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Abstract
Creation of machine-usable, high-quality knowledge-bases is a critical prerequisite for many important ap-
plications that rely on availability of high-level of autonomous decision-making and reasoning capabilities.
Manual construction of knowledge-bases for complex applications is a time-consuming and expensive process.
In such application domains, however, a vast amount of knowledge is available in human-readable format,
and it could be leveraged to build knowledge-bases automatically. Natural Language Processing (NLP)-based
techniques provide an attractive option for this process. The field of NLP has made rapid strides in last sev-
eral years and resulted in increased usage across a variety of consumer-facing applications. However, their
usage for knowledge-base construction in the aviation industry remains rather limited to date. We present
our assessment of using various NLP-based tools for the creation of aviation-focused, high-quality, machine-
processable, and human-legible knowledge bases (KBs) for various applications. We identify several gaps, both
at the application and fundamental levels, and also identify potential directions for future research that could
help overcome the challenges.
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1. Introduction

Fueled by the fast-paced advances in the field of Artificial Intelligence (AI), in particular Machine
Learning (ML), autonomous and intelligent systems are becoming pervasive in a broad range of ap-
plications, from tailored advertisements and suggestions, shaping the on-line user experience, to com-
plex cyber-physical systems such as autonomous cars. These systems interact with the environment
and the humans, understand the current situation and plan actions to achieve goals as commanded
by other agents or predefined at design time. While no industrial sector seems to be able to resist the
allure of delivering “intelligent” products and services, and realizing the potential economic benefits
that AI may bring to their businesses, aerospace and defense have been slow adopters, playing the
role of observers, still hovering around research, prototyping and small-scale demonstrations. We
believe that the main reasons are operational complexity and stringent safety requirements. Here,
we specifically refer to operational autonomy, namely the ability of an embedded system to replace
humans in the execution of a mission that involves several cyber-physical platforms and a mix of
physical and non-physical actions. For example, replacing pilots to bring passengers from one airport
to another is a complex mission that involves executing pre-flight operations, pushing off the gate,
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reaching the runway, taking off, climbing, cruising, descending, landing, and taxiing to the destina-
tion gate. Currently, pilots deal with hundreds of tasks [1], including communicating with Air Traffic
Control, monitoring the state of the aircraft, and actually flying the vehicle. Most importantly, pilots
are critical in dealing with contingencies that require experience, deep understanding of the aircraft
and air traffic management, root-cause analysis, and prediction of the outcome of alternative plans.
Differently from an autonomous car, an aircraft has a higher level of complexity (comprising hun-
dreds of thousands of components), no easily achievable safe state (when in the air) such as slowing
down and stopping, and a higher cost of catastrophic events (hundreds of human lives).

Pilots operating commercial flights benefit from automation functions implemented in sub-systems
such as autopilots, instrument landing, and low-level controls for electrical systems, air-management
systems, and vehicle health assessment. However, not only these systems may fail or disengage at any
time, but during off-nominal situations, their signals need to be integrated to understand the root-
cause of a contingency and take appropriate actions. An intelligent system capable of replacing a pilot
needs to have the same level of proficiency in both nominal and off-nominal situations. Considering
that pilots have trained or flown for thousands of hours, and have studied the inner workings of
the machine they are operating, such intelligent system must be equipped with a vast amount of
background knowledge that reaches as far as physics. Furthermore, some common-sense knowledge
should be taken into account to deal with other situations that are not directly related to flying such
as keeping the hundreds of passengers happy and relaxed, or dealing with medical emergencies.

Knowledge base construction (KBC) is the process of populating a database with information from
data such as text, tables, images, or video [2, 3]. One approach to construct a knowledge base relies
on knowledge engineers and subject-matter experts (e.g., the CYC project [4], WordNet project [5],
PaleoBioDB [6]). However, for domains with high complexity, this approach is labor-intensive and
error prone [2, 7]. As an example, the creation of the PaleoBioDB knowledge base took nine person-
years and a group of 380 scientists [8]. The quality of the result is evaluated by humans through
extensive testing and revisions, but completeness is limited to the amount of input data that humans
are able to consider given the available development time and cost.

