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Abstract
We consider online algorithms as a request-answer game. An adversary that generates input requests,

and an online algorithm answers. We consider a generalized version of the game that has a buffer of

limited size. The adversary loads data to the buffer, and the algorithm has random access to elements of

the buffer. We consider quantum and classical (deterministic or randomized) algorithms for the model.

In the paper, we provide a specific problem (The Most Frequent Keyword Problem) and a quantum al-

gorithm that works better than any classical (deterministic or randomized) algorithm in terms of com-

petitive ratio. At the same time, for the problem, classical online algorithms in the standard model are

equivalent to the classical algorithms in the request-answer game with buffer model.

Keywords
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search

1. Introduction

One of the applications for online algorithms is optimization problems [1]. The peculiarity

is the following. An algorithm reads an input piece by piece and returns an answer piece by

piece immediately, even if an answer can depend on future pieces of the input. The algorithm

should return an answer for minimizing an objective function (the cost of an output). The most

standard method to define the effectiveness is the competitive ratio [2, 3].

One of the possible point of view to online algorithms is a request-answer game [4]. Here we

consider a game of an online algorithm and Adversary that holds input. Adversary requests and

the algorithm returns answers. We suggest a reversed version of the game. The algorithm asks

an input variable and Adversary returns an answer, but as a price for the answer, Adversary

asks to return an output variable. The new version of the game is equivalent to the original

one, but we can generalize it. We provide the new model for online algorithms that is called

“Request-answer Game with Buffer”. The model is a game of three players that are an online

algorithm, Adversary and Buffer of limited size. The algorithm can do a request of one of two
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types:

• asking Adversary to load the next block of input variables to the Buffer;

• request Buffer for one of the holding variables.

For some integer parameter 𝑅, after each 𝑅 requests Adversary asks an output variable. If the

size of Buffer is 1 and 𝑅 = 1, then the model is equivalent to the original one.

Motivation. Online algorithms have different applications. One of them is making a decision

in current time with no knowledge about future data. Another one is processing a data stream

and output a result data stream in online fashion, for example, streaming video on web sites and

others. Many programming languages like Java, C++ [5, 6] and others use buffered data streams

that store data in a fast buffer first, and then an algorithm reads data from the buffer. So, our

model is like usage of buffered data streams. Additionally, we have asynchronous processing

with online output. In other words, we focus on online behavior of the output stream, but

when an algorithm reads an input stream, it can skip some data.

Quantum model. In the paper, we consider a quantum version of “Request-answer Game

with Buffer” model. Quantum computing itself [7, 8, 9] is one of the hot topics in computer

science. There are many problems where quantum algorithms outperform the best known clas-

sical algorithms [10, 11, 12, 13, 14]. Superior of quantum over classical was shown for different

computational models like query model, streaming processing models, communication models

and others [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

Different versions of online quantum algorithms were considered in [21, 20] including quan-

tum streaming algorithms as online algorithms [29, 30], quantum online algorithms with re-

stricted memory [31, 32], quantum online algorithms with repeated test [33]. In these papers,

authors show examples of problems that have quantum online algorithms with better compet-

itive ratio comparing to classical online algorithms.

Our results. Here we provide a specific problem and a quantum online algorithm in “Request-

answer Game with Buffer” model for it. We show that the quantum online algorithm has better

competitive ratio than any classical (deterministic or randomized) counterpart. The problem

is “The Most Frequent Keyword Problem”. Questions are strings of length 𝑘; the problem is

searching the most frequent keyword among words of a text and returning it after each word

of the text immediately. The problem [34] is one of the most well-studied ones in the area of

data streams [35, 36, 37]. Many applications in packet routing, telecommunication logging,

and tracking keyword queries in search machines are critically based upon such routines. The

similar problem in online fashion was considered in [38].

