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Abstract  
Current object recognition techniques are based on deep learning and require substantial 

training samples in order to achieve a good performance. Nonetheless, there are many 

applications in which no (or only a few) training images of the targets are available, whilst they 

are well-known by domain experts. Zero-shot learning is used in use cases with no training 

examples. However, current zero-shot learning techniques mostly tackle cases based on simple 

attributes and offer no solutions for rare, compositional objects such as a new product, or new 

home-made weapons. In this paper we propose ZERO: a zero-shot learning method which 

learns to recognize objects by their parts. Knowledge about the object composition is combined 

with state-of-the-art few-shot detection models, which detects the parts. ZERO is tested on the 

example use case of bicycle recognition, for which it outperforms few-shot object detection 

techniques. The object recognition is extended to detection by localizing it, by taking into 

account knowledge about the object’s composition, of which the results are studied 

qualitatively.   
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1. Introduction 

In many computer vision applications, there are no images of the objects of interest. For instance, 

a new product that has not yet been assembled or photographed, and new variants of home-made 

weapons. A lack of training images makes it harder to learn to recognize the objects. Standard deep 

learning offers no solution to recognize such objects, as these models require many labeled images [1]. 

In zero-shot learning (ZSL) [2], the goal is to learn a new object by leveraging knowledge about that 

object.  

The most common approach is to capture knowledge about the objects by representing their 

attributes [3]. A new object is modelled as a new combination of known attributes. The state-of-the-art 

is to learn the relation between attributes (e.g., furry) and appearance [4]. A new object can be predicted 

if its attributes correspond to the observed appearance. To learn the implicit relations between attributes 

and appearance, many objects in many different combinations of attributes are needed (e.g., many 

animals with attributes [5]). 

The attribute-based approach does not work for new objects that consist of attributes that are not 

common in many other objects. For instance, the home-made RC car is composed of wheels, a camera, 

a battery, some wires, and a small computer (Figure 1, left). Likewise, the home-made explosive (Figure 

1, right, i.e., an improvised explosive device, IED) is composed of a mobile phone, tape, wires, bottle. 

Not many other objects are composed of these specific parts. There are not many other objects that 

share the IED's parts. Extracting the attributes of these parts and using them for learning, is complex, 

since the attributes will only be representative for parts of the object. Hence, the implicit relation 
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between attributes and appearance cannot be learned, as there is not sufficient training data. For those 

objects, the attribute-based approach does not fit.  

     
 

Figure 1: Examples of new, compositional objects for which attribute-based models do not work. 
 

As a novel approach, we leverage the compositionality of new objects, by modelling them explicitly 

as a combination of reusable parts. For composed new objects, the parts are typically everyday objects. 

For instance, for the IED, the parts are a phone, tape, wires and bottle, which are all very common. For 

everyday objects, it is easy to find images and to annotate the region that contains the relevant part. A 

part model can be learned from these images and annotations. A standard object detector is trained to 

localize the parts. The new object is modelled by combining the detected parts. 

The proposed method is named ZERO. ZERO consists of four steps. Firstly, expert knowledge 

about the object is captured in terms of its parts. This involves the object parts and the relations between 

them, i.e., spatial arrangement and relative sizes. Secondly, the parts are learned and detected (localized) 

in images. Thirdly, the object is learned by combining the parts and their appearance (visual features). 

Fourthly, the object is localized in the image by assessing the spatial arrangement of parts and their 

respective sizes relative to the object. ZERO is outlined in Figure 2. 

 

 
Figure 2: Outline of ZERO and its steps to recognize a new (unseen) object. 
 

The advantages of ZERO are: 

a. Recognition of new objects when no training samples nor attribute annotations are available.  

b. Taking knowledge of a mid-level abstraction into account, instead of low-level attributes.  

c. Using compositional knowledge about the location of properties, which is less feasible for 

fuzzy attributes.  

d. Easier specification of the expert’s knowledge, as the parts are mid-level and clear, contrary to 

fuzzy attributes.  

e. To provide predictions that are explainable towards the user. The parts and composition can be 

expressed more easily to a human than a plain confidence.  

 

Since parts contain a higher level of abstraction than attributes, they encode more information, 

which makes the added knowledge more valuable. Different parts contain different properties and when 

they are combined in a composition, these properties are encoded at a location. Attribute-based 

approaches encode a specific attribute for the whole object. The expert specifies the object composition 



in terms of parts, which is related to the our common way of reasoning. The interpretation towards 

attributes is taken out. The new object and its parts are localized with a confidence for the object and 

per part. This makes it easier for the user to understand why the algorithm predicted that this object is 

in the current image. We will show examples in the experimental results of such predictions.  

