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Abstract  
Real time human posture estimation using reduced number of sensors is a challenging and 

highly sought after problem. Various model-based methods have been developed over the years 

in this direction which utilize optical and/or inertial sensor data. Although these methods have 

proven effective in laboratory settings, their applicability in the real world is limited due to the 

difficulty in information gathering, high intrusiveness and higher cost. This non-position paper 

deals with a hybrid approach involving full-body inverse kinematics (IK) and deep learning in 

order to estimate physiologically feasible joint angles in real time, based on orientation 

information from 6 inertial measurement units (IMUs). IK is performed on a kinematically 

constrained 3D human body model, to obtain joint angles of the body model, given orientation 

data of 17 sensors attached to different bone segments of the body. A bidirectional recurrent 

neural network (bi-RNN) is then trained using a newly collected IMU dataset to regress from 

the orientation data of 6 sensors to the joint angles obtained from IK. The training converged 

to a mean squared error (MSE) of 5.98 degrees.  
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1. Introduction and Motivation 

Automated and accurate human motion capturing and analysis is a key requirement in many 

applications such as motion rehabilitation, performance analysis of athletes, ergonomic assessment in 

the workplace, AR/VR applications, etc. Two main types of motion capturing systems being used are  

optical or ultrasound based line-of-sight (LoS) methods that require a fixed marker sensor structure, 

and inertial sensor systems. Although LoS methods capture motion with good accuracy in laboratory 

environments, they lose their applicability in cases of un-constrained free space movement as it is a 

prerequisite of these systems that locations and orientations of their sensing elements (i.e.  cameras) are 

known and invariant. On the other hand, IMU consisting of an accelerometer, gyroscope and 

magnetometer, which detect position and motion by measuring physical quantities like acceleration, 

angular velocity and angular acceleration, are relatively robust in real world environments. The 

commercially available inertial sensor systems for full-body human motion capture consist of around 

20 IMUs. In such systems, individual sensor orientation is obtained by combining accelerometer, 

gyroscope and magnetometer data in a sensor fusion framework, such as Kalman filtering [1]. The data 

from each IMU is applied to a human bio-mechanical model using kinematic equations to obtain the 

position and orientation of the body segments. Xsens [2], which uses 17 sensors to reconstruct posture, 

demonstrated a RMS difference of less than 5 degrees in joint angles when compared to an optical 

position measurement system.  However, the requirement that the subject wears a suit of 17 sensors and 

other accessories makes the system highly intrusive, affecting normal movement. 
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Recently, several studies have been carried out towards achieving real time full-body pose 

estimation using a reduced number of IMUs. In particular, deep learning (DL) based methods have been 

investigated in order to approximate the mapping from raw IMU data to joint angles of a 3D body [3]. 

The major challenge in generalizing the system, as is the case in most DL approaches, is acquiring the 

vast amounts of data representative of all kinds of poses and tasks. This problem becomes even more 

pronounced if the 3D body model, whose parameters being used as ground truths for supervised DL, is 

not kinematically well constrained. To overcome this problem, [3] performs DL on a large synthetic 

dataset, which was collected via forward kinematics on virtual sensors placed on a novel body model, 

and predicting pose parameters from real IMU inputs in real time. However, because of the absence of 

noise and drift from virtual sensor data, the model performance was much better when trained only 

using synthetic data than when trained using real IMU data. We try to address this problem of better 

constraining the 3D body model and accordingly the pose estimation by utilizing the research in the 

field of Biomechanics towards modeling and analysis of human motion. IK can be performed using the 

sensor orientation data to obtain ground truth joint angles with respect to a sufficiently constrained bio-

mechanical model. These joint angles, along with orientation data from a reduced number of real IMUs 

can then be used to train a DL model for pose estimation. 

2. Method 

The experimental methodology is as shown in figure 1. The left most component depicts the 17 Xsens 

sensors placement on the body. Given sufficient data pertaining to various movements, IK is performed 

on the data using orientation values of all 17 sensors to obtain joint angles of the OpenSim body model. 

Then, a bi-RNN is trained to regress from orientation values of 6 sensors (encircled in green) to the 

joint angles obtained from IK. During evaluation, the output (joint angles) from the bi-RNN, 

corresponding to test dataset, is visualized using OpenSim.  

