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Abstract
A variety of research on theory and knowledge refinement that integrated knowledge engineering and
machine learning was conducted in the 1990’s. This work developed a variety of techniques for taking
engineered knowledge in the form of propositional or first-order logical rule bases and revising them
to fit empirical data using symbolic, probabilistic, and/or neural-network learning methods. We review
this work to provide historical context for expanding these techniques to integrate modern knowledge
engineering and machine learning methods.
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1. Introduction

Combining machine learning (ML) and knowledge engineering (KE) is not a new topic. In the
1990’s, there was community of researchers (including the authors) who developed a variety
of techniques for taking human-engineered knowledge in the form of propositional or first-
order logical rule bases and revising them to fit empirical data using symbolic, probabilistic,
and/or neural-network learning methods. Although this work never achieved the substantial
lasting impact of some other research of this era, and may not be familiar to many current
researchers in machine learning and knowledge engineering, we believe it explored a range
of interesting algorithmic and experimental ideas and provides important historical context
for any new work on combining ML and KE. It also clearly demonstrated through a range
of experimental evaluations in a number of domains, that combining human-engineered and
empirically induced knowledge could improve the accuracy of a final intelligent system.

The primary goal of this community was to gain better accuracy than either (a) solely using
engineered knowledge for the task at hand in a non-learning manner (recall the 1990’s were
the tail end of the “expert systems” era) or (b) solely learning a system from labeled training
examples, where the only role of domain knowledge was choosing good ’features’ with which
to represent examples.
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Figure 1: Notional learning curves illustrating the value of knowledge refinement.

Figure 1 illustrates this idea. The X axis is the amount of training data and the Y axis is the
system’s error rate on novel examples not used during training. The use of domain knowledge
provides an error reduction, especially when the number of training examples is small. The
cross-over points in the figure show where learning approaches start to exceed non-learning
ones, and are indicative of the central role of machine learning in today’s AI. In Figure 1, the
curve for the non-learning approach is flat since it ignores training examples (though presum-
ably humans did use a few examples to create and represent the domain knowledge). The
knowledge-refinement approach starts at a higher error rate to reflect the fact the knowledge-
refinement approach may use a more limited knowledge representation than the non-learning
approach.

This paper briefly reviews this early work, covering methods that primarily employed log-
ical, probabilistic, and neural-network methods. We believe many of the ideas in this work
could be updated and modernized to develop new, effective methods for combining ML and
KE. Therefore, we hope that reviewing this prior work serves a valuable resource for current
researchers interested in this area.

2. Logical Theory and Knowledge Refinement

A number of systems have integrated KE and ML by using learning methods to revise a human-
engineered logical knowledge base (KB) in order to make it fit empirical data. Most of this
work employed a rule-based KB, either in propositional logic or in the form of first-order Horn
clauses (i.e. Prolog programs). Engineered knowledge was refined by removing conditions from
rules to generalize them, adding learned conditions to specialize them, removing rules, and/or
learning new rules from constructed subsets of data.

Early work on this thread was by Ginsberg et al. [1], which was followed up by a system
called RTLS [2]. RTLS flattened a propositional rule base into disjunctive normal form (DNF),
revised this DNF to fit labeled training data using learning methods, and then translated the
changes back to the multi-level rules. EITHER [3, 4] was a more comprehensive revision sys-
tem for propositional rule bases that combined deductive, abductive, and inductive reasoning.
It used logical abduction to identify “holes” in a theory and used inductive rule learning meth-
ods to repair them. NEITHER [5, 6] was a followup to EITHER that focused on revising KBs



containing “soft matching” M-of-N rules, which are satisfied as long as at least M of its N an-
tecedents are true. Other systems that refined propositional theories are DUCTOR [7] and the
work of Feldman et al. [8].

A more challenging problem is revising first-order Horn-clause logical theories that include
relations, variables, and quantifiers. Work in this area was tightly connected to early work in
Inductive Logic Programming (ILP) [9]. MIS (Model Inference System) [10] was an early system
that tried to debug Prolog programs by interactively querying a human oracle. FOCL (First
Order Combined Learner) and its derivatives [11, 12] used a first-order theory to bias inductive
learning, but required user interaction to determine where to actually make theory revisions.
FORTE (First Order Revision of Theories from Examples) [13, 14] was a fully automated system
for revising relational KBs and was also used to automatically debug simple Prolog programs
developed by students learning logic programming. Other ILP systems that incorporated or
revised background knowledge are MLSMART [15], GOLEM [16], GRENDEL [17], and Rx [18].

3. Probabilistic Knowledge Refinement

Logical domain theories in AI have long been criticized for their inability to handle uncer-
tainty in reasoning, which is critical in most real-world applications. Adding certainty factors
to rules was an early approach to dealing with uncertainty in knowledge-based systems [19].
RAPTURE (Revising Approximate Probabilistic Theories Using Repositories of Examples) [20]
was a theory refinement system that was designed to revise certainty-factor rule bases. It
adapted backpropagation methods designed for neural-networks [21] to automatically revise
the certainty factor parameters through gradient descent. It also uses machine learning meth-
ods adapted from decision-tree learning [22] to add features and revise the structure of the
rule base. Fu [23] also used backpropagation to revise certainty factors, but his approach was
unable to revise the rule-base structure.