Automated knowledge base construction (AKBC) is another approach where tools are employed
to process a potentially much larger set of input sources, at a remarkably higher throughput rate
compared to trained domain experts, and generate more comprehensive knowledge bases. As an
example, PaleoDeepDive, a DeepDive-based approach for construction of entities and relations from
PDF documents was able to process roughly 10x the number of documents, with per-document recall
roughly 2.5x that of human annotators [8].

The aviation domain poses a unique set of challenges to automated knowledge base construction
due to its stringent safety requirements. The constructed knowledge base cannot only contain corre-
lation data among facts, but for critical decisions, the deduction process from inputs to conclusions
must lead to actions that are safe. It is therefore important to revisit the architecture of an auto-
mated knowledge base construction pipeline to exploit its ability to be comprehensive while assuring
correctness.

1.1. Automated knowledge base construction

AKBC starts from sources that have been created by humans for human consumption including text
and tables, and generates knowledge bases that can be used by machines in a variety of applications.
The techniques that are typically used in this process include Natural Language Processing (NLP) [9,
10], Natural Language Understanding (NLU) and Machine Reading Comprehension (MRC) [11, 12],
whose performance has made remarkable leaps over the past decade as result of advances in big



data, natural language processing, and machine learning technologies [7, 2]. KnolwedgeVault [13],
DeepDive [8], MinIE [14], NELL [15], Alexandria [16], Fonduer [3] is a non-exhaustive list of well-
developed AKBC tools, some of which are publicly available. These tools, together with others, have
been used to build large, high-quality knowledge bases (KBs) such as Freebase [17], YAGO [18], IBM
Watson [19], PharmGKB [20], and Google Knowledge Graph [21]. Complete applications have been
developed in domains such as chatbots [22], fake news detection [23], healthcare [24, 25], semantic
biomedical resource discovery [26], data-driven materials discovery [27], finance [28], and law [29].

However, many use-cases for the constructed knowledge-bases require a deeper understanding of
the world and the rules under which the system and processes that are the subject of the knowledge
model operate. For many complex applications, the knowledge acquisition and reasoning processes
need to understand and manipulate rich models of the world evoked by textual sources such as causal
relations or adherence to given procedures and standards [30, 31, 32, 33].

1.2. Unique challenges in automated knowledge-base construction for aviation

Automated knowledge-base construction for aviation applications presents a set of unique challenges
that are not necessarily present in consumer-facing applications. Consider the example of building an
intelligent cyber-agent capable of safely and successfully operating an aircraft during a typical flight
from the departure to the arrival gate. Such cyber-pilot (CP) (Figure 1(right)) must be knowledgeable
about the vehicle that it is operating, the mission to be performed, the load that the vehicle is carrying
(cargo and/or passengers, together with their properties such as value and health conditions), and
aviation rules and regulations. The sources of aviation knowledge are vast and varied including flight
manuals, maintenance manuals, accident reports, system models encoded as simulators, certification
requirements documents, textbooks on flight dynamics, structural mechanics, aerodynamics, etc. (see
Figure 1(left) for some examples).

To deploy a CP on commercial passenger vehicles, two other requirements must be fulfilled. First,
it must be shown that safety will meet or exceed current standards, with a CP delivering a lower
rate of mishaps than human-piloted aircraft in a variety of scenarios. Such stringent certification
requirements are not considered in consumer-facing applications since errors don’t typically lead to
catastrophic failures, and the decision loop is never closed without human supervision (human-in-
the-loop). Certification is a process used to expose risks, and to evaluate whether they are acceptable.
Current standards rely on analysis tools, but also heavily on human revisions and inspection. Thus,
the second requirement for a CP is transparency or explainability in decision-making. Explainability
as a feature is crucial at run-time where a CP may be required to communicate with Air Traffic Control
(ATC), technicians, engineers, or other vehicles, and it is not only required to inspect and revise the
model that the CP has learned, but also as a mean to identify, isolate, and manage contingencies,
which is key in redundant architectures where alternative actions may guarantee safety. The ability to
generate explanations goes beyond having a human-understandable model, but requires a knowledge-
base that enables abductive reasoning.

