classification tasks.

In the Core subsystem, the Process Orchestrator is the module
that receives input data and requests for processing. Such requests
can be either the process of multi-spectral images of an olive field
and the prediction of the spread of the disease on it, or use the
stored data in order to train the AI prediction models (both cloud
and embedded). According to the request, it selects the appropriate
analysis workflow, it calculates the required resources and proceeds
to create the execution plan. The plan contains the data processes
microservices that must be used and a workflow that defines the
execution order of the analysis tasks. The Process Orchestrator,
coordinates and monitors the analysis workflow initiating each
step and passing the intermediate results between the tasks.

The two interfaces of the Core subsystem are a Graphical User
Interface and a HTTP-based Application Programming Interface
(API). The GUI is the point of interaction of the users with the
system. It is implemented using Python Django Framework and
Angular Js library for the frontend. The user can define fields, upload
new multispectral images of a field, and ask for their processing
while the results are depicted in a GIS-based interactive map. The
HTTP API is mainly used for the interoperability between the
cloud platform and the edge device, the embedded installed in the
drone. The HTTP API uses the GET, POST methods for allowing
the invocation of methods that support various tasks such as image
uploading, new trained IA models downloading, image process
execution, prediction upload, etc.

The Data Storage, as mentioned before, is the centralized sub-
system, responsible to securely store all the data of the MyOGC
integrated system. A RDBMS is used, the proposed approach utilises



Figure 1: Platforms available to farmers and producers for remote monitoring of fields.



Figure 2: Comparison of indicative remote sensing systems
available on the market.

Figure 3: Research by remote sensing source

Figure 4: MyOGC Overall Architecture.

PostgresSQL, for storing users and fields metadata, pre-processed
data, devices connection info, prediction results, etc. On the other
hand, the filesystem is used to save binary files such as the input
and processed images and the AI trained prediction models.

The Containers Execution Environment takes the advantage
of the virtual containers’ technology providing on demand data
process functionalities in a cloud infrastructure. Each container is
independent of computational resources and provides a specific
data analysis task in the notion of the microservices architectural
model [12]. There are four microservices in the MyOGC archi-
tecture: a) the Tree Crown Detection, b) the Vegetation Indices
Calculation, c) the AI Prediction for the Verticillium wilt disease
presence and spread and d) the AI prediction model training. All
these microservices are running independently and they are exe-
cuting specific tasks which are invoked as services by the Process
Orchestrator. The Container Orchestrator’s main role is the in-
stantiation of the appropriate containers to be available for the
execution of an analysis task. It executes a Credit-based algorithm
[27] for scheduling the instantiation of the containers according
to the amount of user’s requests and the available computational
resources of the cloud infrastructure. This approach ensures both
the scalability and the reuse of the cloud resources for serving the
on-demand user’s requests in the most efficient manner.

Finally, the Drone sub-system, aims to bring the intelligence
provided by the AI prediction models near to the user’s main de-
vice. In MyOGC, the drone with a multi-spectral camera, is used
to capture the aerial image datasets. These datasets contain over-
lapping images that can be merged to create a reflectance map,
which is a mosaic of the area of interest where each of pixels in the
image represents the actual reflectance of the imaged object used
for plant health analysis and the detection of the Verticillium wilt
in olive trees. The classic procedure is to upload the images in the
MyOGC platform for further processing and algorithmic analysis.
The MyOGC system provides and additional feature. An embedded
board with GPU capabilities is installed with the camera in the
drone. A compact version of the AI prediction models is installed
in the embedded, which is able to perform the data process anal-
ysis on the spot. The results are sent to the MyOGC platform for
presentation to the user.

4 MULTIMODAL PROCESSING APPROACHES
Plant leaves contain information which is highly associated to their
health. Optical leaf properties such as reflectance and transmittance
are useful in remote sensing techniques for disease detection. They
allow early detection, well before they can be perceived by the
human eye, in a non-invasive manner.

