
Guiding Parameter Estimation of Agent-Based Modeling
Through Knowledge-Based Function Approximation

William Broniec, Sungeun An, Spencer Rugaber and Ashok K. Goel

Design Intelligence Laboratory, School of Interactive Computing, Georgia Institute of Technology, 85 Fifth Street

NW, Atlanta, GA 30308, USA

Abstract
Parameter estimation is a common challenge in scientific modeling. However, agent-based

modeling offers particular challenges: since the system behavior emerges out of local

interactions among agents, many solutions are computationally intensive and do not scale with

the number of parameters. The challenge is especially acute in interactive agent-based

modeling where the goal is to support humans with little domain expertise. We describe a

knowledge-based function approximation technique for the problem of parameter estimation

in interactive agent-based modeling. Our method uses domain knowledge to decompose a large

parameter search space into smaller and simpler spaces, and ranks the spaces by priority of

search, thereby making the problem more tractable. We describe three experiments for

validating the technique using the VERA system for interactive agent-based modeling.

Keywords 1
Parameter estimation, Agent-based modeling, Genetic algorithms, Optimization, Scientific

modeling

1. Introduction

A common challenge in science is the generation of a model that can explain a set of observed data.

Using a model, scientists can forecast future data and evaluate hypothetical “what-if” scenarios by

altering the values of the parameters of the model [6]. AI has developed many methods to (partially)

automate the process of scientific modeling [e.g., 7]. Recently, with the rise of ML techniques, symbolic

regression has been used to learn both model equations and model parameters from data [25, 26].

Traditionally many scientific models of complex systems were described with differential

equations, for example, the Lotka-Volterra [20] equations for modeling predator-prey relationships in

ecology, the Kermack-McKendrick [18] model of epidemiology, and the Bass [3] model for innovation

diffusion. Over the last generation, agent-based models have become very popular in some scientific

disciplines such as ecology, economics, and epidemiology [5, 23]. While differential equation models

are deterministic and describe system-level behavior of homogeneous populations, agent-based models

are stochastic and describe individual-level interactions among heterogeneous populations [14, 22]. The

parameter estimation problem in agent-based modeling is particularly challenging because the system

behavior emerges out of interactions among a large number of individuals and thus it is computationally

very intensive and scales with the number of parameters.

Given the large dimensionality of the problem, optimization techniques such as genetic algorithms

(GA) can and have been used in conjunction with agent-based modeling to explore the parameter space

and find the best parameter set with respect to the optimization function [10, 19, 28]. However, this is

an incomplete solution because GAs themselves can require a very large number of iterations to

In A. Martin, K. Hinkelmann, H.-G. Fill, A. Gerber, D. Lenat, R. Stolle, F. van Harmelen (Eds.), Proceedings of the AAAI 2021 Spring

Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021) - Stanford University, Palo Alto, California,

USA, March 22-24, 2021.
EMAIL: williambroniec@gatech.edu (W. Broniec); sungeun.an@gatech.edu (S. An); spencer@cc.gatech.edu (S. Rugaber);

ashok.goel@cc.gatech.edu (A. Goel)

ORCID: 0000-0002-0877-7063 (W. Broniec); 0000-0001-7116-9338 (S. An); 0000-0001-7116-9338 (S. Rugaber); 0000-0001-7116-9338 (A.
Goel)

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

converge and thus are computationally very intensive. Bayesian methods too have been used in

conjunction with agent-based modeling so that a priori probabilities of the parameters can help bias the

estimation process. However, this method requires prior knowledge about the probability distributions

of the components being modeled, which is not always available. For example, specification of the

parameters of approximately 1.5 million biological species in Smithsonian Institution’s Encyclopedia

of Life (EOL; eol.org) [21] contain little, if any, information about their prior probabilities.

The problem of parameter optimization is especially acute in interactive agent-based modeling, for

example, when an agent-based simulation platform, such as NetLogo

(https://ccl.northwestern.edu/netlogo/), is used for supporting human learning. This is in part because

of the limited domain expertise of human learners and partly because of a lack of cognitive strategies

to search a complex search space. In fact, recent research suggests that human learners typically struggle

with estimating the parameter values of agent-based simulations [2].