The paper is organized in the following way. Definitions are in Section 2. A description of

the most frequent question problem and the quantum algorithm for the problem are described

in Section 3. Section 4 contains lower bounds for classical algorithms.
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2. Preliminaries

Anonlineminimization problem consists of a set of inputs and a cost function. Each input

𝐼 = (𝑥1, … , 𝑥𝑛) is a sequence of requests, where 𝑛 is a length of the input |𝐼 | = 𝑛. Furthermore, a

set of feasible outputs (or solutions) (𝐼 ) is associated with each 𝐼 ; an output is a sequence of

answers 𝑂 = (𝑦1, … , 𝑦𝑛). The cost function assigns a positive real value 𝑐𝑜𝑠𝑡(𝐼 , 𝑂) to 𝐼 ∈  and

𝑂 ∈ (𝐼 ). An optimal solution for 𝐼 ∈  is 𝑂𝑜𝑝𝑡 (𝐼 ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑂∈(𝐼 )𝑐𝑜𝑠𝑡(𝐼 , 𝑂).
Let us define an online algorithm for this problem. A deterministic online algorithm 𝐴

computes the output sequence 𝐴(𝐼 ) = (𝑦1, … , 𝑦𝑛) such that 𝑦𝑖 is computed by 𝑥1, … , 𝑥𝑖 . We say

that 𝐴 is 𝑐-competitive if there exists a constant 𝛼 ≥ 0 such that, for every 𝑛 and for any input

𝐼 of size 𝑛, we have: 𝑐𝑜𝑠𝑡(𝐼 , 𝐴(𝐼 )) ≤ 𝑐 ⋅ 𝑐𝑜𝑠𝑡(𝐼 , 𝑂𝑂𝑝𝑡 (𝐼 )) + 𝛼, where 𝑐 is the minimal number that

satisfies the inequality. Also we call 𝑐 the competitive ratio of 𝐴. If 𝛼 = 0, 𝑐 = 1, then 𝐴 is

optimal.

A randomized online algorithm 𝑅 computes an output sequence 𝑅𝜓 (𝐼 ) = (𝑦1, … , 𝑦𝑛) such

that 𝑦𝑖 is computed from 𝜓 , 𝑥1, … , 𝑥𝑖 , where 𝜓 is the content of the random tape, i. e., an infinite

binary sequence, where every bit is chosen uniformly at random and independently of all the

others. By 𝑐𝑜𝑠𝑡(𝐼 , 𝑅𝜓 (𝐼 )) we denote the random variable expressing the cost of the solution

computed by 𝑅 on 𝐼 . 𝑅 is 𝑐-competitive in expectation if there exists a constant 𝛼 > 0 such that,

for every 𝐼 , 𝔼 [𝑐𝑜𝑠𝑡(𝐼 , 𝑅𝜓 (𝐼 ))] ≤ 𝑐 ⋅𝑐𝑜𝑠𝑡(𝐼 , 𝑂𝑂𝑝𝑡 (𝐼 ))+𝛼 . We can say that 𝑐 is expected competitive

ratio for the algorithm.

2.1. Request-answer game with buffer model

The standard model for online algorithms can be considered as a request-answer game [4].

Adversary holds an input, it sends request 𝑥𝑖 to an algorithm, and the algorithm sends answer

𝑦𝑖 . Here Adversary is an “active” player that rules the game and the algorithm is a “passive”

player that answers on each response.

Let us change the point of view to this game. Both are “active” players in some sense.

Round 1. The algorithm asks an input variable 𝑥1. (The algorithm is active on this

round).

Round 2. Adversary asks an output variable 𝑦1. (Adversary is active on this round).

...

Round 2𝑖 − 1. The algorithm asks an input variable 𝑥𝑖 . (The algorithm is active on this

round).

Round 2𝑖. Adversary asks an output variable 𝑦𝑖 . (Adversary is active on this round).

It is easy to see that the new game is equivalent to the original game and the standard model.

Let us consider the modification of the game that has a buffer. Assume that we have a

buffer between the algorithm and Adversary. Let a positive integer 𝐾 be a size of the buffer.

Additionally, there is an integer parameter 𝑅 ≤ 𝐾 . The algorithm will ask to load data to the

buffer by blocks of 𝐾 variables. Let 𝑖 be a number of the loading block. The algorithm can do

the following actions if it is active on some round:
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• The algorithm asks to erase the buffer and load the next𝐾 input variables 𝑥𝑖⋅𝐾+1, … , 𝑥𝑖⋅𝐾+𝐾
to the buffer. After that, 𝑖 is increased by 1. (𝑖 ← 𝑖 + 1)

• The algorithm requests any variable from the buffer. We consider a query model (decision

tree model) for the algorithm that queries variables from the buffer.

