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ABSTRACT

Microservices have become a popular way to build and deploy
software systems as they allow engineers to break down sys-
tems into smaller components that can be deployed and main-
tained independently. Interactions with these systems typi-
cally employ a Graphical User Interface (GUI) that weaves
and orchestrates the services together to perform use cases.
However, each time the requirements change or the underly-
ing services change, the logic in the GUI must be updated,
increasing maintenance costs. There is a need for the orches-
tration logic to be more flexible. We present an automated
approach to build user interfaces using natural language that
can augment or replace these types of graphical interfaces.
Our approach creates the user interface by extracting intents
from requirement statements and satisfying them by dynami-
cally orchestrating the underlying microservices. We are able
to handle requirement changes as well as adding, removing, or
updating services on the fly without additional development.

CCS CONCEPTS

• Human-centered computing → Natural language inter-
faces; • Software and its engineering → Software prototyp-
ing.
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1 INTRODUCTION

Applications have traditionally been built as a monolith where 
a Graphical User Interface (GUI) is tightly coupled with the 
underlying business logic. The needs of the users change 
over time leading to changes in the GUI or the business logic.
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System changes are also needed to fix defects that are un-
covered in production. In a monolithic system, if either the
GUI or the business logic changes, the entire system has to be
updated, repackaged, and redeployed. This pattern increases
development, testing, and deployment time. It also reduces
user satisfaction as there are times when the system must be
patched or is unavailable due to maintenance.

To mitigate these challenges, there has been a paradigm
shift to the DevOps [9] software engineering model. A com-
mon DevOps practice is to adopt a microservices architec-
ture [27] where the system is decomposed into smaller, sim-
pler components (services) that can be developed and de-
ployed independently. These services work together to per-
form system tasks and use cases. This architecture allows
different teams to work on different services, make updates,
and deploy code while reducing coordination of large changes
across the system. It also allows the GUI to be decoupled from
the business logic with each underlying microservice fulfill-
ing a portion of one or more use cases. The orchestration
logic in the GUI determines which services to call and the
invocation sequence of the calls.

However, in the microservices architecture, the GUI is still
not flexible because the service orchestration code has to be
updated each time the requirements change, the underlying
service interfaces change, or the services are retired. To make
the user interface more flexible, emerging designs use natural
language to augment or replace the GUI. Examples of these
types of interfaces include Amazon Alexa [3], Apple Siri [7],
Google Assistant [19], and Microsoft Cortana [26]. These
conversational interfaces, dubbed smart assistants [32], fulfill
various tasks (e.g. ordering a pizza). Each task is supported
by one or more capabilities of these smart assistants. The ca-
pabilities are generally built manually (e.g. using Alexa Skills
Kit [2]) in a flowchart-like manner. The flow and execution
of the skills is rigid and require manual changes to handle
varying user interactions and service bindings.

In this paper, we combine the loose coupling strength of
the microservices architecture with the flexibility of natural
language interfaces to build a dynamic user interface. Our
approach takes a set of requirements (e.g. the system shall
support ordering a pizza) and a set of available microservices
to dynamically generate a natural language user interface on
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the fly. Using the requirements, we automatically extract the
user intents, then extrapolate phrases and utterances from the
requirements and map them to the intents to handle varying
user interactions. We create models from the available mi-
croservices using their OpenAPI specifications [30] to derive
service orchestration flows that satisfy the intents. This allows
for the orchestration logic to be dynamically built depend-
ing on service capability and availability. If the requirements
change or the underlying microservices change, our approach
is able to automatically regenerate the interface. We built a
prototype showing that this approach is feasible.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information and an overview of
related works. Section 3 describes the research challenge and
the motivation for our work using a simple example. Section 4
provides the details of our approach, while Section 5 describes
the prototype we built and our preliminary results. The paper
concludes with a discussion of limitations and future work in
Section 6.

2 BACKGROUND AND RELATED WORK

DevOps [9] is a combination of development and operations
software engineering practices. Under a DevOps model, de-
velopment and operations teams work together across the
entire application lifecycle. A common practice in DevOps is
to adopt a microservices architecture [27] where the system
is decomposed into smaller, simpler components that can be
developed and deployed independently. There are many bene-
fits of using the microservices paradigm including increased
autonomy, better fault isolation, continuous delivery, scalabil-
ity, and reusability [13]. The OpenAPI specification [30] is
the de facto standard that describes microservices. It facili-
tates machine-to-machine communication over RESTful [15]
application programming interfaces (APIs).

