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Abstract 
There is a long-standing problem in the field of the word sense disambiguation (WSD) that is 

known as the knowledge acquisition bottleneck. Many state-of-the-art WSD algorithms are 

data-hungry, so the lack of the sense-annotated data hinders the development of supervised 

WSD models for the low-resource languages such as Russian. In this work we introduce an 

algorithm of automatic generation and labelling of the training collections based on the 

monosemous relatives concept. This method relies on the RuWordNet thesaurus and the 

relations between ambiguous words and the monosemous words they are connected to. Our 

approach addresses the issues of the limited availability of the examples for some polysemous 

word senses and the bias that can be possibly introduced by some training samples. The 

experiments attested that the generated collections enable a wide coverage of the polysemous 

words presented in RuWordNet, and the models trained on these collections can attain a good 

overall performance on the Russian WSD benchmarks. 
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1. Introduction 
 

Word sense disambiguation (WSD) is a fundamental task in computational lexical semantics that is 

aimed at predicting the correct sense of a polysemous word in a given context from a predefined sense 

inventory. WSD is widely used in many semantic-oriented applications such as semantic role labelling, 

knowledge graph construction, machine translation, question answering, and entity linking, etc. WSD 

is a supervised task, and this implies that sophisticated models, which can attain the competitive results, 

require a large amount of labelled data. Expert annotation of datasets for this task is rather expensive in 

terms of time and money, and large hand-crafted corpora with the sense annotation can be found mostly 

for English [1, 2]. The restricted availability of sense-tagged data does not allow to scale existing WSD 

systems across many languages. For the Russian language there exist only several small datasets with 

sense labels, however, it is not enough for training any state-of-the-art model. 

One of the possible alternatives to manual annotation is an automatic acquisition of training samples. 

In our research we investigate the method to automatically generate and label training collections with 

the help of monosemous relatives, that is a set of unambiguous words (or phrases) related to particular 

senses of a polysemous word. However, as it was noted in [3], some senses of target words do not have 

monosemous relatives, and the noise can be introduced by some distant relatives. In our research we 

tried to address these issues. 

The main contribution of this study is that we have expanded a set of monosemous relatives under 

consideration via various semantic relations and distances: in comparison with earlier approaches, now 

monosemous relatives can be situated at a greater distance from a target ambiguous word in a graph. 

Moreover, we have introduced a numerical estimation of a similarity between a monosemous relative 

and a particular sense of a target word which is further used in the development of the training 
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collection. To evaluate the created training collections, we utilized contextualized word representations 

– ELMo [4] and BERT [5]. We also explored the ways of augmenting automatically generated 

collections with the manually labelled samples. The source code of our algorithm and experiments is 

publicly available at: https://github.com/loenmac/russian_wsd_data.  

The paper is organized as follows. In section two we review the related work. Section three is 

devoted to the data description. The fourth section describes the method applied to automatically 

generate and annotate training collections. The procedure of creating the collections is explained in the 

fifth section. In the sixth section, we describe a supervised word sense disambiguation algorithm trained 

on our collected material and demonstrate the results obtained by four different models. In this section 

we also present a comparative analysis of the models trained on different kinds of train collections. 

Concluding remarks are provided in the seventh section. 

  

2. Related Work 

To overcome the limitations, that are caused by the lack of annotated data, several methods of 

generating and harvesting large train sets have been developed. There exist many techniques based on 

different kinds of replacements, which do not require human resources for tagging. The most popular 

method is that of monosemous relatives [6]. Usually, WordNet [7] is used as a source for such relatives. 

WordNet is a lexical-semantic resource for the English language that contains a description of nouns, 

verbs, adjectives, and adverbs in the form of semantic graphs. All words in those networks are grouped 

into sets of synonyms that are called synsets. 

Monosemous relatives are those words or collocations that are related to the target ambiguous word 

through some connection in WordNet, but they have only one sense, i.e. belong only to one synset. 

