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Abstract  
The classification of association dependencies which can take place among multidimensional 

data is presented in the article. The representation of templates of inter-dimensional 

association rules is considered. Generation methods of inter-dimensional and intra-

dimensional association rules are presented. Formulas for calculating objective and 

subjective characteristics of significance of these association rules types are presented.  
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1. Introduction 

Technologies of on-line Analytical process (OLAP) [1, 2] and data processing [3, 4] are typically 
employed in trendy data analysis systems and in decision support systems, that alter additional or less 

effective knowledge analysis. OLAP technology permits conducting user-defined operation like 

consolidation, detalization, data slice, cube rotation et al. At the identical time data processing 
investigates some cumulated hidden knowledge that was unknown before that and will be enough 

helpful within the data analytics process, upon that knowledge is taken from data sheets pre-spawned 

likewise by means that of database management systems (DBMS). One of the foremost common tasks 
of Data Mining is association, that represents detection of regularities between connected objects, an 

example of which can be the rule that event Y follows event X [5]. X is named a condition or an 

antecedent, and Y is named a consequent. Rules of that sort are known as association rules. (Slide 2) 

Data Mining strategies and algorithms [6], together with association rule mining likewise, are 
chiefly supported processing bestowed in tabular type, wherever sets of analyzed knowledge are 

settled either in one column or in one line, so that they add one dimension. But such knowledge 

regularities could happen even in three-dimensional data [7]. If to think about a three-dimensional 
cube rather than relational table data, then an item set for association rule mining may be bestowed as 

a collection of attribute values for every dimension, likewise as sets of values within the plurality of 

dimensions. If strategies and algorithms for association rule mining in relational data are sufficiently 

researched in publications, then for three-dimensional knowledge such strategies and algorithms don't 
seem to be nevertheless sufficiently investigated. 

In [8] the problem of integration OLAP technology with data processing strategies is taken into 

account. Specifically, there have been tries to increase the perform of OLAP and share the distributed 
OLAP server with data processing infrastructure, that resulted in detection of association rules that 

were present in cubes which were known as Association Rule Cubes. In [9] a shot was created to 

summarize data in a cube and to increase OLAP operators by algorithms for association rules mining. 
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A model had conjointly been planned that solved the matter of association rule mining, that conjointly 
extended SQL language by the operator known as META RULE [10, 11]. 

A planned technique of association rule mining in information repositories are often observed, that 

is predicated on the organization of multidimensional data and is capable to extract association rules 

from many dimensions at completely different levels of abstraction [12], further as generalized 
version of association rule mining in OLAP cubes, known as Cubegrades [13]. Finally, attention 

ought to be paid to the approach of directed method of association rule mining in data cubes [14] and 

software system supported it, referred to as OLEMAR (Online setting for Mining of Association 
Rules) [15, 19, 20]. But in above-mentioned works the formalized equipment for sleuthing 

associations in multidimensional data in most cases is taken into account for relative and 

multidimensional models (ROLAP and MOLAP) or for databases in a specific subject. Therefore, it's 
fascinating to develop a lot of general tool for mining of inter-dimensional association rules in 

multidimensional data. 

Data analysis poses new tasks in database technology. Their combination will lead to the second 

generation of database systems, which will allow the creation and management of knowledge bases in 
the same way as in classical business applications. It would be advisable to combine database, OLAP 

and Data Mining technologies in a single information system. Such a system would increase the level 

of intelligence by integrating the aforementioned information technology models. Analysis of the 
sources of information on the research on the integration of OLAP and Data Mining, implemented in 

relational DBMS, allows us to conclude that the solution to this problem is far from being complete. 

Therefore, research aimed at the analysis and integration of these models and technologies is of great 
interest. This will increase the range of tasks of decision support systems created as part of intelligent 

information systems. 

The aim of the research is to increase the level of intelligence of information systems by creating 

an instrumental software system for the automated design of multidimensional databases, methods of 
forming associative rules and their implementation as part of the system, which allows for a much 

lower cost of designing information-analytical systems. 