To add to the complexity of knowledge acquisition and reasoning, significant amount of knowl-
edge is actually background knowledge that may have been gradually assimilated over a long period
of time (e.g., basic laws of mechanics, thermodynamics, laws about cause-effects). Consider for ex-
ample operational and procedural documents such as [34, 35, 36]. These documents describe how to
operate an aircraft, but they assume that the reader possesses a rather large amount of background
information. Moreover, these documents do not explain why certain steps should be taken while exe-
cuting a procedure or a checklist since it is assumed that the causal relation between an action and its
effect or precondition are known. Enabling such level of reasoning also seems to require the ability to
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Figure 1: Examples of human-readable sources of aviation knowledge (left). Embedded cyber-pilot concept
as an open, knowledgeable, explainable system (right).

target knowledge representation languages that are able to capture a typical ontology of classes and
logical facts expressed in a formal language such as First Order Logic, and also operators that change
the state of the system which could be expressed as actions with preconditions and effects. Extracting
such structures is challenging and requires integrating, extending, and developing new AKBC tools.

2. Discussion of underlying technical gaps and potential solution
approaches

In this section, we present some challenges faced by current NLP-based tools in the automatic con-
struction of aviation-focused, machine-understandable, high-quality knowledge-bases. We also dis-
cuss some potential approaches for overcoming the challenges.

2.1. Aviation-contextualization

Most of the existing state-of-the-art NLP tools (e.g., Torch-T5 text summarization model [37], or BERT
[38]) are trained over a given input corpus and benchmarked for specific tasks such as Name-Entity
Recognition (NER), or Text Classification. However, it has been shown that accuracy within a given
domain can be improved by expanding the input corpus to include sources from that domain (see
for example BioBERT [39], SciBERT [40], or ClinicalBERT [41]). Thus, there is a need to create an
extensive corpus of aviation text sources that can be used to train language models using a spec-
trum of techniques from supervised to unsupervised learning. AKBC tools such as DeepDive [8],
Alexandria [16], Fonduer [3] use different innovative techniques for reducing the need for labeled
data. DeepDive [8] leverages techniques based on distant supervision whereas Fonduer [3] leverages
weak-supervision-based approaches through the concepts of matchers and throttlers in the proposed
framework. Alexandria [16] supports automated extraction of features. These extracted inputs also
need to be customized to be used in the aviation domain.

A domain specific corpus, or other filters and customization inputs to extraction tools alone would
perhaps not be sufficient. Many relations used in aviation documents have a precise meaning that
is captured by domain specific models, reasoning and simulation engines. Learning these models
from a potentially large set of text sources or even data sets seems unnecessary, inefficient, and sub-
optimal. Consider the following example taken from the emergency descent non-nominal checklist
of Boeing 737 [35] - If structural integrity is in doubt, limit speed as much as possible and avoid high



maneuvering loads. This safety check refers to the relation between structural integrity, airspeed and
the aerodynamic and gravitational loads on an airplane. First, any ambiguity should be removed (see
Section 2.3): in this sentence, “speed” refers to “airspeed”, and “maneuvering loads” refers to the “grav-
itational and aerodynamic forces experienced by the fuselage and wings”. Secondly, contextualization
in this example means relating structural integrity to maximum loads, loads to maximum speed, and
finally annotating these relations with their interpretation given precisely by aviation-specific quanti-
tative models, such as physics-based models. The ability to integrate the extracted knowledge (in any
form such as logic sentences, knowledge graphs, or databases) with precise domain specific models
is clearly important towards delivering a high quality knowledge-base.
Recommendations. The creation of a dedicated corpus for aviation is needed: it should contain
sources with a mix of procedural and descriptive knowledge, and a variety of formats (see Section
2.2 for some considerations on how structure carries information). New techniques are also needed
to leverage domain specific models and reasoning engines that precisely capture large knowledge
fragments. After disambiguating and grounding facts into aviation-specific contexts, predicates and
relations need to be mapped to available models. This is not a one-to-one mapping because the same
model (or even a combination of models) could be used as interpretation of many predicates. Domain
specific tools typically require a set of inputs and parameters that will need to be synthesized from
qualitative statements, or computed by other models. The quantitative results from these models will
then need to be lifted back into the knowledge base. Finally, the execution of the various reasoning
engines and models will also need to be orchestrated (see Section 2.4).