In this paper, we describe a knowledge-based method to guide a GA to convergence in agent-based

simulations for the parameter estimation problem. The research question associated with this effort is:

How can AI techniques be applied to agent-based modeling (ABM) in order to (1) given existing

process model m, induce a model m* such that m* better explains observed data? (2) analyze, ground,

and provide an understanding of the emergent properties of the simulation?

Our method has two phases. First, we develop a categorization of parameters for agent-based

simulations, combining and grouping simulation parameters into four types according to their functions

in the simulation: start-state, isolated, relationship, or object property. Our method uses this

knowledge to decompose the large search space of parameter estimation into smaller and simpler

spaces, and ranks the spaces by priority of search, thereby making the problem more tractable. Second,

in the resulting smaller and simpler search spaces, our technique uses random variables and polynomial

functions that can give a close approximation of the agent-based simulations while being much faster.

We have evaluated our knowledge-based function approximation technique on the Virtual

Experimentation Research Assistant (VERA; https://vera.cc.gatech.edu/) [1], a free, public online

modeling and simulation tool. In this paper, we illustrate the utility of the proposed method on three

models in two separate domains (ecology and epidemiology). We have also evaluated our method with

a simulation taken from the NetLogo standard library (https://ccl.northwestern.edu/netlogo/) for

external validity.

2. Related Work

2.1. Agent-Based Modeling

Agent-based modeling (ABM) is a powerful simulation technique that has seen a number of

applications in the last few years, including applications to understand complex systems and solve real-

world problems [11]. In ABM, a system is modeled as a collection of autonomous individual entities

that simulate real systems by interacting with each other within the environment. ABM serves as a

“virtual laboratory” where alternative traits for key behaviors can be tested by plugging them into the

ABM and testing how well the ABM then reproduces patterns observed in the real system. However,

an important drawback of ABM is its time complexity [23]. Interactions between agents will introduce

at least polynomial time complexity with regard to the number of agents, and interactions with even

higher complexity may also be introduced. Regardless of optimization techniques employed, we

necessarily will need to repeatedly make comparisons between the target data and the proposed

simulation.

2.2. Optimization in ABM

Optimization approaches including genetic algorithms have previously been applied to ABMs to reach

global or near-global optima. However, the use of such metaheuristics in the context of ABM brings

specific difficulties [9, 10, 19]. First, the computation of the fitness function requires the execution of

the interactions among a large number of agents, which implies a high time complexity. Second,

https://vera.cc.gatech.edu/
https://ccl.northwestern.edu/netlogo/

although the property of emergence in ABM is powerful, it does not naturally provide an explanation

for how the result ties back to the parameters. Instead, understanding of the parameters comes from

statistical “sensitivity analysis” that can be used to determine the most important input variables for an

output behavior within the model [15]. It is thus necessary to develop strategies to accelerate the

convergence of the algorithm and to understand the parameters. In this paper, we describe a knowledge-

based approach based on a categorization of the functional roles of the parameters in the simulation to

guide the generic algorithm to address these issues.

3. Virtual Laboratory for inquiry-based modeling

VERA supports inquiry-based modeling by providing learners the authentic experience of scientific

inquiry (e.g., identifying a problem, proposing multiple hypotheses, testing the hypotheses, and

rejecting/accepting the hypotheses) through construction, evaluation, and revision of conceptual

models. Hypothesis testing is particularly important because then learners can take a more active role

in constructing their own understanding in a feedback loop. However, experimenting by running

simulations requires mathematical abilities as well as programming skills because a student should

understand complex mathematics to write code in the simulation language. VERA empowers students

to test their hypotheses irrespective of their mathematical abilities because it can automatically spawn

NetLogo simulations from the conceptual models.

