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Abstract
Process industry encompasses the transformation of individual raw ingredients into final products. In-
creasingly, Artificial Intelligence (AI) systems in the industry have led to higher production efficiency,
reduced energy consumption, and safer operations. Despite the high degree of automation, human
intervention and decision-making remain relevant and important to the required operations. In this
contribution, we first present the typical requirements and challenges of applying AI to process indus-
try followed by an overview of Explainable Artificial Intelligence (XAI). Then, we present several theses
on successful adoption of XAI for process industry and consequent research gaps and directions. It is
shown that the application of XAI in process industry is mainly challenging due to a wide array of re-
quirements arising from a diverse set of AI end-users and AI application cases. An algorithm-centered
perspective on XAI research is therefore not enough to address the requirements – future research needs
to focus on the interplay between domain knowledge, human factors, and XAI.
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1. Introduction

Process industry is the branch of industries that deals with turning input materials (not parts)
based on recipes or formulas into products. Examples are oil and gas, chemical, pulp & paper,
metal, cement, or food & beverage industries. The operation of these processes deals with the
day-to-day matters in the production facility: the monitoring and control of the process, the
monitoring and maintenance of equipment, planning and scheduling of the production, and the
continuous improvement of the production process, e.g. by recipe changes or improvement of
the control processes. The production processes in all these industries are highly automated,
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but human operators, engineers, and maintenance staff still play an essential role [1, 2]. For ex-
ample, a control room operator ensures productive and effective operations that meet correct
product quality while complying with operational and business requirements [3]. Gamer et
al. [4] discuss different levels of autonomy in process plants. They point out the contradictory
situation that during stable production, plants operate on a high level of autonomy, and in situ-
ations like process transition, start-up, shutdowns, or process-upset, there is very little support
functionality. However, it is anyhow a popular myth that autonomous systems eliminate the
need for Human-Automation interaction. Examples from other domains show that complex
deployments of autonomous systems such as military unmanned vehicles, NASA rovers and
disaster inspection robots involve people as a critical part of planning and operations [5].

Artificial Intelligence (AI) systems have increasingly proven to be very effective in yielding
highly accurate results in several domains. Machine Learning (ML) models that achieve good
performance with little false positives and false negative results like Deep Learning networks,
Support Vector Machines, or ensemble methods (e.g. Random Forest) are, however, black box
models. Besides their primary output (detection of an anomaly, prediction of an event or failure,
etc.), they deliver negligible insight on how they achieved their results. Even worse, there are
examples of ML models that deliver good performance on training and test sets due to an
unknown bias in the available data, but fail to generalize on deployment. This results in two
problems: (1) the result of the ML model is not trustworthy, and (2) further investigations to
verify, localize, and diagnose the problem that triggered the ML model are required.

Explainable Artificial Intelligence (XAI) is a research area that seeks to address these prob-
lems and thus, has increasingly been gaining interest from a wide array of domains. Due to
a growing demand for making such opaque systems transparent for better understandability
and protection of the rights of end-users [6], XAI has the potential to enable increased adop-
tion and reliability of AI systems. For instance, XAI can help data scientists interpret the inner
workings of black-box ML models, data engineers to identify biases in the training data, or
justify AI decisions to the domain experts, thereby increasing their trust in the AI solution. In
essence, the need for XAI can be broadly categorized into (1) the need for trust and acceptance,
and (2) the need for fairness and compliance.

Given the scale and dynamic nature of operations in the process industry, the capacity for
teamwork between people and AI systems to ensure reliability and stability of production, is
the inevitable next leap forward [7]. As the first step towards teamwork, it is necessary for
AI systems to effectively communicate their goals, intentions and conclusions to the people
who share the ecosystem. A structured approach towards XAI can help lay the foundations
for a future where people work ‘with’ automation instead of working around automation. Few
readers will disagree that deploying ML models for the support of process plant managers
and operators promises to yield considerable improvements with respect to safety and process
efficiency, and subsequently to reduce the consumption of resources like energy and water.

In this contribution, we highlight typical industrial applications of AI, the data used and the
relevant users. Subsequently, we derive research needs and research directions for XAI in the
process industry.



Table 1
Examples of AI applications in process industry operations with associated users, data, and methods.
(RNN: Recurrent Neural Network; KNN: K-Nearest Neighbor; ANN: Artificial Neural Network; SVM:
Support Vector Machine; SVR: Support Vector Regression; RF: Random Forest; IF: Isolation Forest)

Application End Users References AI Methods Relevant Data

Process
monitoring

Operator,
Process engineer,
Automation engineer

[8, 9, 10] RNN, KNN Process signals

Fault
diagnosis

Process engineer,
Automation engineer,
Operator,
Maintenance engineer

[11, 12, 13]
ANN, SVM,
Bayes Classifier

Process signals,
Alarms,
Vibration

Event
prediction

Operator [14, 15, 16] ANN
Process signals,
Acoustic signals

Soft
sensors

Operator [17, 18, 19]
SVR,
ANN, RF

Process signals

Predictive
maintenance

Operator,
Maintenance engineer,
Scheduler

[20, 21, 22] RNN, IF
Vibration,
Process signals

2. Industrial Applications and Users of AI

Table 1 shows examples of AI applied to use-cases from operational activities in the process
industry. This table is not meant as an exhaustive or systematic overview, but should give an
indication of the breadth of use cases, users1, relevant data types, and applied AI methods.