Smart assistants [3, 7, 19, 26, 32] are an emerging type
of user interface that use natural language to fulfill user in-
tents through conversation. Many tools are available that help
power these smart assistants. Amazon Web Services (AWS)
offers Lex [5], Comprehend [4], and Polly [6]. Lex is a service
for building conversational bots that can understand natural
language in both text and audio. It performs speech-to-text
conversion and intent management using the same deep learn-
ing [18] algorithms that power Alexa [3]. Comprehend is a
natural language processing (NLP) service that can under-
stand text and extract key phrases, places, events, entities,
and overall sentiment. Polly is a text-to-speech service that
synthesizes audio from text input.

Building chatbots using serverless computing has been
investigated [35] with IBM OpenWhisk [20]. However, mi-
croservice orchestration and the OpenAPI specification were
not used. One way to orchestrate multiple disconnected ser-
vices is through a graph framework that makes connections

between RESTful APIs using a meta-model to describe their
properties [1]. In another approach [16], dependency rela-
tionships between elements are captured and elements are
combined to build form-like user interfaces, but this is lim-
ited to manipulation of spreadsheet cells and formulas. Our
approach is more generalized and independent of the type of
user interface. Previously, mobile apps have been designed
to combine app functions by running multiple apps in the
background [22]; our approach is more responsive because
it calls API endpoints independently without waiting on all
services.

Slot filling is a common technique used to derive param-
eters used by chatbots and smart assistants. One approach
to slot filling is using conditional random fields (CRFs) [25].
Other techniques use recurrent neural networks [23, 25, 36]
and word confusion networks (WCNs) [33] in addition to
CRFs. When attempts at slot filling and general dialog are
unsuccessful, admitting failure, showing a list of capabili-
ties with examples, and providing a witty cover-up can be
helpful, as shown by a study conducted on first-time chatbot
users [21]. More robust automatic speech recognition (ASR)
systems can be built with noise feedback loops and labeled
word bins [33].

Paraphrase generation is used to exemplify the different
types of natural language inputs when invoking an intent.
Ganitkevitch et al. have developed a Paraphrase Database that
contains over 200 million paraphrase pairs generated using
bilingual pivoting [17]. In this technique, phrases are trans-
lated from a source language to a pivot language and then
translated back to the source language, creating a new phrase
in the source language. Marton et al. have proposed an im-
proved statistical machine translation (SMT) method which
uses monolingually-derived paraphrases, not relying on bi-
texts and therefore having larger amounts of training data [24].
Additionally, Monte-Carlo sampling [12] and statistical para-
phrase generation [37] have been developed as alternatives to
SMT, each with their own strengths and weaknesses. Class
diagrams have also been used to generate paraphrases based
on abstract syntax [10]. Campgna et al. have proposed formal-
izing virtual assistant capabilities using a Virtual Assistant
Programming Language [11]. They use crowdsourced para-
phrases and data augmentation, along with the synthesized
data, to train a semantic parser and lessen manual efforts.
Iris [14] presents a way to support complex tasks by com-
bining commands through nested conversations and applying
them in the data science domain. The Iris team created a
domain-specific language that transforms Python functions
into combinable automata and regulates their combinations
through a type system. Our approach is more generalized
and can be applied in any domain that uses the OpenAPI
specification, but there may be opportunities to combine the
techniques.



Dynamic Natural Language
User Interfaces Using Microservices

IUI ’20 Workshops, Cagliari, Italy,

3 RESEARCH CHALLENGE

We use a simple pizza ordering application to illustrate the
research challenge and help the reader understand the mo-
tivation of our work. In this application, the user interacts
with a GUI to place pizza orders by filling out a form with
information about the pizza, including the size and toppings.
Then the user fills out another form with payment information.
Finally, the application verifies the payment information with
a third-party interface and submits the pizza order.

In a traditional architecture, shown in Figure 1a, the GUI
is tightly coupled with the underlying business logic. The
logic for gathering the user inputs, verifying the payment
information, and placing the pizza order is packaged into a
monolithic system. A change to any part of the application
involves development and redeployment of the entire appli-
cation. For example, if the third-party payment interface is
discontinued, the application must be updated to handle that
change. Since the user interface is coupled together, the entire
application must be redeployed.