2. The Research 

The main elements of OLAP cubes are dimensions and measures. Dimension could be a values 
sequence some of the parameters to be analyzed. Samples of dimensions is time, geographic location, 

etc. Typically, dimensions contain extra data that permits users to investigate actual knowledge. 

Values that are obtained at the intersection of cube dimensions and represent quantifying facts are 
referred to as measures. Samples of them could also be sales volumes, product balances, etc. [21, 22]. 

Therefore, flat system is depicted as a hypercube (usually a cube could be a figure containing 3 

dimensions, however during this case the quantity of dimensions could also be larger), whose edges 

are dimensions, and cells are measures. The structure of three-dimensional hypercube is conferred in 
Fig. 1. 

Mathematically the hypercube is suitable to represent by following sets: 

D – a set of hypercube dimensions for a specific subject area: 

1 2{ , ,..., ,..., }niD D D D D , 

where Di – ith-dimension, n – the quantity of dimensions; 

A – a set of attributes (values of elements) of hypercube dimensions: 

1 2 ... ... niA A A A A      , 

where Ai – a set of attributes of dimension Di, that successively are often diagrammatic as: 

, 

where – k-attribute of ith-dimension, m – the quantity of attributes in ith-dimension; 

M – a set of values of hypercube measures: 

1 2 1 2 1 2

1
, ,... ,..., , ,... ,..., , ,... ,...,{ ,..., ,...., }

n n ni i i

l z
I I I I I I I I I I I IM M M M , 

where Ii – attribute index of ith-dimension, n – the quantity of dimensions, 
1 2, ,... ,..., ni

l
I I I IM – l-measure for 

the cube cell with ni IIII ,...,,...,, 21 index,
 
z – the quantity of hypercube measures. 

1 2{ , ,..., ,..., }k m
i i i i iA A A A A
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Figure 1. OLAP multidimensional structure 

 
If to contemplate OLAP cube rather than relational data, then associate item set of association 

rules will represent a collection of values (attributes) of every dimension. Association rules that arise 

in multidimensional data will be classified by the subsequent sorts [7, 23]: 
1. Inter-dimensional association rules – rules between attributes of different dimensions: 

, 

where I, J, K – corresponding indices of dimensions included into the association rule; I, J, K = 1 ... 
n; n – the quantity of dimensions in OLAP cube, DI – Ith-dimension, x, y, z – corresponding indexes of 

dimension attributes, x,y,z=1...mi; mi – the quantity of attributes of Ith-dimension; 
 
– corresponding 

attribute of Ith-dimension. 

2. Intra-dimensional association rules: 

, 
where I=1..n, n – the quantity of dimensions in the cube, x,y,z,v – certain attribute values of Ith-

dimension, x,y,z,v=1..mI, mI – the total quantity of attributes of Іth- dimension. 

3. Hybrid association rules – dependencies between dimensions, but some operands can be 

attributes of the same dimension: 

, 

In the higher than conferred attributes and belong to the identical dimension of OLAP cube that 
has J index [24, 25]. 

Hybrid association rules may be known as repetition association rules in distinction to different 

rules thought of, that essentially represent association rules while not repetitions. 
Since the dimensions of contemporary databases will reach sufficiently massive volumes (up to 

gigabytes and terabytes), association rule mining needs economical algorithms that are ascendible and 

permit to seek out solutions of the task at an inexpensive time. One of such algorithmic rules is 

Apriori algorithm, 1st planned by Srikant and Agraval [16]. Within the original, it's been developed 
for relational databases and permits generating frequent data sets from group action tables. 

The Apriori algorithm uses an iterative approach. Within the start of the algorithm there are one-

element frequent data sets that are denoted as L1. Within the next step L1 is employed to seek out 
frequent two-element sets, from that set L2 is made, that successively is employed to seek out three-

element sets L3, and so on, till all doable frequent k-element sets Lk are found. So as to extend the 

potency of generation of frequent data sets, questionable nonmonotonic property is employed, that 

relies on the subsequent observation: if some data set I isn't frequent, i.e. , then on 
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addition of a specific object i there to, the ensuing new data set additionally won't be frequent: 

. 