Usually, synonyms are selected as relatives but in some works hypernyms and hyponyms are chosen 

[8]. Some researchers replace the target word with named entities [9], some researchers substitute it 

with meronyms and holonyms [10]. In the work [3] distant relatives (including distant hypernyms and 

hyponyms) were used; the procedure of training contexts selection was based on the distance to a target 

word and the type of the relation connecting the target sense and a monosemous relative. 

In the article [11] a special algorithm was created in order to select the best replacement out of all 

words contained within synsets of the target word and neighboring synsets. The algorithm described in 

[12] to construct an annotated training set is a combination of different approaches: monosemous 

relatives, glosses, and bootstrapping. Monosemous relatives can be also used in other tasks, for 

example, for finding the most frequent word senses in Russian [13]. Other methods of automatic 

generation of training collections for WSD exploit parallel corpora [2], Wikipedia and Wiktionary [14, 

15], topic signatures [16]. [17] created large training corpora exploiting a graph-based method that took 

an unannotated corpus and a semantic network as an input. Algorithm MuLaN (Multilingual Label 

propagatioN) is based on the label propagation [18]. In this novel method, the authors utilize 

contextualized word embeddings, information from a knowledge base and projection of the sense tags 

from a high-resource language to a low-resource one. A profound survey on various manual, semi-

automatic and automatic approaches to tackle the issue of knowledge acquisition bottleneck is provided 

in [19]. 

Various supervised methods including kNN, Naive Bayes, SVM, neural networks were applied to 

word sense disambiguation [20]. Contextualized embeddings, like BERT [5], ELMo [4], and 

context2vec [21], have also proven to be suitable for the WSD task: [22, 23, 24, 25]. The most widely 

used deep contextualized embeddings are ELMo [4] and BERT [5]. 

In ELMo (Embeddings from language models) [4] context vectors are computed in an unsupervised 

way by two layers of bidirectional LSTM, that take character embeddings from convolutional layer as 

an input. Character-based token representations help to tackle the problems with out-of-vocabulary 

words and rich morphology. BERT (Bidirectional Encoder Representations from Transformers) [5] has 

a different type of architecture, namely multi-layer bidirectional Transformer encoder. During the pre-

training procedure, the model is “jointly conditioning on both left and right context in all layers” [5]. 

Moreover, BERT uses WordPiece tokens, that is subword units of words, which also helps to avoid the 

https://github.com/loenmac/russian_wsd_data


problem of out-of-vocabulary words. Since these contextualized word embeddings imply capturing 

polysemy better than any other representations and, thus, we employ them in our investigation. 

 

3. Data 

In our research as an underlying semantic network, we exploit Russian thesaurus RuWordNet [26]. 

It is a semantic network for Russian that has a WordNet-like structure. In total it contains 111.5 

thousand of words and word combinations for the Russian language. RuWordNet was used to extract 

semantic relations (e.g. synonymy, hyponymy etc.) between a target sense of a polysemous word and 

all the words (or phrases) connected to it, including those linked via distant paths. The sense inventory 

was also taken from this resource. RuWordNet contains 29297 synsets for nouns, 63014 monosemous 

and 5892 polysemous nouns. In this research we consider only ambiguous nouns. Table 1 presents a 

summary of the number of senses per noun: 

 

Table 1 

Quantitative characteristics of polysemous words in RuWordNet 

Number of senses of a polysemous word Number of words in RuWordNet 

2 senses 4271 

3 senses 997 

4 senses 399 

5 senses 149 

> 5 senses 76 

Total number of senses 14 357 

 

We utilized two corpora in the research. A news corpus consists of news articles harvested from 

various news sources. The texts have been cleaned from HTML-elements or any markup. Another 

corpus is Proza.ru, a segment of Taiga corpus [27], which is compiled of works of prose fiction. We 

exploit these two corpora in to compare the performance of the WSD models trained on the collections 

obtained with these resources. 