3.1 VERA for ecological modeling

VERA for ecological modeling (or VERA-Eco) enables users to build a conceptual model by adding

biotic or abiotic components and drawing relationships among them on the model canvas. Conceptual

models of ecological phenomena in VERA are expressed in the Component-Mechanism-Phenomenon

(CMP) language [17, 27] that derive from the Structure-Behavior-Function theory of modeling complex

systems [12]. A CMP model consists of components and relationships between components. A

component can be one of three types: biotic, abiotic, and habitat. A relationship relates one component

to another in a directed manner (e.g., component X consumes component Y). Figure 1 illustrates a CMP

model of phosphorus run-off in the Chesapeake Bay; the large oval boxes in the middle depict habitats,

in this case, land and shallow water. (The template on the right depicts simulation parameters and their

values.)

Figure 1: A screenshot of the VERA model editor page.

Following our earlier work [16], VERA automatically translate the patterns in the conceptual models

into the primitives of agent-based simulation of NetLogo. The running of the simulation enables the

user to observe the evolution of the system variables over time and iterate through the generate-

evaluate-revise loops. In this way, VERA integrates both qualitative reasoning in the conceptual model

and quantitative reasoning in the simulation reasoning on one hand, and explanatory reasoning

(conceptual model) and predictive reasoning (simulation) on the other.

VERA thus acts as a virtual laboratory for scientific experimentation. The learner begins with a

question. She then generates (potentially) multiple hypotheses for answering the question. In the

process, the user may consult EOL for inspiration. Next, she elaborates on the hypotheses by

constructing a detailed conceptual model. Then the learner asks VERA to spawn a simulation from the

conceptual model. VERA provides the learner with templates of simulation parameters. The user sets

initial values for the parameters and may again consult EOL for finding the values. VERA now

automatically spawns the simulation and displays the results as graphs, for example, a graph indicating

the changes in populations of various species over time. The learner may now experiment with different

simulation parameters, or revise the conceptual model, or generate an alternative hypothesis.

3.2. VERA for Epidemiological Modeling

At the start of the COVID-19 pandemic, VERA Epidemiology (VERA-Epi) was created to support

agent-based versions of compartmental epidemiology models [8]. Just as with VERA-Eco, users

develop a graphical representation of a model, provide parameter values, and VERA will generate a

subsequent agent-based simulation. The model semantics for VERA-Epi are based on the Harel

statechart [13]; nodes now represent the states of individual agents, and edges represent likelihoods for

those agents to transition between states.

4. Parameter Estimation Method

Figure 2 illustrates our method for automated estimation of the values of the simulation parameters in

VERA. Since the search space for optimizing an agent-based simulation is large, the method uses

parameter categorization to simplify the structure and reduce the computation while preserving its

semantics. Then various functions are applied to approximate the agent-based simulation output. After

the ABM approximation process, a genetic algorithm is used to solve the combinatorial problem of

finding the optimal set of parameter values for different components.

Figure 2: Overview of the proposed method for ABM approximation and parameter optimization.

4.1. Function Approximation

Given a dataset and an existing model, we want to assist human learners in finding the optimal

parameter values that, when used to generate a simulation, yield results closest to that dataset. This can

be formalized as an optimization problem where the inputs are the simulation parameters of a model

and error is the distance between the simulation output and the initial dataset.

Figure 3: Parameter categorization for VERA Ecology

4.1.1. Parameter Categorization

First, a distinction needs to be made between object properties and class properties. Object properties

are concerned with each agent in the simulation, and their values change each tick of the simulation’s

clock based on the agents’ behaviors (e.g., age, location, etc.). On the other hand, class properties are

constant values used to set up the simulation (e.g., starting population, lifespan, body mass, etc.) The

top row of Figure 3 below shows the original parameters used in the agent-based simulation (e.g., start-

state, isolated, relationship parameters) and the derived properties from the original parameters (e.g.,

object properties), color-coded by their category. Here are the descriptions of each parameter category:

• Start-State Parameters: Simulation values that set up the simulation’s starting state, and have

no effect after

• Isolated Parameters: Parameters describing behaviors that only affect an individual agent and

no others

• Relationship Parameters: Parameters affecting interactions among different agents

• Object Property: Each agent tracks these core values internally

This categorization of simulation parameters can be compared earlier work on the use of ontologies

for building agent-based simulations. For example, Benjamin, Patki & Mayer (2006) describe an

ontology of components of an agent-based simulation [4]. In contrast, our work focuses on the

categorization of the functional role of simulation parameters.

