

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Annotation of existing databases using Semantic Web
technologies: making data more FAIR

Johan van Soest1,2, Ananya Choudhury1, Nikhil Gaikwad1, Matthijs Sloep1, Michel
Dumontier2, Andre Dekker1

1 Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Devel-
opmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands

2 Institute of Data Science, Maastricht university, Maastricht, The Netherlands
*johan.vansoest@maastro.nl

Abstract. Making data FAIR is an elaborate task. Hospitals and/or departments
have to invest into technologies usually unknown and often do not have the re-
sources to make data FAIR. Our work aims to provide a framework and tooling
where users can easily make their data (more) FAIR. This framework uses RDF
and OWL-based inferencing to annotate existing databases or comma-separated
files. For every database, a custom ontology is build based on the database
schema, which can be annotated to describe matching standardized terminolo-
gies. In this work, we describe the tooling developed, and the current imple-
mentation in an institutional datawarehouse pertaining over 3000 rectal cancer
patients. We report on the performance (time) of the extraction and annotation
process by the developed tooling. Furthermore, we do show that annotation of
existing databases using OWL2-based reasoning is possible. Furthermore, we
show that the ontology extracted from existing databases can provide a descrip-
tion framework to describe and annotate existing data sources. This would tar-
get mostly the “Interoperable” aspect of FAIR.

Keywords: FAIR, annotations, terminologies, linked data.

1 Introduction

Semantic interoperability has been a topic in medical informatics since the introduc-
tion of the digital patient chart [1]. However, in recent years, the interoperability as-
pect is only one of the issues, covered by the FAIR (findable, accessible, interopera-
ble, reusable) principles [2]. These principles extend the interoperable aspect towards
methods to find and access information, and hence promoting reuse of clinical data
for primary or secondary purposes.

Although these principles are perceived as the way forward, implementation is an

elaborate task. Hospitals and/or their departments have to invest into concepts usually
unknown to them, with limited direct insights into the benefit of making data FAIR.
Furthermore, it needs many competences from different specializations ranging from
the IT department (where is what information stored?), and the medical specialty

2

itself (what does a specific value actually mean, and what’s the provenance of this
information?).

Next to these organizational hurdles, the current tools to make data FAIR are not

guiding novice users. Most of the tools are heavily tied into Semantic Web technolo-
gies and require knowledge about these technologies. This approach works for insti-
tutes and companies investing into these technologies, however, doesn’t scale towards
making data (more) FAIR for hospitals with limited dedicated IT staff. As an effect,
the adoption of these new technologies becomes even more difficult as the return on
investment is never shown due to a lack of investigation.

Hence, our aim was to provide a framework and tooling where users can easily

make their data (more) FAIR, while reducing the amount of information needed to get
started. Specifically, to annotate existing datasets using RDFS and OWL statements.

2 Methods

This section is split into two parts. First, we will introduce the methods used to make
data more FAIR. The second part describes our experimental setup.

2.1 FAIR data descriptions extraction

Our implementation expects a database, or folder with comma-separated values files
as input of our framework. In this process, the data description language (DDL) is
being read from the given database structure. This DDL contains the table definitions
(table name, column names) as well as key information (primary keys, foreign keys).
This information is used to build an ontology description, where all tables and col-
umns are unique classes. More specifically, all table class definitions are subclasses of
the overarching class dbo:TableRow, and all columns are subclasses of the overarch-
ing class dbo:ColumnCell. All dbo:ColumnCell classes are annotated to which
dbo:TableRow they are belonging. Primary key columns are specified as a subclass of
dbo:PrimaryKey, where this class itself is a subclass of dbo:ColumnCell. The same
holds for ForeignKey, with additional class annotations regarding the table and col-
umn it refers to. A visual representation of this schema is given in Figure 1.