2.2. Information in Structure, and Structure of Information

Human-readable documents are typically written following a set of conventions, relying extensively
on formatting and highlighting. In many cases, such conventions are also typically explained at the
beginning of a document. Humans rely critically on this type of structure for efficiency and to avoid
ambiguities. Removing this structure from the document would certainly reduce its legibility. More
importantly (and relevant to the knowledge extraction process), the semantics of relations between en-
tities depends on the structure. For example, the relation between a component and a numeric quantity
in [36] is a limitation if found in a chapter starting with the letter “L”, and a desired setting if found
in a chapter starting with “NP” (Normal Procedures).

Another example of structure can be found in the procedures for stall recovery in [36], which are
organized in a two-column format: one for the pilot flying the aircraft, and the other for the co-pilot
who has a co-monitoring role. In this case, structure can be leveraged in the extraction process as the
left column defines a sequence of actions, while the right column specifies the important quantities
that need to be monitored. Ignoring the structure would miss the opportunity to use dedicated ex-
traction tools, or knowledge representation languages for the two columns that may instead result in
a more accurate and efficient knowledge base.

Among existing tools for AKBC, Fonduer [3] is a machine-learning-based approach that constructs
relations from richly formatted multi-modal human-readable data sources. This approach goes in the
right direction: it uses a model for the structure of a document that allows to keep track of where
an entity or a relation is mentioned, and it allows users to provide input schema and filters which
could be used to accommodate different document structures as decided by the authors of reports or
manuals. The model could be expanded to include conventions typically found in aviation manuals
such as capitalization, lists, and indentation that are used to describe how to operate a machine.

Once a document is processed from the formatting standpoint, the information needs to be orga-
nized such that one can reason over the encoded knowledge. We refer to this as Structure of Informa-



tion. One view of such structure is parts of speech (POS) which provides a grammatical understanding
of paragraphs, sentences and words [42]. Another view is the logical and ontological structure con-
tained in the text [43, 44, 45, 46]. POS tagging is relatively well-developed, and mature tools exist
today for such task. However, extracting logical structures from raw sources such as text is less ma-
ture [43, 44, 45, 46]. Having a logical representation enables reasoning by deduction and abduction
which are both important in situational assessment, decision-making, and root-cause analysis. More-
over, POS tagging alone cannot be used to resolve semantic ambiguity, where the same word may
have two completely different roles and meaning in a sentence. A logical representation would in-
stead enable disambiguation by reasoning and elimination of hypotheses. We also believe that the
types of structures to be extracted are not only logical connectives such as And-Or patterns, but also
include causal and temporal dependencies among events, hidden states, action models, and perfor-
mance curves. As an example, the non-normal checklists, flight patterns and maneuvers described
in [36] are designed to be read and acted upon sequentially (and often in time-constrained, emer-
gency situations). The ordering of actions (e.g., changing various settings) have a drastic impact on
the eventual outcome. There have been some attempts at extracting procedural information from
text [47, 48, 49, 50] but these tools are not mature enough and the quality of the resulting knowledge-
base for aviation applications needs to be investigated.
Recommendations. As a first step, we recommend performance evaluation of Fonduer and similar
frameworks in identifying the structure present in aviation corpora discussed in Section 2.1. As a next
step, we suggest extension of existing AKBC approaches to move beyond document-level structure
and towards aviation-level hierarchical organization of concepts - for example, Aircraft → Boeing
→ 737-800. In effect, we are essentially proposing a path forward for extending AKBC approaches to
go from Information in Structure towards Structure of Information. Creation of a large-scale aviation
ontology would help in defining and organizing the structure of information and ontology learning
techniques from text could help here [51]. We also recommend further research to extend current
tools with capabilities to extract events, causal and temporal relationships, and action models to be
used in decision-making, plan verification, and impact analysis.