Using this property, frequent k-element data sets Lk can be obtained by combining frequent (k-1)-

element sets. Moreover, for some k-element set lk to be included into Lk frequent sets, all of its (k-1)-
element subsets also need to be frequent. If at least one of them is not a frequent set, lk should be 

excluded from plurality of frequent item sets27,28. This observation facilitates creation of plurality of 

candidates for k-element data sets Ck, which will be superset Lk that is obtained by withdrawal from 

Ck infrequent data sets, and it is the result of checking values of support for each candidate ck, (ck ϵ 
Ck). On the basis of the nonmonotonic property set Ck is generated in two steps. In the first step the 

candidate is generated by combining components of plurality of frequent sets Lk-1, where two 

members can be combined if they have k-2 common elements, i.e.: 

 

In the second step elements, that embody rare (k-1)-element data sets are deleted from set Сk. 

Application of higher than algorithm is additionally potential on dimensional data, which can any 

facilitate detection of regularities at totally different levels of abstraction. But it's quite natural that for 
various styles of association rules in OLAP cubes this algorithmic rule can have the suitable varieties. 

3. Inter-dimensional association rules mining 

This type of association rules represents the relationships between attributes of various 

dimensions. Such rules don't essentially need to embody attributes from all existing dimensions. For 
instance, the subsequent inter-dimensional association rules might exist: 

 

In the general case the minimum variety of dimensions in an association rule is two, and therefore 

the most variety is that the actual quantity of dimensions in a cube. I.e. k=2..n, wherever k is the 

variety of dimensions in an association rule, n is the total variety of dimensions in a cube. 

If to put the sign of implication between operands elsewhere, then absolutely other association 
rules will be obtained, which, on the contrary, could have one quantity within the antecedent and 

several other in the subsequent: 

 

and if the quantity of dimensions is quite 3, then the subsequent association rules are often obtained: 

 
in which there are several operands in both components of the association rule. 

To facilitate understanding of inter-dimensional association rule mining method, it's better to 

represent their supposed templates which will dissent from the foundations by the actual fact that 

solely corresponding dimension is indicated in them rather than specific attribute of a specific 
dimension, which may be written generally kind as follows: 

, 

where  – bound dimensions from the set of dimensions, i,j,k,l = 1..n – bound 

quantity of cube dimensions, n – the entire variety of cube dimensions. 

It is possible to find a sufficiently large number of association rules templates from the cube, and it 
would be appropriate to ask how many of them can be found and how to generate all possible 

templates in order to find association rules already based on them with specific dimension values. 

Difficulties in respondent this question are often given by the actual fact that for multidimensional 

cube the entire variety of dimensions will be unknown before. To unravel it, we have a tendency to 
should take into account all potential templates which will arise between dimensions. It is evident for 

three-dimensional cube that there are following templates of association rules between them. 

Rules between two dimensions: 
D1 → D2; D2 → D1; D1 → D3;  

D3 → D1; D2 → D3; D3 → D2. 

Rules between three dimensions in 3-dimensional cube: 
D1 ^ D2 → D3; D3 → D1 ^ D2; D1 ^ D3 → D2; 
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D2 → D1 ^ D3; D2 ^ D3 → D1; D1 → D2 ^ D3; 
The larger quantity of dimensions during a cube, the harder is to seek out all potential templates of 

association rules between them. The look for interdimensional associative rules is mentioned well in 

papers [15, 16]. Currently we are going to show however the characteristics of the importance of 

associative rules are calculated. 

Denote the measurement value in a particular cube cell as , where it – an index of t-

cube dimension. 
Possible values that can be equal to it: 

 , if the tth cube dimension contains a mounted value; 

 , if by the tth dimension aggregation takes place. 

Based on the above, final cube value are denoted as . 

Denote  and . Then support of multidimensional set from cube 

are adequate to the ratio of similar value of the cube measure in the cell having this set to the entire 
cube value: 

. 