The "stacked" parameters with pairs of blocks connected shown in the start-state and isolated

parameters in Figure 3 mean that these pairs of parameters are treated as a single parameter from the

eyes of the simulation. This is primarily driven by the semantics of the user interface. Users may benefit

in conceptual understanding from different wording as it applies to different classes of agents, while

programmatically these two different parameters serve the same purpose or are integrated into a single

value used in the simulation. Measured output values in the simulation are also displayed, and in the

case of VERA-Eco this is simply the count of each agent class. Instead of optimizing each parameter

individually and calculating them repeatedly in the ABM (e.g., "lifespan" does not have to be calculated

over and over), behaviors are simulated using polynomial function approximation.

4.1.2. Random Variables and Polynomial Functions

Using the parameter categorization, an approximation of the agent-based simulation output can be

derived using random variables to model populations of agents and polynomial functions to model agent

behaviors. Using random variable distributions as stand-ins for population groups drastically reduces

the number of computations performed and the memory used. Different populations may be more

accurately modeled by specific distribution functions, but the normal distribution serves as the best

stand-in with an unknown distribution due to the central limit theorem. Therefore, rather than storing

biomass for thousands of individual agents, a Gaussian distribution can be represented using two

variables, the mean and the variance, to describe the biomass for each age. The same process is applied

to represent reproductive interval Gaussians as well.

In the case of Vera-Eco, the simulation initialization (e.g., tick 0) assigns each of the starting

populations a random age from 0 to max age (i.e., lifespan - 1) and sets the initial biomass value for

each population, and the biomass follows a uniform distribution with the mean of initial biomass value

and the variance of 0. Each tick of the simulation, the polynomial functions are applied to these

populations to skew the distribution. For example, in every simulation tick, a certain amount of biomass

is lost from every agent due to its metabolism as determined by its respiratory rate, which will subtract

from the mean while the variance does not change.

However, when there is a relationship between two populations, such as predation, the

corresponding consumption events will increase the average biomass for some predator agents and the

reduction of some prey agents. In this case, the Gaussians are recomputed off the changing values, and

computation of the next behavior proceeds.

4.2. Optimization

To obtain the closest values possible to the target dataset, an optimization algorithm is necessary to test

and evaluate different parameter sets. Scientific models based on differential equations can rely on

regression analysis to achieve this, but agent-based models typically lack such representations.

Heuristic search is needed to explore the space, and due to the highly combinatorial nature of estimating

parameters, genetic algorithm was selected. Figure 4 shows a standard genetic algorithm representation.

The process begins with a set of individual members of a species which is called a Population. A species

is characterized by a set of parameters (also known as genes) that together determine the dynamics of

the individuals of the species (also known as a chromosome).

Figure 4: A standard genetic algorithm representation and process

The population of chromosomes is initialized randomly. Each chromosome is then evaluated using

the difference between the simulation approximation and the target dataset as a fitness evaluation. A

selection is made among the population of chromosomes based on these scores, and we obtain a new

population named parent population. Recombination (also known as crossover) and mutation operators

are then applied to this population which yields new sets of parameter values to continue the process.

4.2.1. Fitness Function

To evaluate how “fit” the simulation output r is with respect to dataset d, we compare the similarity

between the two sets of output data. Multiple methods including simple Euclidean distance can be used,

but we used dynamic time warping (DTW), which is a robust, simple, and efficient measure for

computing the dissimilarity between two time-series datasets [24]. DTW belongs to the group of so-

called elastic dissimilarity measures and works by optimally aligning (or ‘warping’) the time series in

the temporal dimension so that the accumulated cost of this alignment is minimal. In its most basic

form, this cost can be obtained by dynamic programming, recursively applying:

 𝐷𝑖,𝑗 = 𝛿(𝑥𝑖, 𝑦𝑗) + 𝑚𝑖𝑛(𝐷𝑖,𝑗−1, 𝐷𝑖−1,𝑗, 𝐷𝑖−1,𝑗−1) (1)

for i = 1,...,M and j = 1,...,N, being M and N the lengths of our two time series (here the dataset and the

new parameter set). As we are using distance as a fitness measure, we used negative distance to

represent the fitness of the solution (larger fitness measure means better solutions).