Process monitoring refers to the task of observing the production process in order to de-
tect any problems or upsets. In many plants, time-series data from several hundred signals
i.e. process signals, are theoretically available directly from the automation system. Operators
observe the process over several different process graphics. Process engineers and automa-
tion engineers may even need to monitor even several plants simultaneously. According to the
Abnormal Situation Management Consortium Guidelines [23], information overload, inconsis-
tency and inadequacy can all lead to failures in situations involving human supervision. Not
surprisingly, constantly observing such high volume of data is a mentally challenging task.

ML solutions can help users assess and react to demanding situations. Once a problem or
abnormality in a process or an equipment (e.g. pump or compressor) has been detected, a fault
diagnosis is performed to identify the cause of the problem. Often, additional sensing such
as vibration sensors can enable localization of the problem e.g. leakage in pipe [24]. In fact,
some events that require an operator response such as flaring or foaming happen relatively
frequently. In order for operators to respond better to or even avoid such events, event predic-
tion can help. A soft sensor is a term for data-driven methods that provide predicted values for
physical or chemical properties that cannot be measured directly or constantly.

Compared to the aforementioned use cases, predictive maintenance deals usually with longer
time horizons and address a different group of users. The task is to predict the failure of equip-

1Not every paper mentions the users explicitly – these are derived from our experience in industrial projects.



Figure 1: Comparison of different users with respect to time-pressure and expertise.
A distinction between experienced (Exp.) and unexperienced (Unexp.) operators is also made.

(a) Fault Diagnosis (b) Predictive Maintenance

ment in order to plan and schedule maintenance activities with minimal impact on production.
Obviously, the specific requirements of the corresponding users differ across use-cases. Fig-

ure 1 illustrates a comparison of the different users in two use-cases with respect to use-case
specific expertise of the user and time-pressure demanded by the use-case. For the application
fault diagnosis, it can be distinguished that the process engineer and automation engineer often
deal with problems that affect quality or efficiency on a longer time-horizon and consequently
have more time to respond. Plant operators, on the other hand, must typically respond quickly
to short-term problems, thereby ensuring safe plant operation. While process and automation
engineers have strong theoretic backgrounds, the expertise of the plant operator often heavily
depends on individual experience in the specific plant. In the application predictive mainte-
nance, the maintenance engineer is interested in long term predictions to plan the mainte-
nance activities and has the expertise to judge the correctness of the machine learning output.
Plant operator and scheduler, however, are interested in mid- or short-term failures in order to
incorporate this information in their scheduling decisions and control actions respectively.

3. A Brief Overview of XAI

The body of XAI literature is not only vast but also growing at a fast pace with the terms,
explain, interpret, understand often used interchangeably [25]. To address the lack of trans-
parency in ML and the consequent need for further verification (see Section 1), the XAI research
area, with an overwhelming focus on ML interpretability [26], seeks to make AI systems more
human-comprehensible, thereby enabling trust-building as well as compliance.

The task of making ML systems transparent is inherently difficult owing to high complexity
of the data and computations involved. In fact, formulating a single comprehensive definition
of valid system-human explanations remains challenging [27]. To successfully increase user
trust in AI, the justification provided must match the domain as well as the complexity or un-
derstandability of the user [6]. This has led researchers to address this challenge from different
perspectives, resulting in diverse XAI approaches and consequent explanation types. Several
attempts to provide a taxonomy for XAI methods have already been made (e.g. [28, 29]). Based
on these classifications, the most distinct properties of XAI methods are summarized in Table 2.



Table 2
Summary of important properties of XAI approaches from literature.

Property Types

Interpretability Intrinsic, post-hoc
Scope Global, local
Mode Interactive, static
Supported data types Tabular, image, text, time-series
Mechanism Attribution, surrogate, similarity, prototype, counterfactual

Since there is no one XAI approach that works for all users [28], depending on specific use-case
requirements, these properties can guide selection of the most appropriate approaches.