A microservices architecture can overcome this issue by
decomposing the system into multiple small components so
they can be developed and deployed independently as shown
in Figure 1b. The pizza ordering application is divided into
three components: the GUI, the payment processing microser-
vice, and the pizza order placement microservice. With this
approach, if the third-party payment interface changes, only
the payment processing microservice needs to be updated,
and the remaining application stays unchanged. However, the
orchestration logic to first call the payment service and then
the ordering service is hardcoded in the GUI. The workflow
logic to satisfy the user intent to order a pizza is not flexible
or dynamic. For example, if a new payment processing mi-
croservice were to be used, the GUI logic must be updated to
leverage that service and the GUI will have to be redeployed.

Smart assistants belong to an emerging class of user inter-
faces that are more flexible. However, the underlying logic
to fulfill user intents is still built at design time. Supported
intents, as well as their input parameters, must be developed
manually. Deviations from the scripted interaction flows are
not well supported. There is also no standard way to fulfill

Figure 1: (a) Traditional architecture (b) Microservices archi-
tecture

the intents; it is left up to the designer. Our approach com-
bines the loosely coupled microservices architecture with the
flexibility of the natural language interface to overcome these
challenges. We are able to automatically generate the user
interface on the fly by processing OpenAPI specifications
for microservices and mapping them to user intents that are
derived from simple requirement statements. We can automat-
ically derive the intents, supporting invocation phrases, and
parameter slots to dynamically orchestrate the services.

4 APPROACH

The overall approach is shown in Figure 2. To generate the
natural language user interface, we take a set of microservices,
defined using the OpenAPI specification [30], and a set of
requirement statements as inputs. The microservices are a set
of endpoints that are available for use in the system. They can
either be curated, discovered via crawling, or obtained from
a service registry. The requirements are a set of statements
written in natural language commonly found in many sys-
tem requirement specifications (e.g. the system shall support
ordering a pizza).

As shown in Figure 2, we analyze each microservice by
parsing its OpenAPI specification to understand its structure,
semantics, and behavior. This information is captured into
two models, namely the Services Model (SM) and the In-
vocation Graph Model (IGM). The SM captures syntactic
and semantic information regarding each endpoint in a given
microservice. Syntactic information includes the operations
each microservice supports (e.g. F1), the parameters needed
to invoke each of the operations (e.g. size), the order and
type of each parameter (e.g. string), whether the parameter
is required, and the output of each operation (e.g. number).
The semantic information of each endpoint is captured by
analyzing specification metadata (e.g. cost of pizza based on
options) as well as the text in the endpoint name itself. After
the SM is generated, we develop a set of graphs for each of
the endpoints within and across the microservices that can be
connected together and capture it in the IGM.

We use two simple rules to infer if two endpoint operations
are to be connected. Connect them only if: 1) their syntactic
signatures are compatible, and 2) they are semantically com-
patible. These rules are satisfied by using information from
the SM. The syntactic compatibility is very similar to method
or function signatures used in programming languages and
determines if the operations can be connected (e.g. if func-
tion F1 returns a number and function F2 takes in a number
parameter, then F2(F1) is syntactically compatible). The se-
mantic compatibility is based on text analysis to determine
if the operations should be connected based on the similarity
of their input and output (e.g. if F1 returns a dollar amount
and F2 takes in a dollar amount, then they are semantically
compatible). The result is a set of graphs, or orchestration
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plans, that describe the possible invocation sequence of the
microservices. We optimize the plans based on service avail-
ability, latency, and other quality of service attributes. The
optimization also takes into account the quality of the user in-
teraction from previous executions. Each plan is scored based
on these criteria.

After the models are created, we take the requirement state-
ments and apply key phrase detection to understand the intent
of each statement. This process involves implementing termi-
nology extraction, which ranks n-gram [34] candidates within
the text. This ranking is converted to a relevancy score using
tf-idf [31], a frequency statistic that shows the importance of
words in a given corpus. This is used to determine the overall
intent of each requirement statement. For example, given a
set of requirements that start with the system shall support
x, the x in each statement would be given more weight and
interpreted as the intent. This method is used to be able to
support legacy systems where the the system shall support
x format is commonly used. It can also be applied in cases
where standardized formats such as the system shall support
x are not available and we need to extract intent(s) from non-
standard textual descriptions (e.g. use case description or user
story text). Additionally, for simpler systems, the intents can
be supplied as a list of of words or phrases directly without
having to perform semantic parsing.