5. VERA Ecology Results

Using the genetic algorithm to optimize over the combination of random variables and polynomial

functions to approximate our ABM, we get results faster by orders of magnitude at the cost of some

accuracy. In Figure 5, Graph (a) below shows a synthetic target dataset and simulation output graph of

a simple VERA-Eco model, and Graph (b) shows the same simulation with parameter values

randomized. This basic simulation consists of sunlight, two different plants, and a species of bug that

consumes both of them. While both graphs show roughly the same pattern for the blue, orange, and

grey lines, the population shown in yellow varies drastically. In the left graph, the population rises and

then falls after a few cycles, whereas in the simulation dataset it collapses immediately.

Target Dataset Initial Simulation Trial 1 Trial 2

Bug Tree Kudzu Bug Tree Kudzu Bug Tree Kudzu Bug Tree Kudzu

200 1,000 500 200 1,000 500 200 1000 500 200 1,000 500

145 873 481 145 797 406 210 755 483 147 866 480

1,380 302 337 1,725 112 48 749 283 15,479 992 382 369

1,304 115 12,797 1,479 12 535 1,220 62 13,808 817 190 15,437

1,246 36 13,097 1,099 4 161 4,939 0 4,656 839 87 15,465

6,867 0 1,991 16,694 0 0 9,998 0 933 4,448 1 5,328

18,009 0 13 11,900 0 0 19,067 0 8 10,996 0 408

5,929 0 238 575 0 68 19,992 0 0 12,563 0 340

19,762 0 1 11,655 0 0 20,000 0 0 19,660 0 3

19,999 0 0 3,275 0 1 20,000 0 0 19,997 0 0

(a) (b) (c) (d)

Figure 5: Results of using our methods on the agent-based simulation of VERA. (a) Left-most graph–
Target data d. (b) Middle-left graph–Initial model m. (c) Middle-right graph–Improved model m* on
first trial (< 2 minutes). (d) Right-most graph– improved model m* on second trial (= 2 minutes). In
each graph: the blue line represents the bug species, the orange line represents sunlight, the grey line
represents the tree species, and the yellow line represents the kudzu vine. Sunlight is omitted from
the table due to being at a constant value of 5,000 units in all derivations of this simulation.

Graphs (c) and (d) show the results of two independent runs of our function approximation methods.

Since the mutation, crossover, and selection are stochastic, each run of the simulation yields different

results. In the first graph, the kudzu population (indicated as the yellow line) more closely resembles

that from the target dataset while the valley in the bug population (indicated as blue lines) was absent

due to compounding error in our approximation. In the second run, the bug population resembles the

original dataset even closer.

0

10000

20000

1 3 5 7 9

0

10000

20000

1 3 5 7 9

0

10000

20000

1 3 5 7 9

0

10000

20000

1 3 5 7 9

5.1 VERA Epidemiology Results

To test the domain generality of our technique, we used the same optimization framework in VERA-

Epi that uses an agent-based version of the SIR model of epidemiology, a basic but significant and well-

studied model of disease spread that groups a population into three categories – Susceptible (S), Infected

(I), and Recovered (R) – and provides equations that describe the rates at which the sizes of these groups

change [29]. Traditionally, the parameters of the SIR model are written as beta (β), the disease trans-

mission rate, and gamma (γ), the recovery rate. The user interface of VERA-Epi presents the user with

a larger set of more detailed parameters in the SIR model, but these are reduced to functionally

equivalent parameters. The first step in the optimization process is to classify and group the parameters

according to the categorization.