After describing the database structure in the given ontology, instance triples can

be materialized for every row and cell in the given database. Hence, every database
row will be an instance of the subclass of dbo:TableRow, and every cell for this row
will be an instance a subclass of dbo:ColumnCell. Instances of dbo:TableRow and
dbo:ColumnCell are associated using the predicate dbo:has_column. The URIs of
dbo:TableRow instances will be based on the table name and primary key column(s).
This URI is also used as the base for the dbo:ColumnCell URIs. The actual cell values
are literals connected to the instance of dbo:ColumnCell. For foreign key relation-

3

ships, no instances for dbo:ForeignKey will be created, only a direct relation from
dbo:TableRow to the referred instance of dbo:ColumnCell will be created.

This process of materialization can be executed regularly (e.g. daily) to extract up-
dated information from clinical systems, or regularly updated databases.

Fig. 1. Visual representation of base ontology structure

Although the ontology specifies the database schema and relationships, it does not

add any binding to standardized terminologies for the values in the database. In this
process, the subclasses of dbo:ColumnCell are annotated with rdfs:equivalentClass
axioms. For example, the classes myOntology:myTable.age and myOntolo-
gy:myTable.gender (both a subclass of dbo:ColumnCell), can have equivalent class
definitions ncit:C25150 and ncit:C28421, respectively. Using reasoning, it would
make the instances of myOntology:myTable.age also findable as the more standard-
ized term ncit:C17357.

4

Depending on the type of variable, this would solve the terminology binding issue
for numerical values (depending on the strictness of the equivalent class term defini-
tion). However, for categorical variables, the literal value of the instance does not
correspond to a category defined in a target terminology. We can overcome this issue
by defining restriction classes. For example, when we have gender coded as “m” and
“f”, we could implement the following definitions described in Manchester syntax:

Equivalent class for Male (ncit:C20197):
ncit:C28421 and (dbo:has_value “m”^^xds:string)

Equivalent class for Female (ncit:C16576):
ncit:C28421 and (dbo:has_value “f”^^xds:string)

By adding these RDF statements to the ontology, the reasoner will assign the NCIT
term for male or female to the instance of myOntology:myTable.gender. This is possi-
ble as it was previously defined that this was an equivalent class with ncit:C28421.

This database ontology, combined with annotations to bind standardized terminol-

ogy terms, can be published as a description of the dataset at hand. Being RDF data,
we can search in this ontology using SPARQL to find which data elements are availa-
ble, and its database schema. Furthermore, when materialization of database contents
is performed, we can directly query the instances as well. The workflow of all steps in
this process are described in Figure 2.

Fig. 2. Workflow of the complete process. Green elements are automated processes, orange
elements are manual tasks, and blue elements are the products of these processes.

5

2.2 Testing environment

We tested the above explained methods by developing a tool which can extract the
DDL from the given database to build the given ontology. Furthermore, based on this
ontology, the tool can materialize the triples for the database rows and cells.

This tool was executed on a data-mart of our institutional datawarehouse contain-
ing diagnostic, treatment and questionnaire information of over 4000 rectal cancer
patients treated with radiation therapy [3]. This data mart is nightly refreshed, and
hence our materialization process was synchronized with this nightly refresh.

Afterwards we defined our terminology binding using the provided methods in the
previous section. We stored these triples in a separate graph (together with the ontol-
ogy) to make these triples persistent over the nightly refresh process.

All of this was executed on a virtual machine running Ubuntu 18.04 with 2 vCPUs

and 8GB of RAM. We used Ontotext GraphDB version 8.4.1 as our Graph database
management system, with “OWL2-RL (optimized)” reasoning enabled in the end-
point. The Java Virtual Machine (GraphDB execution environment) was configured
with a maximum memory consumption of 4GB RAM. We measure the times for the
following individual steps in the process: (1) extracting the ontology from the given
database, (2) materializing the triples, (3) uploading the ontology (4) uploading the
triples into the RDF store (5) adding the annotation reasoning rules. This process was
measured for 20 consecutive executions.