 

Table 2 

Cases when a word from the RUSSE’18 dataset was not included in the final test set 

Explanation Number of 

words 

Example 

A word has only one meaning in 

RuWordNet 

34 The word двойник ‘doppelganger’ has only 

one meaning in RuWordNet whereas in 

RUSSE’18 it has 4. 

A word is missing in the 

RuWordNet vocabulary 

9 The word гипербола ‘hyperbole’. 

The senses from RuWordNet and 

RUSSE’18 dataset have only one 

sense in common 

4 The word мандарин has two senses described 

in RUSSE’18: its sense ‘tangerine’ is 

included in the thesaurus, whereas its 

meaning ‘mandarin, bureaucrat’ is absent. 

Controversial cases of sense 

mapping 

29 The word демократ ‘democrat’ has 2 senses: 

‘supporter of democracy’ and ‘a member of 

the Democratic Party’. But there’s another 

one in RUSSE’18: ‘a person of a democratic 

way of life, views’. 

Not enough examples for senses in 

the corpora 

2 Words карьер ‘quarry/a very fast gallop’ and 

шах ‘shah/check’. 

Words with morphological 

homonymy 

1 The word суда ‘court (Gen, Sg)/ship (Nom, 

Pl)’. Those words have distinct lemmas. 



For evaluation of our algorithm of training data generation, we used three distinct RUSSE’18 

datasets for Russian [28]. These datasets were created for the shared task on word sense induction for 

the Russian language. The first dataset is compiled from the contexts of the Russian National Corpus. 

The second dataset consists of the contexts from Wikipedia articles. And the last dataset is based on the 

Active Dictionary of the Russian Language [29] and contains contexts taken from the examples and 

illustration sections from this dictionary. All the polysemous words are nouns. From the RUSSE dataset, 

we excluded some polysemous words, and in Table 2 we overview the common reasons why it was 

done. 

The final list of the target ambiguous words contains 30 words in total, each having two different 

senses. We will call the resulting test dataset RUSSE-RuWordNet because it is a projection of 

RUSSE’18 sense inventory on the RuWordNet data.  

We also created a small training dataset, that consists of the word sense definitions and examples of 

uses from Ozhegov dictionary [30] for every target polysemous word. This training data is utilized as a 

baseline for the WSD task. In this set each sense of ambiguous word has one definition and between 1 

and 3 usage examples.  

Table 3 demonstrates quantitative characteristics of all of the above-mentioned corpora. 

 

Table 3 

Quantitative characteristics of the corpora and datasets used in the experiments 

 Taiga-Proza.ru News Corpus RUSSE-

RuWordNet 

Dictionary 

Corpus 

(Baseline) 

Number of 

sentences 

32,8 million 24,2 million 2 103 144 

Number of lemmas 246,8 million 288,1 million 39 311 657 

Number of unique 

lemmas 

2,1 million 1,4 million 12 110 475 

 

4. Candidate Selection and Ranking Algorithm 

The underlying concept of our algorithm is a concept of monosemous relatives, that is a set of 

unambiguous words (or phrases) related to a particular sense of a polysemous word. Our approach for 

collecting a training corpus is based on the substitution: for every polysemous word we select 

appropriate monosemous relatives, then in a text, the occurrences of these relatives are substituted by 

the target polysemous word and these instances are labelled with a sense tag of a monosemous relative. 

A central part of our method belongs to the candidate selection and ranking algorithm. Not all 

monosemous relatives can serve as a representation of a target word sense, that is why we developed a 

system that assigns a weight to every candidate monosemous relative, and based on this score a ranked 

list of all possible candidates is constructed. Moreover, this algorithm helps to verify the usage of a 

monosemous relative in a corpus, because some words marked as monosemous in the thesaurus may 

have more than one sense in a corpus. 