To handle user interactions, each intent is mapped to one or
more orchestration plans in the IGM by inferring the seman-
tics of the intent as well as the semantics of the nodes of the
orchestration plan. As seen in Figure 2, the set of intents can
each be mapped to a set of invocation sequences (e.g. F1 →
F2 or F9 → F10 → F11 as two separate orchestration plans).
In the pizza ordering example, there may be two orchestra-
tion plans in the IGM that involve calling different payment
services for pizza ordering. Semantically they are very close
and are related to pizza ordering, but beneath the surface they
invoke different services. The pizza ordering intent can be
connected to both plans, but the plan with the higher score
will be executed at runtime.

Once an intent is mapped, several invocation phrases are
created using natural language generation [10, 12, 17, 24, 37]
to capture the various ways the intent can be invoked. The
seed phrases are derived using the requirement statements
and the intents. We use the SM to incorporate the parame-
ters needed for a particular intent and corresponding invoca-
tion phrases. This helps generate possible conversation flows
within the system, as each intent knows what parameters it
needs from the user for each orchestration plan. In the pizza
ordering example, the specification may list an enumerated
type for pizza size (e.g. small, medium, large) that defines
the valid values for the size parameter. It may also mark re-
quired parameters that the user must provide to continue the

Figure 2: Approach Overview
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conversation. The invocation phrases are used as a training
set for a neural network model that maps user utterances to
intents (e.g. I would like a pizza vs. I would like a large pizza,
where large is the size parameter). This allows the interface to
handle varying user queries by resolving to the correct intent
and automatically filling in given parameters when possible.
We intentionally underfit our model to allow wide-ranging
user interactions.

The next sections describe our approach in further detail.

Services Model

The Services Model (SM) provides an abstraction on the
most pertinent details of the service specification. It helps
us understand what the endpoints do, what parameters they
require, and how they may be able to call each other.

To build the SM, we parse the specification for each end-
point in each microservice. Figure 3a shows a partial Ope-
nAPI specification for the pizza ordering microservice. We
parse the specification based on the version information, in
this case 3.0.0 (line 01). We also extract metadata information
such as the title (line 03). For each endpoint (e.g. order-pizza,
line 05), we extract the summary information as well as the
inputs and output for the endpoint.

In this example, we see that the input parameters (line
08) include a size parameter (line 09), as well as the size
parameter’s description (line 11), type (line 14), and list of

enumerated values (lines 15-18). We also see that this pa-
rameter is required (line 12). The response (line 93) of this
endpoint tells us the description (line 95) and the return type
(line 99).

Using this information, we can create the model for this
endpoint as shown in Figure 3b. The semantic portion of
the model captures the meaning of this endpoint described
by the name of the endpoint, the summary of the endpoint,
and the description of the parameters. This can be as sim-
ple as capturing a list of keywords. The syntactic portion of
the model represents the endpoint as a function with input
parameters and output along with their data types. This infor-
mation is used to connect endpoints together as described in
the Invocation Graph Model section below.

One thing to note is that there may be multiple function
signatures listed due to the optional parameters. Since param-
eters other than size (toppings, crust, etc. not shown in the
partial specification) are not required, it is possible for the
user to optionally supply these parameters.

Invocation Graph Model

The Invocation Graph Model (IGM) informs us how the ser-
vice endpoints are connected together. The service endpoints
can invoke other endpoints in the same service or in other
services. The invocations are captured as a graph where the

Figure 3: (a) Partial OpenAPI specification for pizza ordering service, (b) Partial Services Model based on the specification
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nodes are the endpoints and the edges are the calls. As pre-
viously mentioned, these invocation paths are also known as
orchestration plans and are used to fulfill user intents.