Ad hoc methods like certainty factors were criticized for not adhering to the well-founded
principles of probability theory and Bayesian reasoning. Consequently, techniques based more
firmly in probability theory, such as Bayesian networks [24], came to dominate knowledge-
based systems that supported uncertain reasoning. BANNER [25, 26] was a knowledge re-
finement system designed to revise manually-engineered Bayesian networks to fit empirical
data. Like RAPTURE, it uses a variant of backpropagation to adjust the conditional probabil-
ity parameters of the Bayes-net to fit labeled training data for a classification task. Then, as
needed, it alters the structure of the network using learning techniques to add new dependency
edges as well as new hidden variables. It focused on networks that used noisy-or and noisy-and
nodes that are probabilistic variants of these logical operators. This allowed it to map an initial
purely-logical theory to a Bayes-net and then refine it to fit empirical data. There was also
other work on revising Bayes nets [27, 28], but it was unable to add new hidden variables.

4. Knowledge-Based Neural Networks

Starting in the late 1980’s neural networks had a rebirth after their near demise in the 1960’s,
due to the ability to train networks with ’hidden units’ [21] lying between the input and output



Figure 2: The rule set to neural network mapping of knowledge-based neural networks.

units. Towell and Shavlik [29] recognized the analogy between the dependency graph of a
rule set (i.e., a graph where the outputs from some rules serve as the inputs to others) and
a neural network. Their KBANN (Knowledge-Based Artificial Neural Networks) algorithm
mapped propositional rule sets into neural networks, setting weights so that initially the neural
network produced outputs near 1 when the rule set returned true and near 0 when the rule set
returned false. Figure 2 illustrates the correspondences. An early test on a gene-finding testbed
lead to a halving of the error rate [30].

A disjunctive rule set representing some domain theory is on the left, drawn using the com-
mon AND/OR notation. On the right is a corresponding neural network. There are a few aspects of
this figure worth noting.

1. Not all the facts about the domain at hand may be referenced by the rule set (these are the open
red circles on the bottom), but an important role for them might be discovered during training.

2. Some rule preconditions might be missing, as illustrated by the dashed lines in the neural net-
work; initially these links are given weights near zero, but backpropagation might increase them
if doing so helps reduce error. Similarly, some rule antecedents might be pushed toward zero by
backpropagation, essentially removing them (backpropagation also converts the Boolean algebra
of rule sets into weighted sums that are input to the non-linear sigmoid function).

3. The rule set might be missing some rules, illustrated by the leftmost (purple) hidden unit in the
figure, so it can be beneficial to include some initially zero-weighted hidden units [31, 32].

4. A complex rule set can lead to a deep neural network, deeper than the traditional one-hidden-layer
network of the mid-1980’s and early 1990’s. A KBANN-followup paper by Towell and Shavlik
[33] specifically addressed the use of symbolic knowledge to deal with the challenges of training
deep neural networks.

Because neural networks learn in an incremental manner (i.e., one batch of examples at a time), it is
possible to consider adding more domain rules in the midst of a long training run [34] (e.g., in the middle
of Figure 2’s X axis). For example, observing the mistakes made by a robotic reinforcement learner might
cause a human teacher to devise some new rules. (This ability to accept rules after learning has begun
means one should not think of theory refinement as only using prior knowledge.)

Since backpropagation changes the simple logical semantics of propositional rule sets into less intu-
itive weighted sums, some early researchers [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] investigated
the task of rule extraction where one converts a trained neural network into a more human-readable
representations, such as set of rules or a small decision tree. These approaches are generally also appli-
cable to neural networks trained without the use of domain knowledge, and some even can be applied to



alternate complex learned representations, such as a forest of decision trees (e.g., [45]). The task of rule
extraction closely relates to the current extensive interest in explainable AI, especially in the context of
deep neural networks.

Additional early work on refining and/or exploiting symbolic knowledge by neural networks includes
Gallant [35], Fu [48], Shavlik and Towell [49], Berenji [50], Frasconi et al. [51], Omlin and Giles [52],
Roscheisen et al. [53], Mahoney and Mooney [20], Tresp et al. [54], and Thrun and Mitchell [55] (these
citations are sorted by publication year). See Shavlik [56] for a review written in 1992.

5. Application Areas
Theory/knowledge refinement has been applied to a variety of application areas demonstrating that
combining human-engineered knowledge and machine learning could develop more accurate intelligent
systems than using either approach alone.

Some classic domains in AI and machine learning such as soybean disease diagnosis [57] and hu-
man infectious disease diagnosis as performed by the famous MYCIN expert-system [58] were studied.
Both EITHER [4] and RAPTURE [20] demonstrated improved performance on soybean diagnosis, and
RAPTURE also demonstrated improved performance on MYCIN data.

Another interesting application of logical theory refinement involved improving student modelling
for intelligent tutoring systems using a system called ASSERT [59, 60].1 Using a KB encoding correct
knowledge needed to perform a task and examples of a student’s behavior for this task, ASSERT modeled
student errors by generating refinements to the correct knowledge base sufficient to account for the
student’s behavior. ASSERT was evaluated using 100 students tested on a classification task covering
concepts from an introductory course on C++ programming. Students who received feedback based on
student models generated by ASSERT performed significantly better on a post test than students who
received just basic instruction.

Applications of knowledge-based neural networks include gene finding [30, 61], protein folding [62],
language learning [52, 63], robot training: [34], non-linear control [50, 64], manufacturing [53], com-
puter vision [65], and information extraction [66].

6. Conclusions
This paper has reviewed work from the 1990’s on combining knowledge-engineering and machine learn-
ing to revise KBs to fit empirical data. This earlier work used a variety of knowledge representation
formalisms as well as a range of logical, probabilistic, and neural-network learning methods. It was
also evaluated on a range of applications, experimentally demonstrating its ability to achieve improved
performance by effectively combining KE and ML. We believe many of the ideas embodied in this early
work could be updated to utilize the latest developments in KE and ML, and hope they provide in-
spiration and guidance in continuing work on combining KE and ML to improve the capabilities and
performance of AI systems.
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