The majority of XAI research has taken an algorithmic focus [30]. While some ML meth-
ods, such as linear regression, are intrinsically transparent, most XAI methods provide inter-
pretability post-hoc i.e. as an auxiliary component [31]. The methods may also differ in scope
– the model may be explained (global) or a specific prediction (local) or both. The state-of-
the-art explanation mechanisms can be broadly categorized into feature attribution methods,
surrogate models, counterfactuals, representative examples of classes (prototypes), case-based
explanations, causal mechanism (e.g. rules), textual or simply visual. These representations
are, however, not free from overlap – prototypes, counter examples, or feature attributions,
for instance, may be presented in a visual way. Most of these XAI techniques overwhelmingly
cater to specific data types such as images, and thus when applied to time-series data, do not
fully facilitate increased human understanding [32]. For instance, despite LIME [33] being a
popular model-agnostic XAI technique, it was shown to yield poor performance on time-series
data, most likely owing to high dimensionality of the data and its use of a linear classifier. The
shortcomings of these XAI methods for temporal data make them inherently difficult to apply
to most use-cases arising in the process industry.

4. Theses on XAI for Process Industry

This section puts forward theses about the relevance and successful adoption of XAI in the
process industry and the respective requirements from the application domain. In this contri-
bution, they are presented as theses as they require further empirical validation.

Thesis 1: Explainability is critical
Safety is paramount in the process industry and hence, the industry is very risk-aware [34].
The black-box character of many of the methods presented in Table 1, such as deep neural net-
works or ensemble methods, is one of the major obstacles in the application of AI technologies.
It is a known problem in the industry that operators may lose confidence in model-predictive
control and deactivate such solutions [35]. Black-box machine learning models without expla-
nations will very likely share a similar fate. Therefore, for successful adoption of AI systems,
valid explanations must be offered that satisfy the industry expert’s need to justify and prove
resulting decisions taken [7].



Thesis 2: Local explanations are highly relevant
XAI for operations in the process industry should help the end-user of ML to understand
the model and draw conclusions from the prediction. With respect to the available time for
decision-making and use-case expertise in most applications (see Figure 1), the need for local
explanations of predictions is more pronounced. In most cases, ML will not close the loop di-
rectly, i.e., ML will not take decisions and automatically trigger their implementation. Instead,
ML mostly takes the role of a decision support system in industrial use-cases, either highlight-
ing relevant information or recommending a specific decision to the human. The responsibility
to take the decision stays with the human.

Thesis 3: The choice of mechanism is key
The explanations of individual predictions should enable the human to validate the correctness
of the output (e.g., whether there is going to be a quality problem or not) as well as to draw the
right conclusion (e.g. selecting an appropriate action). In many use-cases and for many users,
these two processes need to be performed under considerable time-pressure. When deciding
on a XAI technique, two factors are important: the time to create an explanation and the time it
takes the user to understand the explanation. Whilst the first metric is discussed in some XAI
research, the authors know only one XAI publication [36] that evaluates the time to under-
stand the explanation. Humans have limited resources in perceptual modalities and currently,
there is a gap in understanding how explainability techniques should complement the system-
human communication instead of interfering with it. For example, there has been research on
perceptual modalities indicating that people sometimes divide attention between the eye and
ear better than between two auditory or two visual ones [37]. Understanding which types of
explanations users can comprehend under time-pressure and the appropriate modalities for the
explanation are important aspects when designing XAI systems for the process industries.

Thesis 4: Dynamic and tailored explanations are needed
Suitable explanations are not only dependent on the time available to AI users for decision-
making but also on the AI prediction output and the specific application situation. A static
explanation, that always presents the same explanation regardless of the user’s context, can-
not meet these requirements. One way to address this might be via interactive explanations
that allow users to move from simple, high-level explanations to more detailed explanations,
featuring different types of explanations, will be very beneficial in the industrial context. How-
ever, surprisingly, increased transparency may even hamper people’s ability to detect when the
model makes a sizable mistake and correct for it, seemingly due to information overload [38].
An alternative to dynamic explanations might be to provide non-interactive explanation, but
to choose the type and level of detail of the explanation depending on the user’s context.

Thesis 5: Domain expert and knowledge must take center-stage
In the process industry, for safety and reliability of production, domain expert users have the
responsibility to ensure compliance to industry standards [7]. Thus, the role of AI is largely
to support industrial users in making their final decisions using their expertise and situational
knowledge. Consequently, it is important for AI solutions to not only provide explanations but



also to equip the domain experts with appropriate tools and interfaces to provide feedback to
and modify the AI system, thereby retaining their control. In fact, many view an explanation
as a dialog that enables the user and system to achieve a shared understanding [39]. Such
a shared understanding may also help codify expert knowledge thereby potentially fostering
standardization in the plant and knowledge transfer to the new workforce.

5. Suggested Research Directions

Based on the aforementioned theses, we suggest three directions of research for XAI in the
process industry: user-centered research as an important activity to validate and refine several
of the theses brought forward in the previous section; research on specific algorithms and
methods that address the needs discussed within the theses; and explanations that are dynamic
and derived using multi-mechanisms, in order to cater the varying needs of different users.