To construct the IGM, we use a similar approach described
by Atlidakis et al. [8]. However, we connect the endpoints
based on their semantic information as well as their syntactic
information from the SM. Figure 4a shows two partial end-
points in the SM. One endpoint is from the pizza ordering
microservice, and another is from the payment processing
microservice. The points of interest are marked by 1○ and 2○.
Given this information we would like to see if they should
be connected. To infer if two endpoint operations are to be
connected, we use two rules described earlier: connect them

only if their syntactic signatures are compatible and if they
are semantically compatible. We see that the output semantic
information for the order-pizza endpoint is very similar to
the input semantic information of the payment-processing
endpoint 1○. Additionally, the syntactic signatures are also
compatible; one outputs a number and the other takes a num-
ber as the input 2○. Based on this information, we connect
these two endpoints.

By connecting endpoints based on these two rules, we de-
rive the IGM as shown in Figure 4c. This partial model shows
the two endpoints we connected for pizza payment processing
F1 → F2, and the connection is marked using 1○ and 2○. Fig-
ure 4c also shows several other notional endpoints (F3 to F15)

Figure 4: (a) Partial Services Model for the pizza ordering service and payment processing service, (b) Intents to be mapped to one
or more invocation graphs, (c) Partial Invocation Graph Model showing inferred connections
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that may be connected in the same manner. Together these
represent the possible invocation sequences in the system. It
should be noted that it is possible to have a single node in the
graph if we inferred that a service does not need to call any
other services to fulfill its objectives. It is also possible for a
service to invoke other endpoints within itself (e.g. F5 → F7)
or not require other services at all.

Now that the invocation flows have been inferred, we map
the intents to one or more invocation flows in the IGM. The
intents are connected to the first node of the invocation se-
quences as seen in Figure 4b. We can infer the pizza ordering
intent can be connected to F1 based on the semantic informa-
tion of F1 (i.e. summary field) compared to the intent itself.
All inferences made are probabilistic in nature and it is pos-
sible to have incorrect mappings. However, we improve this
over iterations based on the satisfaction of the user interac-
tions.

Essentially, when an intent is triggered by the user, the
system executes a path in the IGM. The user is prompted by
the system to supply all required parameters at each node to
continue on to the next node. Therefore, it is easier for the
user to be able to directly supply some of the parameters,
both required and optional ones, when invoking an intent.
To support this, we generate a set of invocation phrases as
described in the next section.

Invocation Phrase Generation

To handle the various ways the user can invoke intents, we
extrapolate invocation phrases based on the requirements and
information from the SM. Figure 5c shows the requirement
statement for ordering pizza. From this requirement, we de-
rive the intent as shown in Figure 5d. To do this, we take

the requirement statements and apply key phrase detection to
understand the intent of each statement. As previously men-
tioned, this process involves implementing terminology ex-
traction, which ranks n-gram candidates within the text. This
ranking is converted to a relevancy score using tf-idf [31]. In
the simplest form, the least common n-gram can be used as
the intent (e.g. ordering pizza).

We know from the IGM that this intent is mapped to the
order-pizza endpoint, and the SM tells us the semantic and
syntactic information regarding the endpoint including param-
eter information. Figure 5a shows a subset of the parameters
for the pizza ordering endpoint, namely the enumerated val-
ues. Recall the enumerated data type for the size parameter
from the sample specification listed in Figure 3a. We take the
requirement statement from Figure 5c and the parameter in-
formation from Figure 5a to generate invocation phrases and
place various parameters in the phrases. This can be achieved
via paraphrase generation techniques [10, 12, 17, 24, 37].
We take these generated invocation phrases in Figure 5b and
reduce them back to the intent in Figure 5d by training a
neural network. This helps the users interact with the system
in various ways for each supported intent.

It is possible for nonsensical invocation phrases to be gen-
erated (e.g. can you order pizza to large in Pete’s Pizza?), but
this is acceptable because it just means the user will not inter-
act with the system in this manner. We intentionally generate
many invocation phrases for each intent to have sufficient
coverage. Currently, it is a limitation that we only support
parameters with a known domain (i.e. enumerated types) as it
is not feasible to consider all possible strings. However, if the
domain was not specified or the parameters are not present
in an invocation phrase, the system will prompt the user for

Figure 5: (a) Sample parameters for the pizza ordering endpoint from the Services Model, (b) Extrapolated invocation phrases for
the pizza ordering intent generated using the requirement statement and parameters, (c) Subset of the requirements statements, (d)
Pizza ordering intent derived from the requirement statement; extrapolated invocation phrases for this intent are trained to map to
this intent
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the required parameters when executing the endpoints. This
mitigates the limitation, but the user interactions are less fluid.