2.3. Ambiguity in natural language and the issue of background vs. explicitly
stated knowledge

Humans are incredibly good at attaching context to text and overcoming ambiguities in text through
a deep understanding of rules of the world. However, it is highly non-trivial to replicate and automate
this process [52]. The challenge in resolving ambiguity points to the underlying issue of background
(unstated) vs. foreground (explicitly stated) knowledge. We as human readers make use of an incred-
ible amount of background knowledge when understanding and attaching context to the meaning of
words, sentences and paragraphs.

Common problems related to the ambiguous use of words in natural languages are less prevalent in
the aviation domain as manuals and reports are written in such a way to make sure that the messages
cannot be misinterpreted by humans. Clearly, a first step has to be taken towards removing some
common potential ambiguity that may arise. For example, when processing a set of sentences such as
Every airplane has two wings; Boeing 747 has four engines; Every wing is a part; Every engine is a part,
it is important to identify “four” as the same as the number 4. Also, “Boeing 747” should be identified
as an airplane (perhaps by processing other documents that mention such a fact). Semantically, it is
also important to establish whether the closed or open world assumption [53, 54] is used since a fact
such as Boeing 747 has 6 parts may or may not be inconsistent with the description above.

A more serious issue, however, is the semantic ambiguity of words and relations that, when in-



terpreted by a reader with enough background knowledge, have instead an unambiguous meaning.
Consider for example a fragment of the Emergency Descent non-normal checklist for the Boeing
747 [36]: Without delay, descend to the lowest safe altitude, or 10,000 feet, whichever is higher. Clearly,
delay in this case may refer to the time to start the descent procedure, or to reach the prescribed alti-
tude (see Section 2.1 for another example). Context and background knowledge should be leveraged to
resolve ambiguity. From this standpoint, contextualization is necessary but not sufficient. Reasoning
and knowledge extraction should be interleaved to incrementally reduce semantic uncertainty.

Currently, no mature techniques exist to guide the separation between foreground and background
knowledge [55]. Accompanying this challenge is the issue of innate knowledge (e.g., intuition about
basic laws of physics) [56, 57], and it is not clear how to incorporate such knowledge within the AKBC
process.
Recommendations: We recommend investigating the possibility of combining ideas from Con-
trolled Natural Languages (CNLs) with existing AKBC frameworks. CNLs [52, 58, 59] help to partially
overcome ambiguity present in textual sources written for human consumption. CNLs are subset of
natural languages (e.g., English) and have well-defined formal semantics. However, the use of CNLs
requires expert understanding of the CNL itself and hence encoding is still non-trivial, and challenges
remain [58]. Hybrid CNLs that combine ideas from formal logic with CNL, e.g., Knowledge Authoring
Logic Machine (KALM) [60, 61] hold more promise.

On the issue of discovering missing background knowledge, or to reduce semantic uncertainty, we
recommend investigating approaches for combining abductive, deductive and inductive reasoning
techniques with iterative learning [62, 63, 55].

2.4. Heterogeneity of input domains and tight coupling between encoding and
reasoning

Knowledge-base creation is an iterative process. The ability to encode knowledge efficiently depends
not only on the framework being used to encode knowledge facts, but also on availability of solvers
that can test the encoded knowledge fragments for errors. It is rarely the case that a first attempt re-
sults in a correct and useful knowledge-base. Our experience indicates that the processes of encoding
knowledge fragments and reasoning over them are in fact tightly interlinked.

There are a multitude of encoding and reasoning approaches, each designed or natural for pro-
cessing a specific type of knowledge. We can distinguish two orthogonal ways of specializing en-
coding and reasoning: algorithmic domains and application domains. A variety of languages exist to
model knowledge within algorithmic domains. For example, the Plan Domain Definition Language
(PDDL) [64] focuses on encoding decision-making problems, while temporal logics [65] are more suit-
able for modeling and reasoning about the temporal relations among events. Similarly, knowledge
graphs [21] are particularly efficient for approximate inference using embeddings while Markov Logic
Networks [66] are better suited when dealing with knowledge fragments that contain probabilistic
logic facts. These representation languages are domain independent and are efficient representations
for specific algorithms such as planning, model-checking, or deductive reasoning.