In order to feature a particular set to frequent sets, it's necessary that the value of its support is 
larger or adequate to the user-specified value of the minimum support: 

. 

The algorithmic rule for generating all frequent item sets ought to embody generation of k-element 
sets, wherever k = 1..n. The only is generation of single-element sets, since in its implementation it's 

necessary to travel through all values of attribute of every dimension one by one from one another 

while not combining them. Generation of frequent single-element sets will be executed exactly as 

many times as the quantity of combinations with one element , two-element ones , etc. 

During this case generation of frequent sets with the quantity of components that's larger than one 

uses lists of sets obtained within the previous step. A standard list of all frequent item sets in 
multidimensional data forms the idea for generation of inter-dimensional association rules.  

Support for the association rule is up to support of the frequent item beset that it's fashioned. This 

statement becomes apparent because of the very fact that a particular item set forever includes each an 

antecedent and a ensuant of an associate rule. 
Confidence of the association rule multidimensional data can be presented as the ratio of the cube 

meaning for values of dimensions, denoted along within the antecedent and also the ensuant, to the 

collective cube meaning by dimensions, that are denoted solely within the antecedent. Now let’s 
present formulas for data calculating of characteristics of the association rule significance for the final 

case. 

Let AntDim set embody dimensions that within the condition of a particular rule have specific 
values, i.e. they're not collective: 

, 

where Di – dimension, that has index i; i,j,k=1...n, n – the whole variety of dimensions. 

Similarly to the set delineated on top of, it's additionally doable to explain ConsDim set, which is 

able to embody dimensions that have specific values as a consequence of the association rule: 

, 

where l,m,p=1...n. 
One and also the same dimension cannot at the same time be enclosed in each sets, as a result of it 

can not be enclosed to the antecedent and resultant of the inter-dimensional association rule at the 

identical time: 

Ø. 

The above sets give information only about dimensions included in relevant parts of the 
association rule. That is only an association rule template can be formed with their help. So as to 
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create inter-dimensional association rule itself, we'd like sets that contain specific values of 
corresponding dimensions. We tend to decision them hymenopteran and Cons severally. 

Ant set will have the following form: 

, 

where  – value of k-dimension, which can take the following values:  if k-

dimension contains fixed value (  – the quantity of values in k-dimension);  if 

aggregation is carried out by k- dimension. 

Cons set has similar content: 

. 

Similar to support of an item set calculating in multidimensional data, let’s denote the ordered set 

of values of corresponding dimension of a certain cube cell as i: . 

Then the formula for calculating the association rule confidence in multidimensional data in the 
general case takes the following form: 

. 

In its turn, if the ordered set of dimension values in the cube cell, in which its full aggregate is 

located, to mark as ALL: , then formulas for calculating subjective characteristics 

of the association rule significance for the general case will be equal to: 
lift of the inter-dimensional association rule: 

 
leverage of the inter-dimensional association rule: 

 
Generation of all possible inter-dimensional association rules is based on the obtained general list 

of frequent item sets in OLAP cube. 

4. Intra-dimensional association rules mining 

Association rules within one dimension can be found in every dimension which is a part of the 

cube. At the same time one of attributes of the certain dimension may belong to the antecedent, and 
the rest – to the consequent. 

Let's represent the set of corresponding indexes of attributes like Ant and Cons: 

Ant = {х, ...,у}; 
Cons = {z, ...,v}. 

The minimum number of dimension attributes in the rule will be 2 when exactly one attribute at a 

time will be in the antecedent and in the consequent:
 

. 

In its turn the maximum number of attributes can be their total number in the dimension. To obtain 

rigorous association rule, it is needed that there would be at least one attribute in the antecedent and 
consequent, that in this case represents their number: 

 

The majority of obtained association rules will have the following form: 

, 

when there will be more than one attribute of dimension both in the antecedent and consequent. 

Thus, it is possible to generate association rules between the number of attributes of one dimension 
from 2 to m: k=2..m. In order to begin generation of association rules, at first it is necessary to form 

Ant set, and then to form Cons set from the remaining attributes. 
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Ant set can have from 1 to k-1 attributes (j=l..k-1).  In case of rules with the total number of 2 
attributes, Ant can have only one attribute. Forming of Ant and Cons sets will be carried out in the 

following way (by the example of dimension with 5 attributes): 

. 