Orchestration Plan Ranking

Each orchestration plan – or invocation sequence path in
the IGM – is used to fulfill a user intent. Since the plans
are inferred automatically and each intent can be mapped to
multiple plans, we use two strategies to rank the plans and
improve the quality of the user interactions. These strategies
are used together to select the best plan for execution. If an
intent can be fulfilled by multiple plans, then the plan with
the highest score is always selected for execution followed by
lower ranked plans.

First, we monitor health information for each service such
as CPU, memory, I/O, and network use as well as the current
load and latency on that service. This information is refreshed
in near real time and used to assign a quality of service score
to the services. The quality of each plan is calculated by
factoring in the quality of service score for every service
within the plan. Healthier and more responsive plans are
ranked higher.

Second, we also keep the execution history and user inter-
actions for all intents. By analyzing user interactions, we can
identify patterns of successful or satisfactory orchestration
plans over time. This is similar to detecting spam e-mail; the
more users that mark an e-mail as spam, the higher the likeli-
hood that the e-mail is indeed spam. Similarly, if many users
are frustrated with an interaction, it is likely that the plan
is not very good at fulfilling the intent. For example, if we
observe that many users are individually repeating variations
of the same query, it is likely that their intent is not being ful-
filled and the orchestration plan supporting that query should
be replaced. Plans that satisfy intents for large number of
users without issues are ranked higher.

5 PROTOTYPE AND EVALUATION

We built a prototype that implements our approach as shown
in Figure 6. Five microservices were used in the prototype:
weather, jokes, stocks, top songs, and pizza ordering. The
weather service provides the weather for a given location. The
joke service provides jokes for a given topic. The stock service
provides stock prices for ticker symbols. The song service
provides names of the current top songs. Finally, the pizza
service simulates ordering pizzas. We created a web applica-
tion to facilitate the user interactions, manage requirements,
and manage service specifications. We used five requirement
statements to describe the desired functionality.

As seen in Figure 6, to begin interactions, the user either
speaks into a microphone or types a query. The recorded
audio is passed to Amazon Lex to convert from speech to
text. In the case of the user typing in the query, this step is
skipped since the text is already available. The text input is

then passed to Amazon Comprehend for analysis. Next, a
custom-developed component, called the Service Invocator,
executes an orchestration plan based on the intent that matches
the invocation phrase. The result of the execution is then
passed back to the web GUI as text and audio. To generate
audio, we use the Amazon Polly text-to-speech service.

The prototype parses the OpenAPI specification for each
microservice and creates the SM. Then it creates the IGM
based on the signatures and semantic metadata for each end-
point. We use Comprehend to perform key phrase detection
to generate n-gram frequency statistics from the requirement
statements. The least common unigrams and bigrams serve
as the intents. We map the intents to the graphs in the IGM
to create the potential interaction flows. The mapping is done
by key phrase similarity matching between the intents and
the endpoint metadata. For this prototype, most graphs in the
IGM only contain a single node, but the pizza ordering flow
contains multiple nodes. This is expected because the intent
to check the weather only requires invoking a single microser-
vice, whereas ordering a pizza requires invoking multiple
microservices. Ranking the orchestration plans is straightfor-
ward in the prototype as we have a very small number of
graphs.

After the set of intents is determined and mapped to the
IGM, we use a neural network model in Amazon Lex and
train it with sample invocation phrases to correctly map user
utterances to intents. We employ a simple strategy to gen-
erate these sample training invocation phrases. We use the
requirement statements, intents, keywords, and entities, then
combine them with invocation words (e.g. what, how, where,
want, can, will) and common verbs to form sentences that are