In assessing a plant’s health, the most basic and common metric
used is the reflection of vegetation, i.e the ratio of the reflected
radiation to the incident radiation. An assumption is made that the
reflection of vegetation at a certain electromagnetic wavelength,
or spectral reflectivity, depends on the properties of the vegetation
due to factors such as the type of each plant, its water content,
its chlorophyll content and its morphology [10]. However, there
may be a need to compare measurements that are more related
to biophysical variables than to the spectral reflectivity itself. For



these reasons, Vegetation Indices are often calculated. These indi-
cators are obtained when two or more wavelength bands are used
in an equation to calculate the corresponding vegetation index. In
addition, vegetation indicators can help minimize problems related
to reflectivity data, such as changes in viewing angles, atmospheric
distortions and shadows, especially as most vegetation indicators
are calculated as ratios of two or more wavelength bands [10, 31].
Different vegetation markers use different wavelength zones and
provide information on different biophysical variables [38]. For ex-
ample, one of the most commonly used indicators is the Normalized
Difference Vegetation Index (NDVI). NDVI uses the wavelength
corresponding to the red color band and is absorbed to a very large
extent by the chlorophyll in the foliage of the plants, and the wave-
length band corresponding to the near-infrared (NIR) in which the
chlorophyll shows the most intense reflection

NDVI =
NIR −RED

NIR +RED

NDVI values range from -1 to 1 with the values closest to 1
corresponding to healthier and denser vegetation. NDVI can be
calculated using reflexivity or non-physical measurements for the
wave bands.

Another example where a vegetation index can provide biophys-
ical information is the Green Exceedance Index (GEI), which is
calculated using the red, blue and green wavelength bands. Re-
search for GEI showed that the measured gross primary product in
a deciduous forest was significantly correlated with GEI. Thus, a
specialized vegetation index can be used as a substitute for measur-
able biophysical variables that are important when evaluating the
phenology of a particular site or plant.

Calculation of vegetation indices is usually done on a pixel-by-
pixel basis and is, therefore, very sensitive to even slight image
distortions. In order to calculate the real changes in biochemical and
physiological parameters of vegetation, collected multispectral data
have to be geometrically and radiometrically aligned, calibrated and
corrected, so as to ensure that the pixels in two images represent
the same soil characteristics and the same soil point. Thus, a crucial
part of MyOGC is the correct design and implementation of appro-
priate geometric transformations and spatial-temporal image filters
which include, characteristically, algorithms for image registra-
tion and alignment, image stitching, creation of orthomosaic with
photogrammetry techniques, spectral and luminosity corrections
and noise filtering. Classical computer vision techniques are, in
most cases, adequate for the implementation of the aforementioned
processes.

Another class of processing algorithms relates to the removal
of image noise due to data acquisition and enhancing the distinc-
tion between the objects under detection (i.e. tree crowns) and the
background (i.e. shaded area).

The next stage in processing of the multispectral data concerns
the extraction of useful macroscopic characteristics of the grove, in
an individual tree basis. A key part of this process is the detection
of individual olive trees and the delineation of their crown. This is
achieved by using state of the art classical computer vision tech-
niques [9, 15]. More specifically, MyOGC employs a combination
of pixel-based methods like Local Maximum Filtering and Water-
shed Segmentation and object-based methods (Geographic Object

Based Image Analysis - GEOBIA) to achieve fast and accurate crown
delineation (Figure 9).