While alternative extracting of one element of set that will contain all possible combinations 

from k to j, Ant set will be obtained for a separate rule. Similarly, for a particular rule, Cons set is also 

obtained, but combinations are taken from B set, which represents the difference between the total set 

of attributes and Ant set. 

For rules in which the antecedent will contain  attribute: 

 

Thus, the following rules will be formed: 

 

Other association rules can also be generated by the same procedure within І dimension and 

between two of its attributes, in the antecedent of which there will be other attributes. By the method 

described above it is possible to find rules between greater numbers of attributes of a certain 
dimension. 

Association rule support within one dimension will be the ratio of the sum of all measures in the 

dimension under analysis and attributes that belong both to condition and consequence, to the final 
value of the measure (ALL) by the appropriate dimension: 

. 

In its turn, the confidence of the association rule will be equal to the ratio of the amount of 

measures containing attributes of the analyzed dimension, that present both in the condition and 
consequence, to the sum of the measures containing attributes of dimension, which are present only in 

the condition: 

. 

Appropriate formulas for calculating an elevator and leverage can be obtained from the formulas 

for calculating support and confidence. 

However, it should be noted that the formulas described above are not universal yet, since they 
represent only an example of calculating of relevant characteristics of significance for rules within the 

first dimension of a three-dimensional cube at constant values in other two dimensions (a and b 

respectively). The presentation of a universal mathematical apparatus for calculating of characteristics 

of the association rule significance is included into author's further plans. 
As for values of other cube dimensions in such association rules, varieties can exist here. 

Association rules within one dimension can be complete and contextual. 

A complete association rule will represent the relationship between attributes of one dimension at 
final values of other dimensions. I.e. the formulas for calculating of the support and confidence for the 

above example will look like these: 
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Accordingly, incomplete association rule in dimensions by which search of dependencies is not 
carried out will have certain meanings. Formulas for support and confidence calculating of such 

association rules have already been presented above. 

5. Hybrid association rules mining 

The difficulty in hybrid association rules mining lays particularly in that some operands belong to 
one dimension, i.e. it is necessary to check the dependencies not only between data of different 

dimensions, but also between data within the same dimension. 

In the presence of repetitions of the same dimension among data in operands of the association 

rule, there can be two cases: 
1) operands with attributes of one dimension refer to one part of the rule (condition or 

consequence); 

2) operands with attributes of one dimension refer to different parts of the rule, which means 
existence of an association rule within the same dimension inside hybrid association rule. 

It should also be noted that the number of dimensions, that have more than one attribute among 

operands of the rule, may be multiple. 
Generation of hybrid association rules should be carried out in two steps: 

1) search for dependencies between dimensions; 

2) search for dependencies within one dimension. 

Dependencies between dimensions can be represented in the form of templates of the following 
form: 

. 

By substituting specific attributes into dimensions, corresponding instances of association rules 

will be obtained. 
In its turn, search for dependencies within one dimension is carried out among data included in the 

set of attributes of corresponding dimension. In this case the number of operands in such association 

rules can range from 2 to the total number of attributes in the dimension: 

. 

Development of methods for hybrid association rule mining is also included into author's further 
plans. 

 

6. Generation of Asociative Rules in OLAP Cubes 

As modern databases can be very large (up to gigabytes and terabytes), you need efficient 
algorithms to find reflection rules that can be scaled up and that will allow you to find a solution 

within a reasonable time. 

One such algorithm is Apriori, first proposed by Sricant and Agraval [26]. Originally it was 
developed for relational databases and allowed the generation of frequent data sets from transaction 

tables. 

Frequent subject set in multidimensional data means a set of attribute values for the relevant 

measurements, the value for which is below the threshold for the minimum support value, which is set 
by the end user based on his own experience. 