Figure 6: Parameter categorization of VERA-Epi

 For the VERA-Epi SIR model, we used the same categorization as before to group the

parameters (see Figure 6). The starting population value can be used as the initial state, and the only

object property that needs to be tracked is the health state of the agent (susceptible, infected, or

recovered). The average contacts per day per person is combined with the transmission likelihood per

contact to generate a likelihood that an agent will become infected (corresponds to beta of the ordinary

SIR model). Average recovery time also impacts state by defining the likelihood an individual agent

will recover from infection (corresponds with gamma of the original SIR model).

As we can see, Average Recovery Time is classified as an isolated parameter while Average

Contacts Per Day Per Person and Transmission Likelihood are combined into a single relationship

parameter. This is because agents recover on their own, irrespective of any other agents. However,

agents will only get sick if they come into contact with other agents. Because the agent’s state in this

model is one of several possibilities rather than a numeric value, it cannot be represented by a typical

Gaussian distribution. The distribution selected should be that most appropriate for the target

simulation, and because the SIR model makes no representation of “partially sick” or “partially

recovered”, the simplest solution is to treat each state as simply a separate distribution with zero

variance, also known as the Dirac delta distribution. With the parameter space mapped out and the

distributions known, this reduction can be plugged into the genetic algorithm method explained above.

While the performance gains are not as significant as with VERA-Eco due to this simulation being

simpler, it does reduce the time complexity as a function of simulation size. In effect, this reduction

closely recreates the original equation form of the SIR model, although still operating on discrete units.

6. External Validity

VERA is simply one engine for producing agent-based models. Being able to apply our method to

different types of ABMs would increase the external validity of our methods. The “Rabbits, Grass,

Weeds” simulation from the NetLogo example library [30] was selected for two main reasons. First,

the example was also in the domain of ecology and posited a scenario (rabbits foraging for food) that

could be replicated in VERA-Eco but was written with entirely different simulation code. Second, the

example possessed only a handful of parameters, providing an example simulation more basic than

VERA’s to work with.

Figure 7: (a) Left: The "Rabbits, Grass, Weeds" simulation from the NetLogo example library. This
screenshot shows the simulation interface in action with variable sliders on the left controlling the
different simulation parameters. (b) Right: Parameter map in the "Rabbits, Grass, Weeds" simulation.

The "Rabbits, Grass, Weeds" simulation is a simplified model of a predator and prey between the

rabbits, grass, and weeds. When a rabbit bumps into some grass or weeds, it eats the grass to gain its

energy (see Figure 7). If the rabbit gains enough energy, it reproduces. Otherwise, it dies. This

simulation consists of six parameters: starting number, birth threshold, grass growth rate, grass energy,

Figure 8: Results of Sensitivity Analysis of the different Parameters in the "Rabbits, Grass, Weeds"
simulation. Blue line–Original. Orange line–Estimation. (a) Upper-left graph: Size of the rabbit

0

0.1

0.2

0.3

0.4

0.5

0.6

1

6
4

1
2

7

1
9

0

2
5

3

3
1

6

3
7

9

4
4

2

5
0

5

5
6

8

6
3

1

6
9

4

7
5

7

8
2

0

8
8

3

9
4

6

Starting Population

0

0.5

1

1.5

2

1

6
4

1
2

7

1
9

0

2
5

3

3
1

6

3
7

9

4
4

2

5
0

5

5
6

8

6
3

1

6
9

4

7
5

7

8
2

0

8
8

3

9
4

6

Grass Growth Rate

0

2

4

6

8

10

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Birth Threshold

0

5

10

15

20

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Grass Energy

population. (b) Upper-right graph: Grass growth rate. (c) Lower-left graph: Birth threshold. (d) Lower-
right graph: Grass energy.

weeds growth rate, and weeds energy. Each individual rabbit agent has two variable values associated

with it–current energy and location. If a rabbit finds some grass, it will consume the grass and gain

energy. If the rabbit finds weeds, it will gain no energy. During each tick of the simulation clock, the

rabbits expend a fixed amount of energy, and a rabbit that runs out of energy dies, removing it from the

simulation.