To extract the features necessary for computing candidate weights, we utilize RuWordNet 

thesaurus. The nodes of this semantic graph are represented as groups of synonyms, called synsets, and 

the edges are relations between these groups of words.  

When constructing a training set, we take into account not only the close relations like synonymy, 

hypernymy and hyponymy, but also far more distant ones, for example, co-hyponymy. Our findings 

from the previous research [31] prove, that the inclusion of the words connected to a target ambiguous 

word via distant relations does not have a negative effect on the performance of the WSD model. 

Moreover, the utilization of such distant relatives enables a wider coverage of the polysemous words 

from the thesaurus in a training collection. In our research, the distance between the target sense of the 

polysemous word and its candidate monosemous relatives can reach up to 4 steps in the semantic graph. 

The final list of monosemous relatives, which will be exploited in the training collection, is composed 



of the candidate monosemous relatives selected during ranking procedure. Candidate monosemous 

relatives are unambiguous words and phrases, that can be located in up to four-step relation paths to a 

polysemous word and include co-hyponyms, two-step (or more) hyponyms and hypernyms, and the 

weights of these monosemous relatives are yet to be estimated. 

Another constituent of our system is the notion of a synset nest. The synset nest represents a set 

of words (or phrases) most closely related to a particular sense of the target word, specifically target 

word synonyms and all the words from directly related synsets within 2 steps from the target word. We 

use this set of words when computing a score for a candidate monosemous relative in order to identify 

how similar is the sense of the candidate to the sense of the target polysemous word. A fragment of the 

nest for the word такса ‘dachshund’ is given below:  

1) “охотничий пёс, охотничья собака, пёсик, четвероногий друг, псина, собака, терьер, 

собачонка, борзая собака…” / ‘hunting dog, hunting dog, doggie, four-legged friend, dog, dog, 

terrier, dog, greyhound dog…’ 

In order to ensure, that the samples with monosemous relatives extracted from a corpus will serve 

as a good representation of the target sense, we employ in our candidate selection and ranking algorithm 

a custom word2vec embedding model trained on the same corpus from which the contexts are retrieved. 

In this work we utilized word2vec embedding models [32] based on neural network architecture 

CBOW. 

Our selection and ranking method, thus, consists of the following steps: 

1. We extract all the candidate monosemous relatives within 4 steps from a target polysemous 

word sense 𝒔𝒋.  

2. We compile the nest 𝒏𝒔𝒋 which consists of synonyms to a target sense and all the words from 

the synsets within 2 steps from a target word 𝒔𝒋. The nest 𝒏𝒔𝒋 consists of 𝑵𝒌 synsets. 

3. For each candidate monosemous relative 𝒓𝒋, we find the most similar words according to the 

word2vec model trained on a reference corpus. 

4. We intersect this list of similar words with the words included in the nest 𝒏𝒔𝒋 of the target sense 

𝒔𝒋. 

5. For each word in the intersection, we take its cosine similarity weight calculated with the 

word2vec model and assign it to the synset it belongs to. The final weight of the synset in the nest 

𝒏𝒔𝒋 is determined by the maximum weight among the words 𝒘𝒌𝟏

𝒋
, … ,𝒘𝒌𝒊

𝒋
 representing this synset in 

the intersection. 

6. The total score of the monosemous candidate 𝒓𝒋 is the sum of the weights of all synsets from 

the nest 𝒏𝒔𝒋. Thus, the final weight of the candidate can be defined as follows: 

               𝑊𝑒𝑖𝑔ℎ𝑡𝑟𝑗 =  ∑ max [𝑐𝑜𝑠(𝑟𝑗,  𝑤𝑘1

𝑗
),… , 𝑐𝑜𝑠 (𝑟𝑗, 𝑤𝑘𝑖

𝑗
)]

𝑁𝑘
𝑘=1      (1) 

The formula was designed to assign higher scores to those candidates, that resemble a greater 

number of synsets from the nest close to the target sense of the ambiguous target word. For example, 

these are the monosemous relatives ratings for the two senses of the word абрикос ‘apricot’ (relatives 

weights are given in brackets): 

2) “Tree”: яблоня ‘apple tree’ (6.3), яблонька ‘small apple tree’ (4.9), олива ‘olive tree’ (4.8), 

смоковница ‘fig tree’ (3.3), терновник ‘blackthorn’ (3.0), плодовое дерево ‘fruit tree’ (2.9) 

… etc. 