When setting the task of searching for frequent subject sets in multidimensional data, the following 

feature can be highlighted: in the OLAP cube, you can find such frequent sets that belong to 
completely different sets. This is due to the fact that when considering multivariate data, completely 

different dimensions of the cube are processed and then their combinations are combined. 

This results in frequent subject sets from data first with one dimension, then with two, etc. Finally, 

frequent subject sets can be found with n dimensions, where n is the total number of measurements in 
a cube. 

In general, let the set of all frequent sets of topics in the OLAP cube be a set of S:  
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},...,,...,,{ 21 ni SSSSS  , 

where i is the number of elements in a subject set, Si is a lot of frequent subject sets with the 

number of elements and, n is the total number of elements in a cube. 

In turn, sets of S1, ..., Sn contain different subject sets for each of the measurements or sets of 
measurements if the number of elements in the set is greater than one. 

In other words:  

},...,,{ 211 nsssS  , 

where s1 is a set of frequent single element subject sets in the first dimension of the cube, s2 in the 
second dimension and sn in the n dimension. 

In turn, many two-element subject sets can be presented as follows:  

},...,,{ 13122 mnsssS  , 

where s12 is a set of frequent subject sets for the first and second dimensions, s13 for the first and 

third dimensions, m ≠ n. 
Let k be the number of elements in the subject set. So, in general: 

 

k
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
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It is clear that when creating frequent OLAP cube subject sets, they will not include all the 

elements included in the corresponding cube measurements. To include an element or a collection of 
them in such sets, you must first calculate the support for that collection. 

It is proposed to create a frequent subject set in the form of a list, where the first element is a 

sublist containing the sequence numbers of cube measurements according to which the set is 
generated [24]. in a single element set, such a list contains only one element. This sublist in the first 

element in the further generation of associative rules based on subject sets is necessary to identify the 

measurements for which all sets have been created. 

All subsequent items on the list, i.e. from the second to the last item, will contain information 
about the specific item set found. 

In general, the list should be in the following format: 



  
      

z

z

k

kzzz

k

k

k

k SuppvalvalvalSuppvalvalvalididid &,...,,,...,&,...,,,,...,, 2111211121
, 

where k is the number of elements in the subject set, idi is the ordinal number of the i-th cube 
measurement in the corresponding subject set, valij is the value of the i-th cube measurement attribute 

in the corresponding j-th subject set, Suppj is the value of j-th subject set support, z is the obtained 

number of frequent subject sets. 
Cube elements id1 ..., idi ..., idk play the role of so-called keys which are used to obtain values in 

subject sets.  

The next step is to create frequent two-element subject sets, whose elements belong to different 

dimensions of the cube. This generation is done on the basis of already generated single element sets 
used as function parameters, actually generating sets of two elements. 

When one of these sets is obtained from two sets of one element, the following procedure must be 

followed: 
1. Find the measurement identifiers of one and two single-element sets (id1 and id2 

respectively) by extracting them from the first elements of the respective lists:  

 

;&,...,&, 111111 
  

z

zz SuppvalSuppvalidlist  

.&,...,&, 212122 
  

z

zz SuppvalSuppvalidlist  

then, based on id1 and id2 values, a corresponding list of measurement identifiers must be 
generated and included in the new subject set in the future: 

., 21  ididDimId  
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Next, a blank list of candidates must be created for frequent subject sets and a Cartesian work 
operation must be performed for two sets of one element, respectively transferred as arguments (i.e. 

list elements start with the second, etc.). The result of this operation must then be placed on the 

candidate list: 

.212,1 LLL   

The L1 and L2 sets will contain the corresponding measurement values in the single element sets: 

};,...,{ 1111 zvalvalL   

}.,...,{ 2212 zvalvalL   

This means that in order to obtain these sets, it is necessary to analyse list1 and list2 list elements 
starting from the second as rows, rejecting the value that is saved after the "&" sign. 

As a result, the list of candidates for frequent recruitment will look like this: 

.,,...,,, 2122112111  zz valvalvalvalvalvalcands  

At this stage, the value for maintaining candidate recruitment is not calculated. 