A second method is used for the same purpose but targeting a
different platform, an embeddable device tuned for running ML
applications. This device can be mounted on the UAV and connects
to the multispectral sensors, allowing real time processing of the
captured multispectral images. To make possible the on-the-fly
processing of incomplete and noisy data, we use a Convolutional
Neural Network (CNN), a class of NN that is ideal for tasks involving
image segmentation and classification, trained on ground truth data
that where automatically generated from classically processed mul-
tispectral images. The main trade-offs between the simple computer
vision and the CNN methods are on implementation complexity,
accuracy and efficiency. On one hand, the CV approach is much
simpler to implement, shows high and consistent accuracy but is
not efficient enough and therefore not a good choice for embed-
ded devices. The CNN approach, on the other hand, is significantly
more complex and requires much more work to get it to satisfactory
results; furthermore, the accuracy of segmentation is not as con-
sistent as in the CV case and the CNN may need some fine-tuning
and readjustment between runs or between fields. The deciding
advantage, though, of the CNN method is that it gives very good
results when deploying data from fewer or even one band, eliminat-
ing the preprocessing overhead, and making the method suitable
for low power and low memory embedded platforms, especially on
ML-tuned devices that further enhance the efficiency benefits of
the method.

5 MYOLIVGROVECOACH PLATFORMS
MyOGC system consists of two basic platforms: a) the cloud plat-
form that contains the most of the MyOGC subsystems and b) the
edge platform which is an embedded board (Coral’s Dev Board) ca-
pable to execute complex AI and image processing techniques. The
role and interconnection between them is depicted in the Section 2
of the current article.

Cloud platforms GUI is the main access point for the users to
the MyOGC system. It provides the basic authorisation and au-
thentication mechanism and the forms for managing the fields
related meta-data, such as location, photography sessions, owner,
prediction results.

Regarding the last, in order to demonstrate the condition of the
fields to their respective farmers, the platform generated multi-
ple colored layers which are presented as overlays on the original
map of the field. When the end-user decides to spectate a field, the
platform redirects to a specific interactive map screenwhere the pre-
processed orthomosaic with three basic colors (red, yellow, green)
is presented. Green represents healthy trees without phytopatho-
logical stress signs, yellow represents stress which is quantified
by reduced photosynthetic activity of the affected plant’s canopy
and therefore possible onset of disease symptoms and finally red
indicates sick trees and/or ground. The end-user can zoom-in and
out the map, in order to preview every single tree on the map, with
high detail.



Figure 5: MyOGC GUI interactive map where (a) the ortho-
mosaic is depicted as overlay in original satellite field image
and (b) its zoom to the level where the trees are clearly de-
picted .

For the map representation, Google’s Leaflet library was utilized
with Google Map’s satellite image tiles. The overlay is a prepro-
cessed orthomosaic that was constructed with open source pho-
togrammetry software (OpenSFM and GDAL libraries), ensuring
the maintenance of the spectral reflectance accuracy (reflectance
map) and the exact geographical coordinates of the original multi-
spectral images. Consequently, the image is rendered with a level of
transparency, and the map is initialized based on the orthomosaic’s
coordinates. In this manner, only the farmers’ fields which can be
stretched with map zooms, are visualized (Figure 5).

The edge platform used in MyOGC is the “Dev Board” by Coral.
It is a development board for prototyping on-device ML products.
The device’s Edge-TPU is ideal for running embedded ML appli-
cations. In this project a dev-board is employed on the drone in
order to assist and assess the data collection procedure in real time,
bypassing the need for the cpu-intensive and time consuming step
(uploading images to the server and processing), at least for pre-
liminary data analysis. More specifically, algorithms are run on the
dev-board that delineate the olive trees and provide preliminary
info for their health status.
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Figure 6: Typical Reflectance

6 DATA, TRIALS AND EVALUATION
MyOGC uses two main sources of data: a) data from direct re-
flectance measurements on leaves, collected from fields and used
as samples for training the assessment- and prediction- algorithms,
and b) data from aerial surveying with multispectral cameras.

Olive leaves’ reflectance measurements are performed in cer-
tain bands of the electromagnetic spectrum, mainly in the visible
and near-infrared wavelengths. A typical reflectance spectrum of
a healthy plant is shown in Figure 6. The reflectance of healthy
leaves is usually low in the visible spectrum (400–700 nm) due to
the significant absorbance from chlorophyll. Healthy plants have
high chlorophyll concentration since this substance is crucial for
photosynthesis, allowing plants to absorb light energy. Chlorophyll
reflects the green portion of the spectrum, producing the charac-
teristic green color of the leaves. Healthy leaves reflect strongly in
the near-infrared spectrum, as absorbance of infrared light would
cause overheat and consequently damage of the plant tissue.