3) “Fruit”: инжир ‘fig’ (6.8), яблоко ‘apple’ (6.4), смоква ‘fig’ (6.0), ранет ‘variety of small 

apples’ (5.7), антоновка ‘variety of apples’ (4.9), фрукт ‘fruit’ (4.3) … etc. 

These examples demonstrate that different sets of monosemous relatives can help to distinguish 

between the senses of a target polysemous word. The scores assigned to the monosemous relatives are 

not absolute, the range of the score values usually depends on the number of the monosemous 

candidates. For example, the word лицо ‘person’ has around 2000 candidate monosemous relatives and 

the highest score among them is 24, the word идея ‘concept’ has 8 candidates with 2.3 being the highest 

score, and the word рулет ‘meatloaf’ has only one monosemous relative and its weight is 0.5. 



To estimate how many polysemous word senses from RuWordNet our method can cover, we found 

candidate monosemous relatives for the ambiguous nouns in the thesaurus using our algorithm but 

without word2vec filter. Only two words out of 5895 do not have monosemous relatives within the 

four-step relation path in the RuWordNet graph. 

5. Generating Training Data using Monosemous Relatives 

For comparison, we decided to create two separate training collections compiled from the news and 

Proza.ru corpora, and we also exploited two distinct approaches to a collection generation. In Table 4 

we present the quantitative characteristics of the two collections, such as the relations connecting the 

target senses and their monosemous relatives, distances between them, and a proportion of monosemous 

relatives expressed as a phrase. 

The first collection was compiled only with a monosemous relative from the top of the candidate 

rating. We wanted to obtain 1000 examples for each of the target words, but sometimes it was not 

possible to extract so many contexts with one particular candidate. That is why in some cases we also 

took examples with words next on the candidates’ list. For simplicity, we call this collection Corpus-

1000 because we obtained exactly 1000 examples for each sense. 

The second approach enables to harvest more representative collection with regard to the variety of 

contexts. The training examples for the target ambiguous words were collected with the help of all 

respective unambiguous relatives with non-zero weight. The number of extracted contexts per a 

monosemous candidate is in direct proportion to its weight. We name this collection a balanced one 

because the selection of training examples was not restricted to the contexts which have only one 

particular monosemous relative. 

 

Table 4 

Quantitative characteristics of monosemous relatives included in the balanced training collection. 

Distance to a target sense Proportion of occurrences 

in the news collection 

Proportion of 

occurrences in Proza.ru 

collection 

0 (synset) 2% 4% 

1 13% 9% 

2 38% 37% 

3 31% 34% 

4 16% 16% 

Relation between a target sense and a 

monosemous relative 

  

Synonyms 2% 4% 

Hyponyms 13% 8% 

Hypernyms 11% 9% 

Cohyponyms 28% 28% 

Cohyponyms situated at three-step path 24% 28% 

Cohyponyms situated at four-step path 19% 22% 

Other 3% 1% 

Word combinations 48% 29% 

 

Two word2vec embedding models that we used in our experiments were trained separately on the 

news and Proza.ru corpora with the window size of 3. As a preprocessing step, we split the corpora into 

separate sentences, tokenized them, removed all the stop words, and lemmatized the words with 

pymorphy2 tool [33]. For each candidate monosemous relative with the help of these models, we 

extracted 100 most similar words, that are used to find an intersection with a synset nest. The words 



obtained from the word2vec models were filtered out – we removed the ones not included in the 

thesaurus. 

