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Abstract. The automated extraction of quantitative imaging biomarkers from patient’s 

scans, could augment physician decision making in radiation oncology. Unfortunately, 

lack of reproducibility and robust methodology current limits this promising field to be 

applied in the clinic. In this paper, we state how the combination of quantitative medical 

imaging with Semantic Web and Ontologies techniques could speed up the role of quanti-

tative imaging. 
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1 Introduction 

1.1 A new era of medical imaging: from images to big data 

 

Medical imaging has expanded its fundamental role in radiation oncology since the 

advent of the first Computed Tomography (CT) scans in the 70s, followed by PET 

(Positron Emission Tomography) and MRI (Magnetic Resonance Imaging). Radiolog-

ical examination has moved from purely descriptive to semi-quantitative and 

fully automated analysis. In the recent years, the availability of enterprise digital 

imaging and the overflowing role of AI (Artificial Intelligence, like Machine Learning) 

domain (e.g. machine learning) led to the development of many quantitative imaging 

models aimed at assisting and augmenting physician decision-making. The 

term “radiomics” was first created in 2012 and it describes the process of advanced 

quantitative clinical imaging analysis in medicine. The hypothesis behind radiomics 

is that tumor biological properties, often obtained by invasive techniques 

such as tissue biopsies, can be measured in a non-invasive fashion via extracting 

image-based descriptors (referred as ‘features’) from medical images [1].  

After 2012, the number of radiomics computational packages has increased [2]. How-

ever, no consensus has been reached: a) on the optimal configuration that should 

be used to extract these features for a problem; b) about the robustness of radiomics 

features when evaluated in different contexts. Therefore, most of the users 

simultaneously extract features using different parameters, leading to an increase 

of the number of features. Typical radiomic studies often extract from 500 to 10000 

features while starting only from 100 unique features [3] . We are now facing the same 



2 

“data explosion” defined by Rubin about multi-detector row CT scanners. One 

main difference divides the two processes: if the CT data explosion was mainly 

driven by an advance in hardware development, producing more images faster than 

expected; the new quantitative imaging data explosion is driven by automated imaging 

analysis computational pipelines that produce a large amount of processed 

data (e.g. radiomic features) from medical images. This data seems mimicking all 

the attributes of big data: a) volume: the large amount of data to be processed and 

analyzed via machine learning requires now dedicated computational power and 

powerful machine learning able to deal with a large hyperspace of parameters; b) 

velocity: new data are generated faster as soon as new computational radiomics 

software become available, with a larger hyperspace of parameters that can be 

tuned for features extraction; c) variety: not only singe features should be stored in 

quantitative imaging, but also information about the original source (image, region 

of interest, computational details) making the data variety larger; d) veracity: in the 

hyperspace determined by features and associated metadata, some information 

could be redundant and only meaningful one should be extrapolated [3]. For all the 

above-mentioned reasons, quantitative imaging strictly connects to the world of big 

data. We believe that extending the usage of ontologies and Semantic Web technologies 

to quantitative imaging could help solving some of the issues that would be presented 

in the next paragraph and further speed up the adoption and acceptance of new image 

based quantitative biomarkers in the clinic.  

1.2 Reproducibility crisis in quantitative imaging 

 

Still a strong unbalance exists between published radiomics-based prediction models 

and their real usage as decision support systems in the clinic [4]. 

The lack of reproducibility and transparency in radiomics is the major slowdown 

of its applicability in the clinic [5]. The lack of reproducibility mainly relates to 

the fact that most radiomics-based models are built on limited-datasets and often vali-

dated in one single institution, with no guarantee of generalizability power when ap-

plied to multiple centers. This evidence also seems colliding with recommendations 

from the TRIPOD (Transparent Reporting of a Multivariable Prediction Model for In-

dividual Prognosis or Diagnosis), suggesting and encouraging TRIPOD IV-type mod-

els, which are fully validated on completely independent external datasets [5]. TRIPOD 

IV models are based on the possibility for an external user to fully reproduce and vali-

date a previously developed model. Unfortunately, this reproducibility crisis reflects 

not only on the difficulty for external users to fully reproduce a radiomics experiments 

developed in another institution, but also within the same institution. 

This issue mainly connects to the previously mentioned concept of lack of transparency. 

In absence of a standardized and structured way of describing radiomics studies, most 

of them only report single feature names or values, with no further details on how the 

model was developed, how the features were computed and which where the computa-

tional parameters used (metadata). Even in presence of publications that made available 

software and datasets, re-usability and inter-operability remain issues. It is not unlikely 



3 

that two software could call a radiomic feature with the same name but meaning a to-

tally different quantitative descriptor. On the other hand, two features could express the 

same quantitative descriptor but show different values when computed with different 

software. Without then associated metadata, it is impossible to find the reasons behind 

this discrepancy, which probably lie in a different choice of hyperparameters. 