However, when a plant dies, the process of photosynthesis slows
down, chlorophyll content is reduced, allowing other pigments
to appear. These pigments reflect light on wavelengths which are
perceived as yellow or orange by the human eye. A diseased plant’s
leaves absorb infrared light while they reflect the visible portion of
the spectrum; the plant gradually dries up and eventually dies. It
has been observed that the effect of a disease on a plant changes
its leaf reflectance in a specific manner. Consequently, reflectance
change of plant leaves is correlated to certain diseases. Remote sens-
ing techniques combined with vis/near-infrared spectroscopy are
capable of diagnosing diseases at an early stage without observable
indications, by simply measuring the reflectance of a plant leaf.

When light incidents on a plant leaf, two types of reflectance are
observed, specular and diffuse. Specular reflectance takes place in
the plant epidermis—air interface. Specular reflectance does not con-
tain useful information for the health of a plant as the reflected light
does not penetrate the interior tissue of the leaf and therefore has
not interacted with biochemical constituents (such as chlorophyll,
carotenoids etc.).In contrast, light collected by diffuse reflectance
has interacted with the mesophyll, the inner part of the leaf, where
multiple processes of scattering and absorption of light by its bio-
chemical constituents takes place. Therefore, the light from diffuse



reflectance contains information about the biochemistry of the leaf:
diffuse reflectance plays an important role in determining the health
status of a plant, while specular reflectance acts as noise.

The diffuse reflectance component of a leaf is usually measured
using a spectrophotometer and an integrating sphere. The diffused
reflectance component is diffused inside the integrating sphere,
while the specular reflectance component exits to the outside of
the integrating sphere.

In the scope of MyOGC, leaf reflectance measurements are per-
formed using Lambda 35 UV/Vis Spectrophotometer along with an
integrating sphere and Spectralon as the reflectance standard.

Leaf samples are collected from olive trees infected with verti-
cillium wilt at different stages over a long period of time starting
from March up to June at 15-day intervals. Five leaf samples are
usually collected from randomly selected branches of each tree.
Each olive leaf is mounted in a special sample holder provided by
the spectrophotometer’s manufacturer. The sample holder is placed
at the exit port of the integrating sphere. A light source of wave-
length range of 190 nm to 1100 nm is at the entrance port of the
integrating sphere. We collect leaf reflectance spectra from about
400 nm to 1100 nm, calculate the mean reflectance for each tree,and
perform a first- and a second-order derivative analysis. Due to the
high sensitivity of derivative analysis to noise, a Savitzky – Golay
filter is applied for smoothing the data with a polynomial order of
4 and a frame length of 17.

The first and second-order derivative analysis provides informa-
tion for the reflectance slope in the red-edge position. The slope in
the red-edge is highly associated with the chlorophyll content of
the leaf. If the slope of a leaf reflectance spectrum is low, then the
leaf has a low chlorophyll content. This means that leaf is infected
with a disease or it slowly dies. Peaks in the second-order derivative
are correlated to certain issues such as nitrogen deficiency.

The aerial multispectral images are collected using a Pix4d Parrot
Sequoia camera mounted on a C0 class drone. The Parrot camera is
a multispectral camera capturing images on the four characteristic
bands: green (550nm), red (660nm), red edge (735nm) and near-
infrared (790nm). Figure 7 visualizes a typical drone flight pattern,
at a height of 70m. A sample of the collected images is presented in
Figure 8.

An early processing stage takes place on the dev board mounted
on the drone, providing some real-time preliminary analysis of the
olive grove. Notably, this first analysis includes visualization of
olive trees crowns (Figure 9) and vegetation indices.