The game has the following scenario:

Round 0. We initialize 𝑖 ← 0

Round 1. The algorithm is active and it does the possible actions that were described

before.

Round 2. The algorithm is active and it does the possible actions that were described

before.

...

Round 𝑅. The algorithm is active and it does the possible actions that were described

before.

Round 𝑅 + 1. Adversary is active. He asks output variables 𝑦1, … , 𝑦𝑅 .

...

Round (𝑅 + 1) ⋅ 𝑗 + 1. The algorithm is active and it does the possible actions that were

described before.

Round (𝑅 + 1) ⋅ 𝑗 + 2. The algorithm is active and it does the possible actions that were

described before.

...

Round (𝑅 + 1) ⋅ 𝑗 + 𝑅. The algorithm is active and it does the possible actions that were

described before.

Round (𝑅 + 1) ⋅ 𝑗 + 𝑅 + 1. Adversary is active. He asks output variables 𝑦𝑗⋅𝑅+1, … , 𝑦𝑗⋅𝑅+𝑅 .

Comment. In the case of 𝐾 = 1 and 𝑅 = 1, the new model is equivalent to the standard online
algorithms model.

In the randomized case, an algorithm that requests data from the buffer can be randomized,

and we use a randomized query model in that case. We consider an expected competitive ratio

for the model as for the standard model of randomized online algorithms. At the same time,

the loading the next block to the buffer is deterministic action.

In the quantum case, an algorithm that requests data from the buffer can be quantum, and

we use a quantum query model in that case. Because of the probabilistic behavior of quantum

algorithms, we also consider an expected competitive ratio for the model. At the same time,

the loading the next block to the buffer is deterministic action.

We skip details of the quantum model and quantum algorithms here because we use them

as quantum subroutines and the rest part is classical. More details on quantum query model

and quantum algorithms can be found in [7, 8, 9]
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3. A quantum algorithm for The Most Frequent Keyword
Problem

Let us present the problem formally.

Problem. For some positive integers 𝑚, 𝑑 and 𝑘, the input is

𝐼 = (𝑠1, … , 𝑠𝑑 , 𝑥1, … , 𝑥𝑚).

Here (𝑠1, … , 𝑠𝑑 ) is a sequence of strings that are interesting keywords for us in the input, 𝑠𝑗 =
(𝑠𝑗1, … , 𝑠𝑗𝑘) ∈ {0, 1}𝑘 , for 𝑗 ∈ {1, … , 𝑑}. Strings 𝑥1, … , 𝑥𝑚 are words of a text, 𝑥 𝑗 = (𝑥 𝑗1, … , 𝑥 𝑗𝑘) ∈
{0, 1}𝑘 , for 𝑗 ∈ {1, … ,𝑚}. The input length is 𝑛 = (𝑚 + 𝑑) ⋅ 𝑘. A frequency of a string 𝑡 ∈ {0, 1}𝑘
is 𝑓 (𝑡) = #(𝑡)

𝑚 , where #(𝑡) = |{𝑖 ∶ 𝑡 = 𝑥 𝑖 , 𝑖 ∈ {1, … ,𝑚}}| is a number of occurrence of 𝑡 in

(𝑥1, … , 𝑥𝑚). The index 𝑖0 of the most frequent string 𝑠𝑖0 is such that 𝑓 (𝑠𝑖0) = max
𝑖∈{1,…,𝑑}

𝑓 (𝑠𝑖) and

𝑖0 is minimal. We should return index 𝑖0 after reading each string 𝑥 𝑗 . So, the right answer that

returns offline algorithm is (𝑧1, … , 𝑧𝑛) where 𝑧(𝑗+𝑑)⋅𝑘 = 𝑖0 for 𝑗 ∈ {1, … ,𝑚} and other output

variables are not considered.

The cost of an output 𝑂 = (𝑦1, … , 𝑦𝑛) is

𝑐𝑜𝑠𝑡(𝐼 , 𝑂) = 1 + 𝑚 −
𝑚
∑
𝑗=1

𝛿(𝑦(𝑗+𝑑)⋅𝑙 , 𝑖0)

Here 𝛿(𝑎, 𝑏) = 1 if 𝑎 = 𝑏 and 𝛿(𝑎, 𝑏) = 0 if 𝑎 ≠ 𝑏

3.1. Quantum algorithm

Firstly, we discuss a quantum subroutine that compares two strings of length 𝑙 for some integer

𝑙 > 0.