 
Figure 1: Proposed approach involving Inverse Kinematics and Deep Learning 

2.1. Data Collection 

In the scope of the project BauPrevent (more details in Acknowledgements section), wearable IMU 

data collection has already been carried out. Data was obtained from construction workers wearing IMU 

sensors undertaking their usual tasks, as the project focuses on preventive health, specifically for the 

construction domain. 7 hours of data from fifteen different subjects was collected resulting in 143 

different motion sequences and close to a million IMU data frames. Various activities were performed 

targeting specific types of stresses as well as practical tasks from their typical daily routine. The 

following types of activities were recorded: lifting and carrying weights, lifting weights up onto a 

workbench, overhead fastening, plastering, grouting, sweeping, painting, hanging wallpaper and 

assembling/disassembling scaffolding. We utilized the commercially available Xsens [2] system that 

consists of 17 IMUs in total. The raw IMU data was collected along with computed information such 

as sensor and bone-segment orientation and joint angles however, we only use sensor orientation data 

as described in next sections. 



2.2. Inverse Kinematics 

OpenSim [5], the most widely used open-source software package for biomechanical analysis,  was 

used in order to obtain the joint-angle ground truths with respect to the chosen body model by carrying 

out IK. OpenSim through its OpenSense API feature, provides an offline measurement-scaling IK 

pipeline, where orientations of virtual sensors placed on model bone segments are fitted to the raw 

sensor orientations. The model-defined anatomical joints, that represent the movements, were then 

extracted from OpenSim MOT motion files. In order to represent physiologically feasible joint angles 

effectively and efficiently, we chose the body model demonstrated in [4] for our study, which was 

available as an OpenSim model. The model, in XML format, contains all the information needed for 

the biomechanical description of the human body, including body-segments, kinematic constraints 

(joints) and dynamic constraints(i.e. muscles). Since OpenSim models can be freely edited, the number 

of joint parameters can be adjusted according to constraint requirements. In our case this was 

constraining the model for reduced sensor DL. This required using least number of joint parameters 

possible whilst maintaining the most important degrees of freedom (DOF) and allowing effective 

posture representation. Our resulting body model reduced body joint parameters (DOFs) from 165 to 

26, relating to the 13 joints (green dots) depicted on the 3D kinematic body model in figure 1; the 

considered body model [4] has very detailed spine with 126 DOFs having magnitude in the range of 0 

to 4 degrees mostly (as observed), of which only 4 DOFs are considered. The 26 parameters thus 

obtained are the ground truth values for training the bi-RNN. 

2.3. Deep Learning 
 

The model architecture and the training methodology employed is similar to that demonstrated by [3]. 

A two-layer bi-RNN, each with 512 LSTM units, was trained using the sensor orientation and joint 

parameter data discussed in sections 2.1 and 2.2. The sensor placement was similar to that of [3], 

however, unlike their approach, which used sensor orientation as rotation matrices and acceleration as 

additional input, only sensor orientation as quaternions was used in our study; provided that the 

acceleration data is often too noisy, is already incorporated through sensor fusion, and that the OpenSim 

API doesn’t require it for carrying out IK. The model was trained with sensor orientations from the 6 

sensors each, consisting of 4D quaternions (resulting 24 values) as input, and 26 OpenSim model joint 

parameters from IK as output. The 143 different motion sequences with varying number of time-steps 

were divided into batches of 300 time-steps. Training and test data was split with the ratio of 0.8 to 0.2 

and then shuffled. As depicted in figure 2, the mean squared error converged on training and test sets 

to 3.30 degrees and 5.98 degrees respectively after 89 epochs. 

 
Figure 2: Convergence of MSE during training the bi-RNN 

 

Figure 3 depicts the visualization through OpenSim, the output of the bi-RNN model (white 

skeleton) on test data in comparison with the ground truth (person), and that with the output from IK 

(blue skeleton). Because of the kinematic constraints of the body segments, despite reducing the number 



of DOFs of spine and the lower extremities of limbs, the posture matches reasonably well with ground 

truths and IK output. 

 
Figure 3: Comparison of the resulting postures with the ground truth and output from IK 

3. Conclusion and Outlook 
 

In this paper, we present the first step towards developing a hybrid approach involving full-body IK 

and deep learning for accurate estimation of physiologically feasible joint angles in real time, based on 

orientation information from 6 inertial measurement units (IMUs). Recent advances in bio-mechanical 

modeling is taken into account to constrain the output of the deep learning model. The approach has 

shown promising results. However, it must be extensively tested with further dataset, especially on the 

movements not only pertaining to construction work. In this direction, we are in the process of collecting 

raw dataset from the 6 IMU hardware system developed by us. Furthermore, as proposed in [6], diverse 

bi-RNNs are to be trained with variable window size and random input sequences, forming ensemble 

of models for estimating poses more accurately and robustly. 
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