Section 2 discusses related work. Section 3 describes the proposed ZERO method. Section 4 details 

the experimental results and findings. Section 5 concludes the paper. 

2. Related work 

Zero-shot learning based on attributes, e.g., [4], leverages big datasets with many object classes and 

many attributes in various combinations, e.g., AWA2 [2], CUB-200 [5] and SUN [6]. AWA2 has 40 

object classes for training with 85 attributes [2]. CUB-200 has 200 object classes and 312 attributes [5]. 

SUN has 717 object classes with 102 attributes [6]. These datasets have more than thousands of training 

images with many object classes that share attributes, which enables models to learn the relations 

between attributes and appearance. For many types of new objects, such as the IED (Figure 1), such 

datasets of shared attributes are not available. In this paper, we are interested in such composed objects. 

There are significant differences between this paper and attribute-based ZSL, which are summarized 

in Table 1. In the attribute-based ZSL, there are many annotations of other objects that share similar 

attributes, whereas our setup is that there are none. In attribute-based ZSL, the object classes of the 

abovementioned datasets are closed-world. For instance, the problem is about animals only, which 

limits the learned models to recognize only new animals and not other objects. In this paper, we aim to 

recognize a broad set of new objects. The expert knowledge used in attribute-based ZSL only covers 

the combinations that constitute the object. ZERO uses additional knowledge about the spatial 

arrangement of parts for localizing the object in the image (localization). In attribute-based ZSL, the 

importance of each attribute is learnable, because there are so many combinations of attributes and 

objects and appearance to learn from. Contrary, in this paper, there are no other annotated objects, which 

requires a different approach. Finally, attribute-based ZSL involves knowledge about attribute 

composition, where in this paper we leverage more knowledge about the object, i.e., parts, part 

composition and spatial arrangement of parts. 

 

Table 1 
Differences between attribute-based ZSL and ZERO. 
 

 Attribute-based ZSL ZERO (this paper) 

Annotated other objects Many Zero 

Closed world Yes No, objects can be from any category 

Importance of elements learnable Yes No, lack of labeled data 

Expert knowledge Only about attribute 
composition 

About part composition and spatial 
arrangement of parts 

 

Our approach is to model a new (unseen) object explicitly as a combination of (reusable) parts. The 

parts are typically very common, so there is sufficient data to learn part models. Supervised modelling 

of an object by its parts has earlier been investigated [7], by combining a holistic object and body parts, 

with the objective to handle large deformations and occlusions of parts. The key of this approach is to 

automatically decouple the holistic object or body parts from the model when they are hard to detect. 

The model learns the relative positions and scales of the object, based on many training instances of the 

object. In contrast, in this paper, we aim to model objects by their parts, but without training samples 

of the actual object. To that end, we rely on knowledge about the object, and specifically the parts and 

the relations between them. We leverage this knowledge in a learning scheme. In the absence of training 

images of the new object, object-parts training samples are synthesized to learn the model for the new 

object. 

Instead of only recognizing images, we also aim for object localization. The combination of object 

recognition and localization is known as zero-shot detection (ZSD), which aims to detect and localize 



instances of unseen object classes. There are roughly three type of methodologies for ZSD. The first 

type of methods use a region proposal network on top of a feature extraction backbone [8, 9, 10]. In 

[11] these proposals are improved by explicitly taking the background into account while learning. The 

features of the proposed regions are used to determine the object classes, using neural layers on top of 

the features. The region proposals are used to localize the objects. Often a bounding box regression 

model is trained to fine-tune the locations of the region proposals. The region proposals are trained on 

common data, or defined as default anchor boxes. These methods are beneficial when no visual samples 

of the input is available. However, in our case we do have visual samples of the subparts and can take 

knowledge and features of these parts into account. The second type of methods [12] synthesize training 

images for the unseen classes, based on semantic information, for example using a GAN. These 

synthesized images are used to train a state-of-the-art object detector network. In a way this is 

comparable to our method, since for the detection synthesize part combinations, using knowledge. 