3.1.1. The quantum algorithm for two strings comparing

Assume that the subroutine is Compare_strings(𝑠, 𝑡) and it compares 𝑠 and 𝑡 in lexicographical

order. It returns:

• −1 if 𝑠 < 𝑡 ;

• 0 if 𝑠 = 𝑡 ;

• 1 if 𝑠 > 𝑡 .

As a base for our algorithm, we will use the algorithm of finding the minimal argument with

1-result of a Boolean-value function. Formally, we have:

Lemma 1. [39] Suppose, we have a function 𝑓 ∶ {1, … , 𝑁} → {0, 1} for some integer 𝑁 . There
is a quantum algorithm for finding 𝑗0 = min{𝑗 ∈ {1, … , 𝑁} ∶ 𝑓 (𝑗) = 1}. The algorithm finds 𝑗0
with query complexity

√
𝑁 and error probability that is at most 1

2 .
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Let us choose the function 𝑓 (𝑗) = (𝑠𝑗 ≠ 𝑡𝑗). So, we search 𝑗0 that is the index of the first unequal

symbol of the strings. We search 𝑗0 among indexes 1, …min(|𝑠|, |𝑡 |), where |𝑠| is a length of 𝑠.
Then, we can claim that 𝑠 precedes 𝑡 in lexicographical order iff 𝑠𝑗0 precedes 𝑡𝑗0 in the alphabet

for strings. If there are no unequal symbols, then we have one of three options:

• if |𝑠| < |𝑡 |, then 𝑠 < 𝑡 ;

• if |𝑠| > |𝑡 |, then 𝑠 > 𝑡 ;

• if |𝑠| = |𝑡 |, then 𝑠 = 𝑡 .

We use The_first_one_search(𝑓 , 𝑁 ) as a subroutine from Lemma 1, where 𝑓 (𝑗) = (𝑠𝑗 ≠ 𝑡𝑗).
Assume that this subroutine returns 𝑁 + 1 if it does not find any solution.

We apply the standard technique of boosting success probability that was used, for example,

in [12]. So, we repeat the algorithm 3 log2𝑚 times and return the minimal answer, where 𝑚 is

a number of strings in the sequence (𝑥1, … 𝑥𝑚). In that case, the error probability is 𝑂 ( 1
23 log𝑚 ) =

𝑂 ( 1
𝑚3 ).

Let us present the algorithm.

Algorithm 1 Compare_strings(𝑠, 𝑡, 𝑘). The quantum algorithm for two strings comparing.

𝑁 ← 𝑚𝑖𝑛(|𝑠|, |𝑡 |)
𝑗0The_first_one_search(𝑓 , 𝑁 ) ⊳ The initial value

for 𝑖 ∈ {1, … , 3 log2𝑚} do
𝑗 ← The_first_one_search(𝑓 , 𝑁 )
if 𝑗 ≤ 𝑘 and 𝑠𝑗 ≠ 𝑠𝑡 then

𝑗0 ← min(𝑗0, 𝑗)
end if

end for
if 𝑗0 = 𝑁 + 1 and |𝑠| = |𝑡 | then

𝑟𝑒𝑠𝑢𝑙𝑡 ← 0 ⊳ The strings are equal.

end if
if ((𝑗0 ≠ 𝑁 + 1) and (𝑠𝑗0 < 𝑡𝑗0)) or ((𝑗0 = 𝑁 + 1) and (|𝑠| < |𝑡 |)) then

𝑟𝑒𝑠𝑢𝑙𝑡 ← −1 ⊳ 𝑠 precedes 𝑡 .
end if
if ((𝑗0 ≠ 𝑁 + 1) and (𝑠𝑗0 > 𝑡𝑗0)) or ((𝑗0 = 𝑁 + 1) and (|𝑠| > |𝑡 |)) then

𝑟𝑒𝑠𝑢𝑙𝑡 ← 1 ⊳ 𝑡 succeeds 𝑠.
end if
return 𝑟𝑒𝑠𝑢𝑙𝑡

Let us discuss the property of the algorithm:

Lemma 2. Algorithm 1 compares two strings 𝑠 and 𝑡 in lexicographical order with query com-
plexity 𝑂(

√
min(|𝑠|, |𝑡 |) log𝑚) and error probability 𝑂 ( 1

𝑚3 ).