2. Create a list from the list of candidates for frequent sets, by calculating a value to support 

each set. The new list will include sets that have less than the minimum support. The first element will 
be the dimId list. This is to ensure that all frequent sets lists, regardless of the number of elements in 

the received sets, have the same format already mentioned above, since the corresponding list of 

frequent two element sets will be used as a parameter in the generation of three element sets. 

Thus, the current list will enter approximately the following type (excluding sets whose support is 
below the minimum value): 

 zzz SuppvalvalSuppvalvalDimIditemset &,,...&,, 2112111
. 

Generation of sets from one and two elements was considered separately and is performed using 

algorithms that are not similar to the algorithm of generating frequent subject sets where the number 
of elements exceeds two. From three elements and so on until the maximum number of elements in a 

set corresponds to the total number of measurements in a cube, the generation of frequent subject sets 

is done on the same principle. 
Consider the generation of sets with k elements from the OLAP cube (k = 3 ... n). This procedure 

is only possible when sets with k-1 elements have already been generated, as it is done with two 

different sets, the number of elements in which is less than one element. Through a single list format, 

regardless of the number of elements in the sets, their first element is a list containing the identifiers 
of the measurements for which the respective sets have been created. A precondition for the 

possibility of generating one set with k elements from two sets of k- 1 elements is a common 

dimension or a combination thereof (if k> 3), which have both sets with k-1 elements.  
Thus, when generating a set with k elements, two sets of k-1 elements are used, as mentioned 

above, connected by one set of k-2 elements, the measurements of which are common to both. 

For clarity and user-friendliness, we present a generation algorithm of k-element sets in the 

example if k = 3, i.e. two sets of two elements and one set of one element are needed for the 
generation. For values of k that are different from 1 and 2, this algorithm will work similarly. 

Let us denote lists containing two-element sets as list1 and list2, and a list from a single-element 

set as sublist. Let a, b, c represent the variables whose values correspond to the measurement 
identifiers that will be included in the new generated set. Regardless of the number of elements in the 

sets, their first element is a sublist that contains the measurement identifiers for which the 

corresponding sets have been created. These lists will therefore be approximately the same: 

;&,,...,&,,, 1111 
  

x

xbxaxba SuppvalvalSuppvalvalbalist  

;&,,...,&,,, 1112 
  

y

ycybycb SuppvalvalSuppvalvalcblist  

.&,...,&, 11 
  

z

zbzb SuppvalSuppvalbsublist  

The first step of the algorithm is to search for measurement identifiers for the respective sets by 

obtaining the first elements from the above lists. Let us denote these elements according to idlist1, 

idlist2 and idsublist, which in the context of the example in question have the following values: 
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;,1  baidlist  ;,2  cbidlist   . bidsublist  

On the basis of the received measurement lists, a list of measurement IDs of the set sought is 
formed with k elements, which includes all elements of the idlist1 list, and each element of the idlist2 

list is checked, it is already present in the new list, if not, it will be added to it. The list of identifiers 

for the new subject set thus takes on the following form: 
.,,  cbaDimId  

Further consolidation of the two main sets (list1 and list2) with a binder (sublist) has this feature:  

- compared to the list of measurement IDs of the first formation set and the binder set, only the 
first element idlist1 differs from the content idsublist;  

- only the last element of idlist2 differs from the content of idsublist in comparison to the 

measurements of the binder set of the second formation set. 

7. Conclusion and perspectives of further research 

Among multidimensional data similar to tabular one, it is possible to find certain association 

dependencies represented in the form of rules that can be classified as inter-dimensional, within one 

dimension and hybrid. The approach to construction of templates of inter-dimensional association 

rules is proposed by generating all possible combinations of dimensions in OLAP-cube, which allows 
obtaining possible association rules, as well as the approach to construction of association rules within 

one dimension by generating all possible combinations of values of a certain dimension, among which 

search for dependencies is carried out. Appropriate methods have been developed for generating inter-
dimensional association rules and association rules within one dimension. In the future, it is planned 

to study methods of hybrid association rule mining among multidimensional data. 
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