It becomes then clear that quantitative imaging is far behind the FAIR principles that 

are taking the scene in clinical data science as incentive for reproducible and transparent 

science [6]. However, the absence of FAIR guiding principles represents a unique op-

portunity for the imaging community to propose a new paradigm for a new era repro-

ducible quantitative imaging. We believe that ontologies and Semantic Web techniques 

should guide this effort toward reproducible, transparent quantitative imaging. On the 

other side, the imaging community needs to accept the challenge to work closely with 

the data science community and re-use as much as possible available tools. A possible 

framework and the ongoing actions taken by our group are presented in the following 

paragraph. 

 

2.  Proposed solution 

2.1 Ontologies for quantitative imaging: a dynamic body of knowledge to enhance 

consensus 

 

Ontologies represent a formal specification of the terms related to a specific domain 

and the relations among them [7]. In this specific case, an ontology for quantitative 

imaging should mimic the workflow that happens during a radiomic study: from image 

pre-processing, region of interest definition, computational settings definition and fi-

nally features extraction, as presented in [6]. Therefore, the ontology not only should 

include the main radiomic features and their corresponding units, but also all the 

metadata that relate to the above-mentioned workflow. In this view, building this on-

tology is a joint exercise between imaging research groups to represent the state of the 

art of the knowledge related to the quantitative imaging domain. The ontology acts as 

harmonizer and standardizer, eliminating barriers related to different nomenclature or 

labels. In fact, each concept in the ontology is universally defined and the whole com-

munity agrees on its meaning. For example, the ontology universally defines the radi-

omics features by describing them and associating a unique identifier and their prove-

nance. In this view, it enhances consensus and creates a shared knowledge domain. It 

represents a dynamic body of knowledge that can be expanded with new concepts as 

the quantitative imaging field evolved (for example by introducing and defining new 

imaging features or computational methods). Our group took the lead in developing an 

extensive radiomics ontology (RO), released on the BioPortal (https://bioportal.bioon-

tology.org/ontologies/RO) as door-opener for FAIR quantitative imaging. Recently, we 

published a modular python tool for making radiomics computations FAIR [8]. Finally, 

ontologies express concepts in a machine-readable language and therefore, when data 

and metadata are transformed via the ontology, they can be automatically parsed by 
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machines. This becomes of fundamental utility when comparing results computed from 

different software or under different conditions. If each radiomics computational pack-

age is setup to produce ontologies-labelled data and metadata, then automated meta 

analyzes can be performed and this will open the path to data-driven standardization 

and harmonization. A summary of the concept behind the RO and possible applications 

is depicted in Figure 1. 

 

 
 

Figure1: the RO workflow. Not only standardization of the radiomics workflow is 

achieved, but the same instrument can be used to enhance the reproducibility and vali-

dation of radiomics-based prediction studies 

 

2.1 Semantic Web: linking quantitative imaging with multiple domains 

 

Semantic Web has the power to extract knowledge from data labelled via ontologies, 

using dedicated SPARQL language. 

If radiomics data and metadata are transformed via the Radiomics Ontology and 

published on the Semantic Web, then they can be queried using the universal concepts 

defined by the ontology, without any prior knowledge on the original labels present in 

the original software. Also, the combination of ontologies and Semantic Web tech-

niques allows parsing and joining data and metadata from multiple sources, such as 

different databases. For example, in a typical radiomics-based prediction study it could 

be interesting to query a) the value of a certain feature b) computed on an imaging 

modality c) referring to a patient with a certain disease; d) finding patients with sim-

ilar feature values but different clinical outcomes for comparison. As it is clear from 

this example, that type of query requires merging radiomics data (a); DICOM metadata 

(b); clinical data (c), and data from other clinics (d). Sooner, additional sources of data 
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such as for example genomics data or pathology data, for better predictions and for 

exploring connections with medical images will be needed. Our group has developed a 

portfolio of ontologies for guaranteeing the road to FAIR compliant and transparent 

prediction models in radiation oncology: the ROO (Radiation Oncology Ontology) [7], 

the SEDI (Semantic DICOM Ontology) [8] and the presented RO. 

We successfully showed how this workflow can be used in combination with Se-

mantic Web for winning barriers related to data sharing and build more accurate models 

(distributed learning) [9]. For example, we successfully reproduced a classical cen-

tralized radiomics study [10] in a distributed fashion using the above-mentioned ontol-

ogies combined with Semantic Web [8]. By using only SPARQL queries we could re-

trieve the model and computational details of the model trained at one local institution 

and externally validated on the second one.  

We believe the upcoming effort should focus on developing additional ontologies 

that could link the quantitative imaging domain with data from multiple sources pre-

sented above.  

Finally, we state that ontologies and Semantic Web are the key for speeding up re-

producible science. Therefore, the quantitative imaging community should work 

closely with experts from the semantics, FAIR and data science fields to provide a sus-

tainable infrastructure for medical imaging and derived big data. 
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