Proof. The correctness of the algorithm follows from description and lexicographical order.
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Let us discuss the error probability. The algorithm has error iff there are error in all 3 log2𝑚
invocations of The_first_one_search algorithm. The probability of such event is at most

0.53 log2𝑚 = 𝑂 ( 1
𝑚3 ). □

3.1.2. A quantum algorithm in request-answer game with buffer model

Firstly, we present an idea of the algorithm.

We use the well-known data structure a self-balancing binary search tree. As an implemen-

tation of the data structure, we can use the AVL tree [40, 41] or the Red-Black tree [42, 41].

Both data structures allow us to find and add elements in 𝑂(log𝑁 ) running time, where 𝑁 is a

size of the tree.

The idea of the algorithm is the following. We store a triple (𝑖, 𝑠, 𝑐) in a vertex of the tree,

where 𝑖 is the minimal index of a string from {𝑠1, … , 𝑠𝑑} such that 𝑠 = 𝑠𝑖 and 𝑐 is a number of

occurrences of the string 𝑠 among {𝑥1, … , 𝑥𝑚}. We assume that a triple (𝑖, 𝑠, 𝑐) is less than a

pair (𝑖′, 𝑠′, 𝑐′) iff 𝑠 precedes 𝑠′ in the lexicographical order. So, we use Compare_strings(𝑠, 𝑠′, 𝑘)
subroutine as the comparator of the vertexes. The tree represents a set of unique strings from

{𝑠1, … , 𝑠𝑑} with a number of occurrences among (𝑥1, … , 𝑥𝑚).
Firstly, we load all strings 𝑠1, … , 𝑠𝑑 one by one to Buffer and add a vertex 𝑣 = (𝑗, 𝑠𝑗 , 0) for

each string 𝑠𝑗 to the tree, here 𝑗 ∈ {1, … , 𝑑}. We add only one node for each duplicate strings

from 𝑠1, … , 𝑠𝑑 if they exist. The index 𝑗 in 𝑣 stores the index of 𝑠𝑗 and if there is no a vertex

that corresponds to 𝑠𝑗 , then 𝑗 is a minimal index from all possible indexes. 0 in 𝑣 means that

initially we assume that 𝑠𝑗 does not occurs among (𝑥1, … , 𝑥𝑚).
Secondly, we load questions (strings) from 𝑥1 to 𝑥𝑚 one by one to Buffer and search them in

our tree. We increase the number of occurrences. If the string was not found in the tree, then

it is not a keyword, i.e. it does not belong to 𝑠1, … 𝑠𝑑 and we skip it. At the same time, we store

(𝑖𝑚𝑎𝑥 , 𝑠, 𝑐𝑚𝑎𝑥 ) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑖,𝑡 ,𝑐) in the tree 𝑐

and recalculate it in each step. When Adversary requests an output variable, then we return

𝑖𝑚𝑎𝑥 .

Let us present the algorithm formally. Let 𝐵𝑆𝑇 be a self-balancing binary search tree such

that:

• Find(𝐵𝑆𝑇 , 𝑥 𝑖) finds a vertex (𝑗, 𝑠, 𝑐) such that 𝑠 = 𝑥 𝑖 , or 𝑁𝑈𝐿𝐿 if 𝑥 𝑖 was not found. The

standard algorithm for searching 𝑥 𝑖 in the tree is comparing with elements of vertexes

and moving by the tree according to the result of the comparison. When we invoke the

Compare_strings subroutine, we request a variable from Buffer for checking a symbol

of 𝑥 𝑖 and request to memory when we check a symbol of a string that is stored in a vertex.

• Add(𝐵𝑆𝑇 , 𝑗, 𝑠𝑗) adds a vertex (𝑗, 𝑠𝑗 , 0) to the tree if a vertex with 𝑠𝑗 does not exist; and does

nothing otherwise.

• Init(𝐵𝑆𝑇 ) initializes an empty tree.

Let us discuss the property of the algorithm.
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Algorithm 2 A quantum algorithm for The Most Frequent Keyword Problem.