However, we directly use them for object localization, instead of introducing the additional effort of 

image generation and detection network training. The third type of methods use attention based models 

to determine the location of the object in the image [13]. These attention maps learn to differentiate 

objects from the background, using learned attention weights. Comparable to the region proposal-

methods, this is beneficial when no part detections are available. We use the benefits of being able to 

recognize common-known parts of the objects. In summary, none of methods take explicit knowledge 

about object parts and configuration into account for object localization.  

3. ZERO 

The proposed method, ZERO, consists of four steps, starting with knowledge about the new object, 

up to localizing the new object in a test image. These four steps are detailed in the next subsections. 

3.1. Knowledge  

Knowledge about the new (unseen) object is captured in terms of its parts. This involves the object 

parts and the relations between them, i.e., spatial arrangement and relative sizes. An example is a 

bicycle, which is defined by its parts wheels, saddle, chainwheel and handlebar. The arrangement is 

defined by parts that are not allowed to overlap; only the wheel and the chainwheel are allowed to 

overlap. And the expected relative sizes of parts are given by the knowledge and are defined by a 

minimum ratio and maximum ratio, referred to a reference part. This knowledge is summarized in Table 

2. 

 

Table 2 
Knowledge about the object at hand (bicycle) and its parts. 
 

Object parts Disallowed overlap of parts Minimal area ratio Maximum area ratio 

Wheel Wheel, saddle, handlebar Reference part Reference part 

Wheel Wheel, saddle, handlebar 0.5 2 

Saddle Wheel, handlebar, chainwheel 1.5 7 

Chainwheel Saddle, handlebar 1.5 7 

Handlebar Wheel, saddle, chainwheel 1 4 

3.2. Object parts 

Given the object definition, its parts are learned. Generally, it is possible to obtain annotations for 

object parts, as most parts are everyday instances and it is easy to find or collect images of them. The 

annotations are bounding boxes, each with a label of the part. A part model can be learned by leveraging 

modern object detectors that can be retrained by fine-tuning from the broad MS-COCO dataset to the 

annotations at hand. We selected Retinanet [14] for this purpose, as it proved to be robust for many 



types of images and small objects. The latter is important, as parts are generally smaller. For annotations 

of parts, we use the dataset in [7]. After learning, a model is acquired that is able to detect (localize) the 

object's parts in test images. 

3.3. Recognition 

The object is learned by combining the parts and their appearance. We aim to learn which specific 

part-based features are discriminative of the full object. The parts and their features are combined in a 

graph representation such that all features are available to the learning of the object model. To that end, 

an graph is composed, where each node resembles one part. Each specific node represents one part and 

has a fixed position in the graph representation. The node contains the features of that part. For the 

features of a part, we extract the specific region of the image and run it through a standard convolutional 

neural network, i.e., a Resnet-50, of which the embedding before the final layer is used as a feature 

vector [15]. On top of the graph, a classifier is learned. We will experiment with various classifiers. The 

goal is that the classifier learns which features of which parts are most discriminative.  

Our contribution is in how the graph is learned, i.e., classifying the combined nodes' features to 

assess whether the current image contains the new object or not. The challenge is how to train the graph 

model, with no training images of the object at hand. This is done by synthesizing training samples. A 

training sample for the object is obtained by leveraging the part definition. For each part, a randomly 

selected instance of that part is plugged into it. In this way, a huge amount of synthesized training 

samples can be obtained (in the experiments we set this to 10K), and many variations of part 

combinations are presented to the model during the learning. The rationale is that this should lead to 

good generalization. 

3.4. Localization 

The object is localized in the image by assessing the spatial arrangement of parts and their respective 

sizes relative to the object. Our localization method tries to answer the question ‘Given that the image 

would contain the object of interest, which combination of parts represents that object the best?’ and 

assumes that when the convex hull of these selected parts is taken, the location of the object is found. 

The selection of object-parts is based on predefined knowledge; the object composition, variations of 

the overlap of parts and variations of the ratios of part areas (see Table 2).  

The localization starts with a preprocessing step in which the number of parts is reduced. From all 

the detected parts in the image, per part-class the 20% with the highest detection confidence is selected 

(see Figure 3, first step). The selection is done per part-class in order to remain sufficient part-options 

for every class. The value of 20% is chosen in order to remain sufficient variety of bounding boxes for 

the object construction, while increasing speed and reducing noise as much as possible. This value is 

validated on a small set of bicycle images. 