5.1. User-Centered Approach to XAI

In the design of automated systems in the process industry, traditionally, the automation is
at the heart of the system with the expectation that the users will adapt to the automation.
It is well known that the success of this approach is limited [40, 41]. Advanced automation
does not necessarily improve operator performance [42]. Human-Centered AI is a compelling
prospect that enables people to see, think, create, and act in extraordinary ways, by combining
potent user experiences with embedded AI methods to support services that users want [43].
It reverses the narrative and treats the users’ needs, goals, and capabilities as the core around
which automation is built.

The act of explanation is inherently social [44]. Irrespective of the explainer being human
or an algorithm (as in XAI), the explanation must be adapted to the context of the recipients
for a successful communication of the explanation. If an explanation is not meaningful to the
user, their perception of the system might be affected negatively [45]. Explanations with too
few details and too much detail can cause users to lose trust in the system [46]. Even the need
for explanations is context dependent. In some cases, explanations have no impact on decision
making [47]. To understand what qualifies as a meaningful explanation to the user, we need
to understand the user and their context.

Methods such as mental model elicitation [48], Cognitive Task Analysis and contextual in-
quiry help us understand how expert users assimilate information and make decisions [49].
Co-creation and participatory design approaches can help customize explanation to specific
domain. A user-centered approach rooted in human factors, cognitive science and user expe-
rience can help engineer user-friendly AI solutions for process industries.

5.2. XAI Methods for Industrial Data

Several popular XAI methods such as SHAP Values [50], LIME [33], or feature importance
plots (e.g., [51]) provide explanations by feature attribution - identifying the features with the
highest relevance. The application of these methods to multi-variate signal data, possibly of
variable length, which is common in process industry applications, is challenging. Although



there exist applications of SHAP and LIME to time-series data, they are typically suited to uni-
variate time-series [52]. Not surprisingly, an evaluation of XAI methods for time-series data
[32] also raises the need for more abstract representations and to develop more sophisticated
approaches to XAI for time-series data.

Both SHAP and feature importance plots rely on varying the input features across the feature
distribution obtained from the data set. Naively applying this to signal data - and individually
changing every point in each signal, will yield samples that are unrealistic or even infeasi-
ble. How that will impact the reliability of the feature attribution remains unclear. LIME and
the related method, Anchors [36] use feature perturbation, varying features in accordance to
the mechanisms of the data-producing domain. However, the question of how to obtain good
feature perturbation distributions for industrial processes that are also within the time require-
ments is an open research question.

Explainability based on case-based-reasoning or prototypes [53, 54] appears to be a better
approach to support ML usage in the process industry. However, the authors are not aware of
any application to multi-variate time-series or even process industry. Model-specific methods
like saliency maps for deep learning networks [55] or shapelet-based explanations [56, 57] for
random forest are interesting methods, if the corresponding ML models are used. For use-cases
in process industry, shapelet-based techniques could be a very interesting approach to create
global surrogate models (for instance, based on decision trees).

Developing approaches that embed domain expertise into ML pipelines (such as TED [6]) can
be very beneficial in the process industry. Whilst such techniques may be difficult to directly
scale to larger datasets, they have the advantage that the resulting explanations are engineered
by the domain experts themselves and are thus, likely to be more meaningful to them.

5.3. Dynamic and Multi-Mechanism Explanations

Different users have varied requirements that are influenced by factors such as time-pressure
and experience. AI solutions need to be put into context for different users and a one-fits-all AI
solution is therefore not sufficient. Dynamic or interactive explanations should allow users to
perform drill-downs or to choose from different explanation mechanisms. According to [58],
this type of XAI is, in general, a white spot in the research landscape. A few examples are [59]
and [31], that mainly discuss requirements. The development of dynamic explanations that
also support or contrast predictions with examples from the historical data is an important
research direction with relevance beyond the application area of the process industry.

6. Conclusion

This contribution has introduced the domain of process industry operations as a challenging
research field for the application of XAI. The field is signified by diverse AI application cases
and end-users who, with varied requirements and expertise, play an essential role in safe and
reliable process operations. These industrial experts require justifications which match their
domain knowledge to support them in making critical decisions and remaining compliant to
industrial standards. When the models are explainable, the AI end-users will be assured that
outcomes are bias-free, safe, legal, ethical and appropriate for industrial settings.



We propose that a multi-disciplinary approach should be taken for successful and sustainable
application of XAI to operations in the process industry. Special consideration needs to be
given to understanding how domain experts operate and to include them in validation of XAI
methods, which also need to be specifically tailored for industrial data. This will require the
cooperation of researchers from AI, user experience, psychology, and process industry experts.
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