Init(𝐵𝑆𝑇 ) ⊳ The initialization of the tree.

𝑐𝑚𝑎𝑥 ← 1 ⊳ The maximal number of occurrences.

𝑖𝑚𝑎𝑥 ← 1 ⊳ The index of most frequent question.

𝑠𝑡𝑒𝑝 ← 0
for 𝑗 ∈ {1, … , 𝑑} do

Load_To_Buffer ⊳ Load 𝑠𝑗 to Buffer

𝑡 ← }}′′ ⊳ Initially 𝑡 is an empty string

for 𝑞 ∈ {1, … , 𝑘} do ⊳ Reading the string 𝑡
𝑡 ← 𝑡 + Request(𝑞) ⊳ Requesting 𝑞-th variable from Buffer and appending the

variable to 𝑡
end for
Add(𝐵𝑆𝑇 , 𝑗, 𝑡) ⊳ Adding the string 𝑡 = 𝑠𝑗 to the tree as a vertex (𝑁𝑈𝐿𝐿, 𝑡, 0)

end for
for 𝑗 ∈ {1, … ,𝑚} do

Load_To_Buffer ⊳ Load 𝑥 𝑖 to Buffer

𝑣 = (𝑖, 𝑡, 𝑐) ← Find(𝐵𝑆𝑇 , 𝑥 𝑗) ⊳ Searching 𝑥 𝑖 in the tree.

if 𝑣 ≠ 𝑁𝑈𝐿𝐿 then ⊳ If 𝑥 𝑖 belongs to (𝑠1, … , 𝑠𝑑 )
𝑐 ← 𝑐 + 1 ⊳ Updating the vertex by increasing the number of occurrences.

𝑣 ← (𝑖, 𝑡, 𝑐) ⊳ Updating the vertex by the new values

if 𝑐 > 𝑐𝑚𝑎𝑥 then ⊳ Updating the maximal value.

𝑐𝑚𝑎𝑥 ← 𝑐
𝑖𝑚𝑎𝑥 ← 𝑖

end if
end if

end for
if Adversary request an output variable then return 𝑖𝑚𝑎𝑥
end if

Theorem 3. The expected competitive ratio 𝑐 for Algorithm 2 is at most 𝑄 where

𝑄 = 𝑂 (1 +
(𝑚 log𝑚) ⋅ (log 𝑑)√

𝑘 ) .

Proof. The correctness of the algorithm follows from the description. Let us discuss the query

complexity of Find(𝐵𝑆𝑇 , 𝑥 𝑗). The procedure requires 𝑂(log 𝑑) comparing operations

Compare_strings(𝑥 𝑗 , 𝑠𝑖′ , 𝑘). Due to Lemma 2, each comparing operation requires𝑂(
√
𝑘 log𝑚)

queries. The total query complexity of the Find procedure is𝑂 (
√
𝑘(log𝑚) ⋅ (log 𝑑)). So, the al-

gorithm checks all 𝑥1, … , 𝑥𝑚 in𝑂 (𝑚
√
𝑘(log𝑚) ⋅ (log 𝑑)) rounds and after that returns right an-

swers for the requests of Adversary. Therefore, the first𝑂 (
𝑚
√
𝑘(log𝑚)⋅(log 𝑑)

𝑘 ) = 𝑂 (
𝑚(log𝑚)⋅(log 𝑑)√

𝑘 )
“significant” output variables can be wrong and others are right. We call output variable 𝑦(𝑗+𝑑)⋅𝑘 ,

for 𝑗 ∈ {1, … ,𝑚}, as “significant” because the cost depends on these variables. Hence, the cost

is at most 1 + 𝑂 (
𝑚(log𝑚)⋅(log 𝑑)√

𝑘 ).
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Let us discuss the error probability. Events of error in the algorithm are independent. So,

all events should be correct. Due to Lemma 2, the probability of correctness of one event

is 1 − (1 − 1
𝑚3 ). Hence, the probability of correctness of all 𝑂(𝑚 log𝑚) events is at least 1 −

(1 − 1
𝑚3 )

𝛾 ⋅𝑚 log𝑚
for some constant 𝛾 .