3 Results

The tool to extract the ontology, and to materialize the triples is publicly available at
https://gitlab.com/UM-CDS/fair/tools/triplifier. This tool is available as a stand-alone
java application or can be executed as a service in a docker container. Further instruc-
tions are given in the repository itself.

The created ontology, and the annotation triples are stored in
https://gitlab.com/UM-CDS/fair/data/maastro-rectum. Here we can see that 9 equiva-
lent classes are defined, and 13 rules for mapping terminological values for 4 categor-
ical variables. Next to these separate files, there is also an integrated ontology file,
where both extracted ontology and annotation rules are combined. We also included
an example query to retrieve whether a given variable is available, and in which table
this information is available. Furthermore, an extended query is available which also
retrieves the instances for a given patient. Due to patient privacy reasons, this query
can only be executed on the institutional RDF endpoint.

The time measurements for the conversion process are given in Table 1. This

shows reasonable performance for a daily refresh where we see that the actual upload
and parsing process within GraphDB takes most of the time.

6

Table 1. Time measurements for specific steps in the process

Step description Mean time in seconds
(SD)

Remarks

Extract the ontology 0.6 (0.03) 2 tables with
Materializing triples 66.4 (1.14) 3.38 million triples
Upload ontology in RDF store 0.1 (0.02)
Upload materialized triples 482,7 (3.46)

Adding annotation reasoning rules 103.7 (1.03) Dependent on number of
annotations

4 Conclusion & Discussion

We have shown that it is possible to make data more FAIR, by automatically extract-
ing existing data schemas, and annotating these schemas with inferencing rules. Fur-
thermore, we have shown this process can be performed with materialization of data,
however it can be performed without the materialization step as well. In the latter
case, the ontology and reasoning rules can be used to deduce where to find specific
information in an existing database. Afterwards, specific database query mechanisms
can be used to retrieve the actual information. Hence, the materialization step in our
current workflow is an optional step, which can be used if necessary.

This also applies to the reasoning rules used to annotate the given database. We
used an inferencing-enabled database in the current example; however this is not
mandatory. Although this is a machine-readable approach of describing the data, we
can describe the given information in a human-interpretable manner (e.g. male gen-
der, defined by ncit:C20197, is in table “patient” column “gender”, coded as the cell
value “m”).

Instead of following the R2RML direct mapping recommendation [4], we built our
own tool which does not make use of this recommendation. To deviate from this rec-
ommendation, we had several arguments. First, R2RML Direct Mapping means we
have another intermediate description format (based on RDF), where we omitted this
by developing an ontology directly linked to the database. Hence, in our solution, the
end-users do not need to understand an additional description language (R2RML) to
understand where specific information is available. Second, different R2RML imple-
mentations build specific SQL queries, which sometimes become more complex (us-
ing join conditions) based on the database schema given. In our approach, we only
perform one SQL query to materialize the data (“SELECT * FROM <tablename>”),
which is almost sure to work on every RDBMS system (even a folder of CSV files
using the CSV JDBC connector1). Third, the W3C direct mapping specification de-
fines every cell value as a literal, belonging to an instance of the row. This is different
from our current implementation, where every cell is an instance of the column class.

1 http://csvjdbc.sourceforge.net/

7

The latter approach makes it possible to reason over equivalent classes, which is not
possible when table cells are literals. This could be solved by making custom R2RML
files, however these would not follow the direct mapping specification.

Our work is currently limited in only handling RDBMS and CSV/TSV filesystems,
however the concept of annotating RDF classes to standardized terminologies is more
broadly applicable. For example, these annotations can be used in combination with
the Data2Services approach [5]. With respect to Data2Services, our approach differs
in the process of terminology binding. Where Data2Services requires one to build
SPARQL queries to convert terminologies and the data schema in one (or multiple)
queries, our approach only performs the terminology binding. This can be seen as
both a limitation and strength. The limitation is that the schema is going to vary, mak-
ing the task for the data consumer more intensive. On the other hand, by not changing
the data schema, it is clearer to the data consumer what the intrinsic issues with the
source data are [6]. Furthermore, the knowledge to convert data (using SPARQL que-
ries) is not readily available in many hospitals or data providers. Hence, we feel that a
choice between our approach and Data2Services depends on the use case, and who
should handle data conversion.