Domain independent reasoning, however can become inefficient. In many cases, both the encoding
and the reasoning algorithms can be specialized to particular domains where only certain queries are
of interest. For example, the language, concepts and machinery used to model and solve computa-
tional fluid mechanics problems are different from the ones used in structural mechanics, which are
in turn different from the ones used in dynamics and control.

No principled technique exist currently for a systematic orchestration of knowledge elicitation,
encoding, fusion and testing of such multitude of algorithmic and applications domains [67]. We



note here that frameworks such as DeepDive [8] and Fonduer [3] focus on the multi-modal aspect
of knowledge contained in the input sources, but they have not been stress-tested in the case of
heterogeneous knowledge domains.
Recommendations: There have been some recent advances in the area of knowledge graphs and
semantic web that try to achieve knowledge fusion by leveraging ideas used for data fusion [68]. Data-
fusion inspired knowledge-fusion techniques [68], together with specialized domain solvers (e.g., [69]
for combinatorial reasoning) could provide a useful starting point towards solving the knowledge
fusion problem in general for aviation and autonomy applications. More advanced techniques could
be borrowed from the theorem proving community that has been very active in defining general ways
of combining theories and solvers as in the case of Satisfiability Modulo Theories [70]. In addition,
development of interface languages, translators, and reasoners to orchestrate different solvers and
cross the boundaries of different domains would also be needed.

2.5. Proficiency testing

As we mentioned in Section 2.1, a crucial gap in existing AKBC frameworks is the limited ability to
define large-scale automated tests that can be used during the AKBC process. Existing benchmarks,
for example those that are used in assessing performance of various NLP tools fall well short of testing
real-world understanding [31]. Effective and scalable proficiency testing techniques are required in
AKBC process for multiple reasons: (1) to catch non-obvious errors during the initial construction of
knowledge-bases, (2) to resolve conflicts during the run-time update process when new information
about the external world needs to be incorporated in the knowledge-base, and (3) to enable human-
legibility and certification which would rely on demonstrating and explaining the understanding of
aviation knowledge through performance on designed tests [71, 72, 73, 74].
Recommendations: We recommend borrowing ideas from formal methods and software testing
communities [75] for expanding the current suite of tests used in various NLP and AKBC frame-
works [76, 77, 31]. It is expected that the most effective proficiency testing approaches would be
those that combine manually designed tests with those that have been instantiated from templates
(through concretization to specific contexts).

3. Conclusions

The introduction of autonomy in the management of complex systems and their operations requires
developing knowledge-bases that can be used for reasoning and decision-making. Manual construc-
tion of these knowledge-bases is inefficient, requiring multi-year efforts and hundreds of contributors.
Thus, Automatic Knowledge Base Construction (AKBC) techniques are very much sought in related
applications domains. Recent advances in Machine Learning have enabled the development of tools
for Natural Language Processing, Natural Language Understanding, and Machine Reading Compre-
hension that show promise in ingesting raw sources such as text and tables to create knowledge-bases.
The aviation industry could benefit from these new technologies, but the resulting knowledge-bases
must satisfy stringent assurance requirements that support certification processes. We believe that
an AKBC system for these kinds of applications requires the integration and enhancement of several
techniques and that it is yet to be developed. The aviation context needs to be captured by a corpus
of relevant documents and additional inputs such as extraction rules. Additional context should be
injected as interpretation of relations provided by analytic and simulation models. The structure of
aviation documents should be exploited in the extraction process to provide the right semantics to
parts of speech in different paragraphs. The extracted information should be encoded in languages



that enable formal reasoning to further reduce ambiguity and noise. The encoded knowledge should
be fused with background knowledge and a variety of domain-specific reasoning engines should be
harmonized to lead to a high-quality knowledge-base. Finally, the constructed knowledge-base should
undergo rigorous proficiency testing to provide assurance and refine its content.

While several gaps exist, we believe that the current set of technologies are promising and that
a concrete research roadmap could be developed to construct high-assurance knowledge bases for
safety critical applications.
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