6. Experiments 

We conducted several experiments with the generated text collections to evaluate the quality of the 

disambiguation, which can be achieved using them. Following [23], in our research we used an easily 

interpretable classification algorithm – non-parametric nearest neighbor classification (kNN) based on 

the contextualized word embeddings ELMo and BERT. Contextualized embeddings derived for the 

training data form the clusters in the vector space, then for each test sample representation we find k 

closest training examples in the feature space, and according to the class of these neighbors we define 

the output sense of the test sample.  

In our experiments we exploited two distinct ELMo models – the one trained by DeepPavlov on 

Russian WMT News and the other is RusVectōrēs [34] lemmatized ELMo model trained on Taiga 

Corpus [27]. These models can be used in two ways: we can extract a vector for a whole sentence with 

a target word, and also just a single vector for a target ambiguous word can be obtained. We also used 

two BERT models: BERT-base-multilingual-cased released by Google Research and RuBERT, which 

was trained on the Russian part of Wikipedia and news data by DeepPavlov [35]. To extract BERT 

contextual representations, we followed the method described by [5] and [23] and concatenated “the 

token representations from the top four hidden layers of the pre-trained Transformer” [5].  

 

Table 5 

F1 scores for BERT-based WSD models 

Model RuBERT 

DeepPavlov 

(Corpus-1000 

collection) 

Multilingual BERT 

(Corpus-1000 

collection) 

RuBERT 

DeepPavlov 

(balanced collection) 

Multilingual 

BERT 

(balanced 

collection) 

k Proza.

ru 

News 

collection 

Proza.ru News 

collection 

Proza.ru News 

collection 

Proza.

ru 

News 

collection 

5 0.793 0.771 0.694 0.667 0.792 0.769 0.717 0.682 

7 0.804 0.774 0.699 0.673 0.802 0.768 0.723 0.683 

9 0.802 0.769 0.7 0.677 0.812 0.774 0.729 0.688 

Baseline 0.667 0.672 0.667 0.672 

 

Table 6 

F1 scores for ELMo-based WSD models 

Model ELMo 

RusVectōrēs 

(target word, 

Corpus-1000) 

ELMo DeepPavlov 

(whole sentence, 

Corpus-1000) 

ELMo RusVectōrēs 

(target word, 

balanced collection) 

ELMo 

DeepPavlov 

(whole sentence, 

balanced 

collection) 

k Proza.

ru 

News 

collection 

Proza.ru News 

collection 

Proza.ru News 

collection 

Proza.

ru 

News 

collection 

1 0.809 0.794 0.765 0.752 0.812 0.797 0.745 0.758 

3 0.826 0.811 0.773 0.749 0.833 0.81 0.775 0.753 

5 0.834 0.819 0.77 0.748 0.845 0.81 0.776 0.756 

7 0.841 0.819 0.767 0.746 0.857 0.815 0.793 0.759 

9 0.84 0.816 0.762 0.747 0.856 0.821 0.791 0.753 

Baseline 0.772 0.716 0.772 0.716 

 

 

 

 



Table 7 

F1 scores for ELMo-based WSD models: Proza.ru, balanced collection 

Model ELMo RusVectōrēs  

(whole sentence) 

ELMo DeepPavlov  

(target word) 

ELMo-ruwikiruscorpora 

(non-lemmatized, target 

word) 

k      

1 0.807 

0.824 

0.827 

0.824 

         0.821 

                  0.723 

                  0.73 

                  0.738 

                  0.736 

             0.742 

                  0.776 

3              0.794 

5              0.792 

7                   0.792 

9                   0.794 

Baseline 0.772 0.716 - 

 

Table 8 

F1 scores for ELMo RusVectōrēs WSD models: Proza.ru and News balanced collections augmented 

with dictionary definitions 

Model ELMo RusVectōrēs  

(target word) 

ELMo RusVectōrēs  

(target word) 

k Proza.ru News collection 

1 0.819 

0.835 

0.847 

0.859 

                  0.858 

0.824 

                             0.832 

0.828 

0.834 

                        0.842 

3 

5 

7 

9 

 

Table 5 and Table 6 demonstrate the results obtained by different types of contextualized word 

embeddings, the training collections, and model parameters. As it can be seen, all the systems surpassed 

the quality level of the baseline solution trained on the dataset of the dictionary definitions and usage 

examples. 