 
Figure 3: The object localization method starts start with preprocessing to obtain a subset of parts. 
This subset is checked for allowed combinations, using matrices. Post-processing is applied to remove 
possible incorrect parts. 
 

After this preprocessing step, all the possible combination of parts are checked whether they are 

allowed, based on the knowledge. This is done by constructing N-dimensional matrices of allowed 

combinations, where N stands for the number of parts that form the object, as defined in the object 

definition. By implementing the localization method using matrices, the use of multi-variable input 

(possibility for additional knowledge) and multi-hypothesis output (possibility to return multiple likely 

answers) is enabled, which makes the methodology very flexible in use. The N-dimensional matrices 



are combined using the logical-AND operation into one final matrix of allowed part combinations (see 

Figure 4). From this combined matrix the parts representing the object are selected, based on two scores; 

the median of the confidence and the median of the confidence when post-processing would be applied. 

 

 
 
Figure 4: Conceptual visualization of the matrices that capture which combinations are allowed. 
Possible part combinations are checked for their allowance, based on the knowledge. These sub-
matrices are combined into one final matrix to choose part-combinations from. For visualization 
purposes only 3D matrices are shown. In reality the matrices are N-dimensional, with N the number 
of parts that constitute the object. 

 

After the part-combination is selected, post-processing is applied. To take the possibility of missing 

or occluded parts into account, parts that have a detection confidence lower than 0.6 times the median 

of all confidence values are probably wrong detections and are removed. When multiple parts of the 

same class are in the object definition (two wheels for example), parts of this class are removed when 

their detection confidence is lower than 0.6 times the median of all the confidence values of this class. 

4. Experiments 

The experiments are performed on the PASCAL VOC dataset [16] for recognition and on 

downloaded bicycle images for localization. We selected the bicycle as the object of interest, to validate 

ZERO. To learn the object parts, the annotations from [7] are used. 

4.1. Recognition 

We compare ZERO’s recognition to various baselines. ZERO uses the part models and combines 

them by a graph. We compare the graph-based approach to simply summing the confidence values of 

its respective parts. Both are variants with zero examples of the object. We also compare to techniques 

that require a few examples of the object. To that end, we use the same model [14] as used for the parts, 

but now for the object. We include these baselines for reference only, because our goal with ZERO is 

to target the case of zero examples of the object. These baselines cannot deal with that case. For ZERO, 

we have explored two classifiers on the graph, by concatenating the node features: an SVM (with the 

radial basis function as kernel) and a deep learning (DL) variant (fully-connected layer with a softmax 

output). 

The ROC curves are shown in Figure 5. Most interestingly, ZERO (see curves for 0 examples) 

outperforms the baselines that do need several training examples. ZERO also outperforms the naive 

part combination by summing their confidence values. Note that ZERO's SVM variant performs better 

than the DL variant, possibly because it is harder to train and optimize the DL variant (more hyper-

parameters). For most practical applications, it is essential to have low false positive rates. Therefore, 

we are especially interested in the left-most part of the ROC curves. In the legend, we report the area 

under the curve (AUC) at a false positive rate of 5% (0.05). This performance measure is highest for 

ZERO with the SVM classifier (0.70), outperforming few-shot techniques that required 10 examples 

(0.64) while ZERO used 0 examples of the object.  

 



 
 

 

Figure 5: ROC curves of ZERO (zero examples) vs. baselines (few examples). 
 

Four examples of ZERO's predictions are shown in Figure 6. In the upper-left, a positive with a very 

high confidence (correct). In the lower-left, a negative with a very low confidence (correct). In the 

upper-right, a negative with a moderate confidence (ideally lower). In the lower-right, a positive with a 

very low confidence, because of the large occlusion (the bicycle is marginally visible in the back, behind 

the desk). Obviously, it is hard to recognize a new object, if it is largely occluded.  

 

 
 

Figure 6: Example predictions by ZERO. 
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4.2. Generalization 

We explore how well ZERO generalizes to new, deviating variants of the object of interest. Our 

hypothesis is that the training procedure, based on many variations of part combinations, lead to good 

generalization. We manually selected a set of 25 deviating objects from the internet, as our objects of 

interest. The background of other objects is the same as in the previous experiment. 

Figure 7 shows the ROC curves for ZERO and the baselines, when tested against the deviating 

objects. ZERO generalizes well to new, deviating variants of the object of interest. Generalization is 

essential for zero-shot recognition, as not all variants will be known beforehand, and still we want to be 

able to recognize them well. 