Using the same categorization described in the previous section (see Section 4.1) to break down the

simulation parameters, we get the following map as shown in Figure 7 (b). Grass growth rate, grass

energy, and birth threshold are combined to describe energy using polynomial functions, and energy

and location of each agent are represented as a set of Gaussian distributions. The grass parameters affect

the energy Gaussian of the rabbit population. Location is also a Gaussian distribution in the simulation,

but no parameters in this simulation control the location.

Figure 8 shows four graphs with sensitivity analysis of the different parameters–the blue line being

the sensitivity analysis of the actual simulation and the orange line being that of the approximation. The

x axis for these four graphs are the attempted parameter values, and the y axis is the difference in

distance between the outputs. In other words, it shows how much each parameter affects the simulation

results. For example, starting population (a) and grass growth rate (b) have minor, roughly linear

impacts on the output whereas birth threshold (c) is a sharp cutoff (e.g., if it is too high, rabbits will die

before they have a chance to reproduce), and grass energy (d) has a stair step effect.

7. Conclusion

We have described a knowledge-based method for speeding up the use of GAs for optimizing agent-

based simulations. Specifically, we described a general categorization for classifying simulation

parameters that can be used by other agent-based simulations. This categorization of simulation

parameters complements and supplements earlier research on ontologies of components of agent-based

simulations. The validity of our method was shown by the application examples across domains using

the VERA modeling and simulation platform as well as through an external NetLogo predation model.

Overall, our system works well for decomposing and understanding the semantic characteristics of the

agent-based simulation parameters with exponentially faster results than optimization over the

simulation itself. This affords rapid simulations thereby supporting end users.

The primary drawback to our method is error propagation. With one species or a small number of

relationships, the simulation is near-exact. With more complex simulations running over longer periods

of time, it slowly begins to deviate: some important information may be missing, which can take the

simulation into a completely different course. Therefore, our next step is to develop additional strategies

to reduce the compounding error in our approximation and to apply the method to more complex

examples. Another direction for further work is to conduct a user study to better understand how

parameter estimation can facilitate the process of human learning and scientific discovery.

Acknowledgements

This research is supported in part by an US NSF grant #1636848 (Big Data Spokes: Collaborative:

Using Big Data for Environmental Sustainability: Big Data + AI Technology = Accessible, Usable,

Useful Knowledge!) and the NSF South Big Data Hub.

References

[1] S. An, R. Bates, J. Hammock, S. Rugaber, E. Weigel & A. Goel. (2020). Scientific modeling using

large scale knowledge. In Procs. Twenty-first

International Conference on AI in Education

(AIED’2020), pp. 20-24.

[2] S. An, S. Rugaber, E. Weigel & A. Goel (2021) Cognitive strategies for navigating high-

dimensional parameter spaces in modeling complex systems; submitted for publication.

[3] F. Bass. (1969). A new product growth for model consumer durables. Management science, 15(5),

215-227.

[4] P. Benjamin, M. Patki & R. Mayer. (2006) Using ontologies for simulation modeling. In Procs.

2006 IEEE Winter Simulation Conference.

[5] E. Bonabeau & C. Meyer. (2001) Swarm intelligence: A whole new way to think about business.

Harvard Business Review 79(5), 106-115.

[6] W. Bridewell, J. Sánchez, P. Langley & D. Billman. (2006). An interactive environment for the

modeling and discovery of scientific knowledge. International Journal of Human-Computer

Studies, 64(11), 1099-1114.

[7] W. Bridewell, P. Langley, L. Todorovski & S. Džeroski. (2008). Inductive process modeling.

Machine Learning, 71(1), 1-32.

[8] W. Broniec, S. An, S. Rugaber, & A. Goel. (2020). Using VERA to explain the impact of social

distancing on the spread of COVID-19. arXiv preprint arXiv:2003.13762.