The algorithm based on the ELMo pre-trained embeddings by RusVectōrēs outperformed all other 

models and achieved 0.857 F1 score. The second-best model in the WSD task is RuBERT by 

DeepPavlov, followed by ELMo model by DeepPavlov. The lowest F1 score belongs to Multilingual 

BERT.  

As for the difference in F1 scores between the Corpus-1000 and the balanced collection, we can 

observe the performance drop for the Corpus-1000 for all the models, which means that the approach 

used to generate the balanced collection is better suited for the task. Corpus-1000 does not include all 

possible monosemous relatives, so the collection lacks contextual diversity, the balanced collection, on 

the contrary, is more representative with regard to the variety of contexts.   

The Proza.ru model achieves better results and outperforms the news model. The qualitative analysis 

of the classification errors caused by the model trained on the news collection showed that the main 

cause of mistakes were lexical and structural differences between training and test sets.  

As we have already mentioned, ELMo contextualized embeddings can be exploited in two different 

ways, and in our research, we wanted to explore, which one is best suited for the task and the models. 

The first two columns of Table 7 demonstrate the results of classification on the RusVectōrēs and 

DeepPavlov ELMo embeddings extracted differently from the cases described in Table 6. It can be 

seen, that these modes of use led to the lower F1 score for both of the models. Thus, the optimal way 

to use RusVectōrēs ELMo embeddings for the WSD task with kNN-classifier is to extract embedding 

solely for a target polysemous word, whereas for the DeepPavlov ELMo model it is recommended to 

extract the representation for the whole sentence with the polysemous word. 

The results of the research [22] showed that lemmatized training data can improve ELMo 

performance in word sense disambiguation for the Russian language. In our study we wanted to prove 

that this also holds true for our automatically generated training collections. We compared two 

RusVectōrēs ELMo models: lemmatized model trained on Taiga and token-based model trained on the 

Russian Wikipedia and the Russian National Corpus. As the training collection, we used Proza.ru 



(balanced) in two variants – lemmatized and simply tokenized. The results for non-lemmatized input 

are presented in the last column of Table 7. It turns out that even for the generated training collections 

ELMo model on lemmas outperforms ELMo on tokens. Thus, lemmatized input to the WSD models is 

preferable for the Russian language as it does not contain any additional morphological information, 

which is excessive for the lexical-semantic task. 

Another experiment was aimed at the evaluation of the models trained on the automatically 

generated collections augmented with the dictionary definitions from the corpus used in the baseline 

solution. Since the very first works in the field of WSD [36], glosses have proven to be a valuable 

source of information, and nowadays word definitions are also incorporated in the models: [37, 38, 39, 

40].  The outline was as follows: we enriched Proza.ru and News balanced collections with manually 

annotated dictionary definitions and examples of use and then applied kNN-classifier to the 

contextualized embeddings extracted for this augmented collection (ELMo RusVectōrēs). The results 

are presented in Table 8. 

Even though the number of additional examples is rather small, we can still see some minor 

improvements in the performance of the Proza.ru collection and a 2% increase in the F1-score of the 

News model.  

In our recent work [41], we compared the WSD model performance trained on the automatically 

and manually labelled data. In this case we also used RusVectōrēs ELMo contextualized embeddings 

as they show the best quality in all the settings. We made 5 random divisions of RUSSE-RuWordNet 

dataset into train and test sets in the ratio 2:1. Then we used this data to train and test 5 different WSD 

models. The 5-fold cross-validation in this setup amounted to 0.917 F1. Then we combined our news 

training collection with each train set described above, and measured the performance on the 

corresponding test sets. The F1 score was 0.94. 