Note that

lim
𝑛→∞

(1 − 1
𝑚3 )

𝛾 ⋅𝑚 log𝑚

1/𝑚
< 1;

Hence, the total error probability is at most 𝑂 ( 1
𝑚).

In a case of an error, all “significant” output variables can be wrong.

Therefore, the expected competitive ratio of the algorithm is at most

𝑄 =
𝑂(𝑚−1

𝑚 ) ⋅ (1 + 𝑂 (
𝑚(log𝑚)⋅(log 𝑑)√

𝑘 )) + 𝑂 (𝑚 ⋅ 1
𝑚)

1
= 𝑂 (1 +

𝑚(log𝑚) ⋅ (log 𝑑)√
𝑘 ) .

□

4. Lower bounds for classical algorithms for The Most Frequent
Keyword Problem

There is an input 𝐼𝐵 such that any classical (deterministic or randomized) algorithm returns

output with the cost at least 𝑂(𝑚).

Theorem 4. Any randomized algorithm for the problem has competitive ratio 𝑐 at least 𝑅 =
𝑂(𝑚) > 𝑄 in a case of (log2𝑚) ⋅ (log2 𝑑) = 𝑜(

√
𝑘).

Proof. Let us show that the problem is equivalent to unstructured search problem. Assume that

𝑚 = 2𝑡 for some integer 𝑡 . Then, let 𝑥 𝑡+1, … , 𝑥2𝑡 = 0𝑘 where 0𝑘 is a string of 𝑘 zeros. We have

two cases for other string:

• case 1: 𝑥1, … , 𝑥 𝑡 = 1𝑘 ;

• case 2: there are 𝑧 ∈ {1, … , 𝑡} and 𝑢 ∈ {1, … , 𝑘} such that 𝑥𝑧𝑢 = 0 and 𝑥𝑧𝑢′ = 1 for all

𝑢′ ∈ {1, … , 𝑢 − 1, 𝑢 + 1, … , 𝑘}, 𝑥𝑧′ = 1𝑘 for 𝑧′ ∈ {1, … , 𝑡}⧵{𝑧}.

Let 𝑑 = 2, 𝑠1 = 0𝑘 and 𝑠2 = 1𝑘 .

In the first case, the answer is 1𝑘 . In the second case, the answer is 0𝑘 . Therefore, the problem

is equivalent to search 0 among the first 𝑡𝑘 = 𝑚𝑘/2 variables.

Due to [43], the randomized query complexity of unstructed search among 𝑚𝑘/2 is Ω(𝑚𝑘).
In a case of odd 𝑚, we assign 𝑥𝑚 = 1𝑘/20𝑘/2, and it is not used in the search. Then, we can

consider only 𝑚 − 1 strings. So, 𝑚 − 1 is even.

Suppose, we have a randomized algorithm𝐴 for finding the most frequent question that uses

𝑜(𝑚𝑘) queries to buffer when it reads 𝑥1, … , 𝑥𝑚. Then, Adversary can construct the input 𝐼𝐵
such that 𝐴 obtains a wrong answer.
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Therefore, all “significant” output variables will be wrong and 𝑐𝑜𝑠𝑡(𝐼𝐵, 𝐴(𝐼𝐵)) = 1 + 𝑚. The

competitive ratio in that case is 𝑅 = 𝑚 + 1.

If the algorithm do 𝑂(𝑚𝑘) queries to Buffer for computing answer, then 𝑂(𝑚) “significant”

output variables should be returned before getting a right answer. Therefore, 𝑐𝑜𝑠𝑡(𝐼𝐵, 𝐴(𝐼𝐵)) =
𝑂(𝑚) and 𝑅 = 𝑂(𝑚).

In the case of (log2𝑚) ⋅ (log2 𝑑) = 𝑜(
√
𝑘) we have

𝑄 = 𝑂 (1 +
𝑚(log2𝑚) ⋅ (log2 𝑑)√

𝑘 ) = 𝑜(𝑚) < 𝑂(𝑚) = 𝑅 .

□

5. Conclusion

We consider a new setting or new model for online algorithms that is useful for real world

problems. We show that in the case of (log2𝑚) ⋅ (log2 𝑑) = 𝑜(
√
𝑘) the quantum algorithm shows

a better competitive ratio than any classical (deterministic or randomized) algorithm. Note that

this setting is reasonable.
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