[9] E. Cabrera, M. Taboada, M. Iglesias, F. Epelde & E. Luque. (2011). Optimization of healthcare

emergency departments by agent-based simulation. Procedia computer science, 4, 1880-1889.

[10] B. Calvez & G. Hutzler. (2005). Automatic tuning of agent-based models using genetic algorithms.

In Procs. International Workshop on Multi-Agent Systems and Agent-Based Simulation (pp. 41-

57). Springer, Berlin, Heidelberg.

[11] V. Grimm, U. Berger, F. Bastiansen, et al. (2006). A standard protocol for describing individual-

based and agent-based models. Ecological modelling, 198(1-2), 115–126.

[12] A. Goel, S. Rugaber & S. Vattam. (2009). Structure, Behavior and Function Models of Complex

Systems: The Structure-Behavior-Function Modeling Language. AIEDAM 23: 23-35.

[13] D. Harel. (1987). Statecharts: A visual formalism for complex systems, Science of computer

programming. 231-274.

[14] E. Hunter, B. MacNamee & J. Kelleher. (2018). A comparison of agent-based models and equation

based models for infectious disease epidemiology. In Procs. AICS (pp. 33-44).

[15] B. Iooss & P. Lemaître. (2015). A review on global sensitivity analysis methods. In Uncertainty

management in simulation-optimization of complex systems (pp. 101-122). Springer, Boston, MA.

[16] D. Joyner, A. Goel & N. Papin. (2014). MILA--S: generation of agent-based simulations from

conceptual models of complex systems. In Procs. 19th international conference on intelligent user

interfaces (pp. 289-298).

[17] D. Joyner, A. Goel, S. Rugaber, C. Hmelo-Silver & R. Jordan. (2011). Evolution of an Integrated

Technology for Supporting Learning about Complex Systems: Looking Back, Looking Ahead. In

Procs. 11th IEEE International Conference on Advanced Learning Technologies, pp. 257-259.

[18] W. Kermack & A. McKendrick. (1927). A contribution to the mathematical theory of epidemics.

In Procs. Royal Society of London. Series A, Containing papers of a mathematical and physical

character, 115(772), 700-721.

[19] J. Lee, T. Filatova, A. Ligmann-Zielinska, et al. (2015). The complexities of agent-based modeling

output analysis. The journal of artificial societies and social simulation, 18(4).

[20] A. Lotka. (1910). Contribution to the Theory of Periodic Reaction. The Journal of Physical

Chemistry, 14, 271-274.

[21] C. Parr, M. Wilson, M. Leary et al et al. (2014). The encyclopedia of life v2: providing global

access to knowledge about life on earth. Biodiversity Data Journal (2).

[22] H. Parunak, R. Savit & R. Riolo. (1998). Agent-based modeling vs. equation-based modeling: A

case study and user’s guide. In Procs. Multi-Agent Systems and Agent-Based Simulation, 10-25.

[23] S. Railsback & V. Grimm. (2019). Agent-based and individual-based modeling: a practical

introduction. Princeton University Press.

[24] H. Sakoe & S. Chiba. (1978). Dynamic programming algorithm optimization for spoken word

recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1), 43-49.

[25] M. Schmidt & H. Lipson. (2009). Distilling free-form natural laws from experimental data.

Science, 324(5923), 81-85.

[26] S. Udrescu & M. Tegmark. (2021). AI Feynman: A physics-inspired method for symbolic

regression. Science Advances, 6(16), eaay2631.

[27] S. Vattam, A. Goel, S. Rugaber et al. (2011). Understanding complex natural systems by

articulating Structure-Behavior-Function models. Educational Technology & Society, 14(1): 66-

81.

[28] Z. Wang & J. Zhang. (2012). Agent-based modeling and genetic algorithm simulation for the

climate game problem. Mathematical Problems in Engineering.

[29] H. Weiss. (2013). The SIR model and the foundations of public health. Materials mathematics.

0001-17.

[30] U. Wilensky. (2001). NetLogo rabbits grass weeds model. Center for Connected Learning and

Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.

edu/netlogo/models/RabbitsGrassWeeds.