 

   
 

 
 
Figure 7: ROC curves on deviating variants of the object of interest. 
 

Two examples of deviating objects are shown in Figure 8. ZERO is confident that these test images 

contain the new, unseen object of interest. 

 

 
 

Figure 8: Example predictions by ZERO on deviations of the object of interest. 
 

We conclude that the hard cases are not the deviating objects (there is good generalization), but 

when the object is largely occluded (as in Figure 6). 

4.3. Localization 

We evaluated our localization method quantitively by showing the good (reasonably good), the bad 

(understandable mistakes) and the ugly (utterly wrong) localization results on a test set of bicycle 

images (see Figure 9). The test set contains images downloaded from the internet with different 
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compositions; bicycles seen from the side or from more difficult angles, sometimes partly occluded. 

The added value of the different knowledge sources is inspected by comparing the localization results 

when no other knowledge than the object composition is used with the results when knowledge about 

part overlap and areas is used, which is shown in Figure 10.  

 

            
 

   

 

 

 

 

 
 

 

 
 

  
 
 
Figure 9: Localization results for different qualitative performance. Upper: The good; reasonably good 
localization results. Middle: The bad; understandable wrong predictions. Bottom: The ugly; utterly 
wrong predictions. Red – wheel, blue – chainwheel, yellow – handlebar, green – saddle, white – whole 
bike, by taking the convex hull of the parts. 

 

  



 

   
 

   
 

   
 

   
 
Figure 10: Localization results for two test images, when no other knowledge than the object 
composition is used (top left), when only area knowledge is used (top right), when only knowledge 
about the overlap is used (bottom left) and when both additional knowledge sources are used (bottom 
right).  

  



5. Discussion 

ZERO can be extended to other objects by defining them in terms of their respective parts, collecting 

images of parts, annotating them, and applying the method described in this paper. Better discrimination 

between similar but different objects can be achieved by including hard negatives. They can be taken 

into account explicitly by the data generator in the training procedure, or by hard-negative mining, or 

by weighting them in the training optimization. If the objects are better described by their properties 

instead of their parts, attribute-based approaches are more appropriate. 

Currently, ZERO’s localization method is limited to one object per image. This could be extended 

to multiple objects per image by anchor boxes (e.g., [14]), for which the object presence is evaluated. 

This generates multiple hypotheses of where the new object may be located in the image. All hypotheses 

should be validated one by one, by applying ZERO’s recognition. Each hypothesis will result in a 

confidence, after which the maximum confidence can be determined and the associated localization.  

There is more expert knowledge available about localization, for instance, spatial information of 

how parts relate to each other. This positional encoding is expected to add important cues for the part 

selection. Another improvement for the world knowledge would be a co-learning setting in which 

updates to the knowledge can be made during the deployment phase, since it is difficult to select the 

exact right knowledge.  

Note that the parts were extracted from the Pascal VOC part-dataset. As such, the parts are cut out 

from images of largely visible objects. Hence the parts are not truly isolated, as a small bit of the context 

is visible (e.g., a small part of the bicycle where the wheel is connected to) and the parts could contain 

some specific bicycle-part features. This is in contrast to the real envisioned application where no 

images of the object are available, and the parts and the ZERO model are to be learned from images of 

truly isolated parts without object specific context and with more general part features. This will be 

addressed in our near-future research. 

It would be interesting to explore the benefits of ZERO’s part-based technique for robustness against 

adversarial attacks. In adversarial attacks, pixels of an image are weakly adjusted to force another 

prediction from the deep learning model. When using our part-based model, multiple predictions have 

to be misled in order to change the prediction of the whole image. 

In ZERO’s part-based recognition method, constructing additional training samples with a new type 

of part is relatively easy. Therefore our method would allow for fine-grained identification, using 

knowledge of important recognition cues. Possibly combined with attributes, to answer queries like 

‘Find the person with the pink bag’. We would like to explore these type of use cases in future work. 

6. Conclusion 

In this paper we have proposed a zero-shot object detection method based on known parts and world 

knowledge. Since for our zero-shot learning use case no test-images are available, we tested our method 

on bicycles and their parts. Our localization method allows for multi-variable input and multi-

hypothesis output. For the object recognition, we outperform few shot baselines that require labeled 

training data. The results of localization show the potential of the method and the multi-variable input 

allows for updating and extending the used world knowledge.  
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