This brings us to the future work, where we want to build a web-interface on top of
this framework, to guide hospitals to annotate their data source(s). This would hide
the complexity of the reasoning rules to annotate specific database fields. Further-
more, we want to use this platform (including the web-interface proposed) in the Per-
sonal Health Train infrastructure [7, 8], to more rapidly include more FAIR data sta-
tions to expand the network [9].

References

1. Shortliffe, E.H., Cimino, J.J. eds: Biomedical Informatics: Computer Applications
in Health Care and Biomedicine. Springer-Verlag, London (2014).

2. Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L.B., Bourne, P.E.,
Bouwman, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Ed-
munds, S., Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J.G., Groth, P.,
Goble, C., Grethe, J.S., Heringa, J., ’t Hoen, P.A.C., Hooft, R., Kuhn, T., Kok, R.,
Kok, J., Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-
Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T.,
Slater, T., Strawn, G., Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen,
E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J.,
Mons, B.: The FAIR Guiding Principles for scientific data management and stew-
ardship. Sci. Data. 3, 160018 (2016). https://doi.org/10.1038/sdata.2016.18.

3. Meldolesi, E., van Soest, J., Alitto, A.R., Autorino, R., Dinapoli, N., Dekker, A.,
Gambacorta, M.A., Gatta, R., Tagliaferri, L., Damiani, A., Valentini, V.: VATE:
VAlidation of high TEchnology based on large database analysis by learning ma-
chine. Colorectal Cancer. 3, 435–450 (2014). https://doi.org/10.2217/crc.14.34.

8

4. A Direct Mapping of Relational Data to RDF, https://www.w3.org/TR/rdb-direct-
mapping/.

5. Emonet, V., Malic, A., Zaveri, A., Grigoriu, A., Dumontier, M.: Data2Services:
enabling automated conversion of data to services. 10.

6. Lovis, C.: Digital health: A science at crossroads. Int. J. Med. Inf. 110, 108–110
(2018). https://doi.org/10.1016/j.ijmedinf.2017.12.006.

7. van Soest, JohanP.A., Dekker, AndreL.A.J., Roelofs, E., Nalbantov, G.: Applica-
tion of Machine Learning for Multicenter Learning. In: El Naqa, I., Li, R., and
Murphy, M.J. (eds.) Machine Learning in Radiation Oncology. pp. 71–97. Spring-
er International Publishing (2015).

8. Deist, T.M., Jochems, A., van Soest, J., Nalbantov, G., Oberije, C., Walsh, S.,
Eble, M., Bulens, P., Coucke, P., Dries, W., Dekker, A., Lambin, P.: Infrastructure
and distributed learning methodology for privacy-preserving multi-centric rapid
learning health care: euroCAT. Clin. Transl. Radiat. Oncol. 4, 24–31 (2017).
https://doi.org/10.1016/j.ctro.2016.12.004.

9. Lambin, P., Roelofs, E., Reymen, B., Velazquez, E.R., Buijsen, J., Zegers, C.M.L.,
Carvalho, S., Leijenaar, R.T.H., Nalbantov, G., Oberije, C., Scott Marshall, M.,
Hoebers, F., Troost, E.G.C., van Stiphout, R.G.P.M., van Elmpt, W., van der
Weijden, T., Boersma, L., Valentini, V., Dekker, A.: ‘Rapid Learning health care
in oncology’ – An approach towards decision support systems enabling custom-
ised radiotherapy’. Radiother. Oncol. 109, 159–164 (2013).
https://doi.org/10.1016/j.radonc.2013.07.007.