This experiment demonstrated that the WSD model trained on the automatically labelled data gives 

the results comparable with the results obtained with the hand-labelled data. Moreover, the metrics 

obtained in these experiments show that manually labelled data combined with the generated one can 

boost the overall performance. Among all the possible ways of augmenting a training collection with 

manually-curated samples, the data from lexical resources, such as dictionaries, seems to be the most 

convenient as it is easy to be obtained. 

To explore how contextualized embeddings from the training, test and baseline collections are 

located relative to each other in a vector space, we visualized them with t-SNE algorithm. The 

contextualized representations were extracted from RusVectōrēs ELMo model. 

Figure 1 and Figure 2 demonstrate that all of the samples of the same sense occupy similar parts of 

the vector space. The examples from the dictionary corpus are situated near the border of the sense 

clusters both in the News and Proza.ru collections representations. But this configuration is not 

characteristic for every target polysemous word: in some cases, sense groupings from the different 

datasets occupy distinct parts of the vector space or some words may not have such clear-cut sense 

groupings. Such representation, for example, was obtained for the word слог as depicted on Figure 3. 

We noticed, that the diversity in polysemous words representations has a direct correspondence with 

the F1-score obtained for the target senses: for example, the F1 for the word крона equals to 0.93, 

whereas the same metric for the word слог is only 0.62. 

 

 

 



 
Figure 1: Representations for the word крона encoded by RusVectōrēs ELMo model, samples marked 

with “_train” label are taken from the News train collection (balanced), examples marked with “_test” 

are taken from the manually annotated evaluation collection contexts, label “_dict” stands for the 

examples of use or dictionary definitions 

 

 

 
Figure 2: Representations for the word крона encoded by RusVectōrēs ELMo model, samples marked 

with “_train” label are taken from the Proza.ru train collection (balanced), examples marked with 

“_test” are taken from the manually annotated evaluation collection contexts, label “_dict” stands for 

the examples of use or dictionary definitions 

 



 

 

 
Figure 3: Representations for the word слог encoded by RusVectōrēs ELMo model, samples marked 

with “_train” label are taken from the Proza.ru train collection (balanced), examples marked with 

“_test” are taken from the manually annotated evaluation collection contexts, label “_dict” stands for 

the examples of use or dictionary definitions 

 

7. Conclusion 

In this article we introduced the method of automatic harvesting and labelling of the training 

collections that is aimed at mitigating knowledge acquisition bottleneck. This approach relies on the 

relations that connect target polysemous words and the monosemous words surrounding them in the 

semantic graph RuWordNet. In our algorithm the distances between the words under consideration in 

the thesaurus are not limited to the closest ones, which makes it possible for our algorithm to collect 

training samples for the vast majority of the polysemous words in the thesaurus. The procedure of the 

monosemous candidates ranking enables to add to the training collections only reliable samples thus 

reducing the amount of noise added to the training data.  

The training collections were compiled from the texts extracted from the news and Proza.ru corpora. 

We evaluated them using kNN classifier applied to the contextualized word embeddings extracted for 

target polysemous words and measured its performance on the RUSSE-RuWordNet test dataset. The 

experiments showed the limitations and the benefits of different deep contextualized word 

representations to model polysemy. The best result on the generated text collections was obtained with 

the Proza.ru training collection and RusVectōrēs ELMo model and amounted to 0.857 F1 score.  

Our experiments with the augmentation of the training collections demonstrated that the integration 

of any amount of hand-labelled data to the generated collection is beneficial for supervised models. The 

best result on the hybrid training data, which contains manually labelled and automatically generated 

samples, equals to 0.94. Furthermore, our research proved that lemmatized training data improves the 

performance of the WSD models for the languages with rich morphology such as Russian. 
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