Figure 6: Prototype System
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Figure 7: (a) Parameter mapping, (b) Maximum parameters in invocation phrase training

in the first person perspective (e.g. I want to order a pizza).
While generating training invocation phrases, we have to prop-
erly incorporate the SM parameters. Figure 7a shows how
well training phrases mapped parameters for the pizza order
intent as a function of the number of training phrases used.
For this training, 500 phrases were generated with parameter
names derived from the SM. From these 500 phrases, we set
aside separate groups of 2, 4, 8, 16, and 32 randomly-selected
phrases (for a total of 62) to be used as training data. We
then created five different bots, each trained with one of these
training sets. The remaining 438 phrases from the original
500 were used as test data. Each bot was tested using these
same 438 test phrases and the percent of parameters that cor-
rectly resolved was calculated. Figure 7a shows that there is
initially a significant increase in the parameter resolution as
the number of training phrases increases, but then it begins
to plateau. Additionally, to determine a rough threshold on
the number of training phrase parameters needed to build a
bot that could reliably map invocation phrases with poten-
tially unlimited parameters, we created multiple bots with
different numbers of training phrase parameters. Figure 7b
shows this testing. For example, there was a bot trained with
phrases that each had a maximum of 2 parameters. It was
trained with 327 phrases (created from permutations of the
parameters, common verbs, and invocation words) and when
tested against invocation phrases with at least 2 parameters
(and up to 6), it correctly mapped 100% of the parameters. As
seen in Figure 7b, training a model using phrases with only
to 2 parameters was sufficient to correctly map invocation
phrases with up to 6 parameters.

It took 58 seconds to automatically generate a pizza or-
dering Lex chatbot with 1500 (the Lex limit at the time of
experimentation) sample invocation phrases. It took a trained
user 7.5 minutes (772% longer) to manually build the same
chatbot with 10 sample phrases. Of that time, the user spent
over 2 minutes creating the invocation phrases, so we can
project that it would take nearly 6 hours (37,000% longer) to
manually build the same 1500-phrase bot. Although it can be
argued that using phrases created by a trained user would be
of better quality (Figure 5b shows the system generating some
non-sensical phrases), this may not necessarily be the case
since automatic generation provides a much higher quantity of
phrases, which allows for a more varied set of user utterances.
The quantity and diversity of phrases created automatically
would be sufficient as the goal is to provide varied coverage
for the intents. Also, manually building, updating, or main-
taining the interface supporting all of the intents would take
much longer. From this we see that not only is it possible to
regenerate the user interface without additional development
effort, but it also takes much less time.

Lastly, to evaluate the flexibility of the user interface, we
removed some of the requirement statements and then regener-
ated the interface. We verified that the intents supporting these
requirement statements were no longer handled by the sys-
tem. Similarly, we removed some of the available underlying
microservices while leaving the original set of requirement
statements and rebuilt the interface to verify that the system
no longer handled the intents affected by these microservices.
This shows that our approach is dynamic and allows us to
add, remove, and update services on the fly without additional
development.
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6 CONCLUDING REMARKS AND FUTURE WORK

We have presented a novel way to automatically generate nat-
ural language interfaces using microservices. Our approach
shows that user intents can be understood from simple re-
quirement statements and satisfied by underlying services.
By exploiting the OpenAPI specification and NLP, we are
able to dynamically orchestrate microservices and fulfill user
intents. Even though the initial prototyping efforts using a
handful of microservices were fruitful, challenges remain
with more complex conversational interactions (e.g. account
for contextual factors such as sentiment, personality, emotion,
dialogue state). We plan on exploring ways to integrate adap-
tation algorithms to tackle these types of personalization and
conversation modeling issues. Our requirements statements
are also simple and do not capture more nuanced capability
descriptions (e.g. use cases and user stories). In the future,
we plan to address these challenges, improve our heuristics
to scale, and deploy the system in an enterprise environment.
We plan to explore ways to utilize centralized logging and
apply machine learning techniques to improve our orchestra-
tion plan ranking. We also plan to explore GraphQL [28] as
an alternative to OpenAPI, and explore synergy with service
meshes such as Istio [29].

GraphQL is an up-and-coming API standard that provides
a more efficient, flexible, and robust alternative to the widely
used OpenAPI standard. Unlike RESTful APIs, GraphQL
exposes only a single endpoint that provides the ability for
callers to specify which data to return as well as mutators
to update the data. By using GraphQL, we may be able to
simplify our model generation as there is only one endpoint,
and all entities and mutators are predefined.

A service mesh is a dedicated layer on top of microservices
to connect, manage, and secure the services. As the number of
services grows, so does the complexity of their connectivity
and management. This infrastructure layer routes requests
and optimizes traffic flow between microservices. However,
the management of the mesh itself is a laborious task and
it may be possible to extend our technique to build a mesh
automatically or annotate it to fulfill user intents.
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