6.1 Synthetic Data Generation
The effectiveness of deep learning algorithms significantly relies
on the proper acquisition and manual annotation of a large amount
of good quality data. In many cases, limitations occur that have to
do with the lack of expert knowledge for data labeling, difficulties
in capturing large quantities of data with sufficient variety, or even
the ability to capture good quality data volumes might be extremely
expensive and under privacy restrictions. In such cases, the lack of
real-world data can be tackled by generating synthetic data that
share the same basic characteristics with the real ones.

The use of synthetic data can be twofold. For example, synthetic
data can be initially used to train a deep learning model with the

Figure 7: Typical flight path of a UAV while collecting data
from a field.

(a) (b)

(c) (d)

Figure 8: Sample of raw input images. One image per spec-
tral band, taken at the same time using a multispectral cam-
era. (a) GRE - Green 550nm (b) RED - Red 660nm (c) REG -
Red Edge 735nm (d) NIR - Near Infrared 790nm

intention to use them on real-world data, or even train generative
models that refine synthetic data for making them more suitable
for training. In addition, synthetic data can be used to increase
real-world datasets, or even be generated from existing data using
generative models, in order to produce a hybrid dataset able to effec-
tively cover the data distribution that is not adequately represented
in the real dataset and, therefore, alleviate dataset bias.

In this line of research and due to lack of high volumes of proper
olive tree data in different environmental conditions, generation
of synthetic data is investigated here with the use of Blender tool.
Blender is an open source software for creating 3D environments,
able to run on any operating system and having the ability to
write scripts and addons in Python programming language. In our



Figure 9: Automatic delineation of olive trees (overlay).

Figure 10: Olive trees synthetic data creation chain.

case, scripting was used in the Blender environment for generating
multiple olive trees with great variability. From a single leaf and
the use of specific textures of the tree branches, trunks and the soil,
a close-to-real synthetic tree as well as a number of synthetic trees
were created, using the sequential approach shown in the block
diagram of Figure 10.

Initially, the appropriate textures needed for the olive tree cre-
ation (healthy/ill leaves, branches, trunk), as well as the position of
the soil of the trees were gathered (Figure 11 (a,b)). The 3D model of
the leaf was then produced (Figure 11 (c)), followed by the creation
of the branch by replicating the created leaf model, or combining
multiple leaf models (Figure 11 (d-f)).

Using the created branches and combining them with the olive
tree trunk texture, an olive tree can be created. By replicating the
same methodology a random number of trees can be positioned
onto the given soil, as shown in Figure 12.

7 DISCUSSION AND CONCLUSIONS
Monitoring vegetation using drones can provide important data for
the assessment of the condition of crops. However, it is vital that
data collection with today’s media be done as carefully as possible,
as it will be the basis for future studies of Precision Agriculture
and ecological monitoring. Despite the plug-and-play nature of the
latest generation of multispectral sensors, such as Parrot Sequoia
and MicaSense RedEdge, a number of factors require careful consid-
eration if the goal is to collect high quality data that are comparable
between sensors, geographically and over time.

MyOliveGroveCoach has developed and is implementing a stan-
dard workflow for processing agricultural multispectral data, taking
into account the technical aspects and challenges of multispectral

Figure 11: Olive branch creation procedure, (a) leaves frontal
and back view, (b) leaf texture extraction, (c) leaf 3d model,
(d) branch image, (e) branch texture, (f) final branches.

Figure 12: Creation of multiple trees: (a) olive tree branches,
combined with the trunk texture, produces the tree (d)
placed onto the soil having the texture inherited by (b), with
(b) being the final olive trees’ creation.

sensors, flight planning, weather and sun conditions, as well as
aspects of geographic positioning.

By using multispectral imaging from UAVs and employing in-
novative signal processing methods in combination with machine
learning techniques, MyOGC offers an olive grove monitoring sys-
tem that is useful in the early detection and prediction of verticil-
lium wilt spread, and provides a platform that helps the farmer
asses the condition of their fields through maps of important char-
acteristics of the grove and guides the agronomist through a com-
munication and decision-making support system.
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