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Abstract  
Over the past decades, pneumonia has been considered one of the most dangerous diseases, 
leading to severe consequences in a short time. Without proper and timely treatment, 
pneumonia can lead to fatal consequences. Thus, early diagnosis and detection of this lung 
disease are crucial in successful treatment and constant monitoring. Indeed, there is a high 
demand for the development of medical image technologies for disease identification. In this 
paper, we propose a novel information technology for robust feature identification and early 
detection of pneumonia on computer tomography scans. We also propose a new modified 
convolutional neural network as a core feature extractor. An effective dilated convolution 
operation with different rates, combining features of various receptive fields, was utilized to 
detect and analyze visual deviations in targeted images. Due to applying the dilated 
convolutions, the network avoids significant losses of objects' spatial information while 
providing low computational losses. The investigated model classifies computed tomography 
images with a validation accuracy of up to 96.12%. Overall, our approach requires much 
fewer computing resources, proving its effectiveness for solving practical problems on 
available computing devices. 
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1. Introduction 

Over the past decades, the lower respiratory tract's infectious diseases have been considered the 
most common causes of death throughout the world. In particular, in 2017 [1], approximately 2.17 
million people died worldwide due to airway inflammation exacerbation. Besides, the COVID-19 
coronavirus pandemic has further exacerbated the lethal effects of lung diseases. Various clinical 
studies confirmed that people with COVID-19 infection regularly suffer from severe pneumonia [2, 
3]. Meanwhile, the quantitative difference between the level of infection and mortality [4] shows the 
critical importance of early diagnosis of pneumonia. From the clinical studies [5], we know that 
pneumonia is an inflammatory disease of the lungs that primarily affects tiny air sacs known as 
alveoli. Its severe external symptoms are dry cough, difficulty breathing, chest pain, and fever. 

To date, the most general approach to diagnosing pneumonia is a chest X-ray method called 
computed tomography (CT) [6, 7]. A CT image is formed on a metal surface by the passage of a 
concentrated beam of X-ray photons through the soft and hard tissues of the body. At diagnosis, it is 
necessary to compare the white spots on the image with infiltrates that identify the infection and white 
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areas with pneumonic fluid in the lungs. Fig. 1 represents examples of CT scans with different types 
of pneumonia. 

 

 
Figure 1: CT samples images extracted from the COVIDx CT-2 benchmark dataset: (1) viral 
pneumonia due to SARS-CoV-2 infection, (2) common pneumonia (CP), (3) normal samples [8] 

 
For the most part, pneumonia can be detected at the initial stages of development only by 

comparing images taken at intervals of 1–2 days [9]. However, a significant disadvantage of 
radiographs, as a means of early diagnosis of viral pneumonia, is the limited range of colors, 
consisting of different shades of gray. Moreover, the visual transition from air-filled tissue (normal 
lung condition) visible in darker shades to distinctly compacted tissue requires enough fluid to shift 
the image's overall color scheme to lighter shades [10, 11]. Thus, preventive actions to detect viral 
pneumonia are complicated by the limited color scheme of radiographs and, consequently, the weak 
expression of pneumonia features in CT scans. 

The human factor can be a critical factor in the early diagnosis of pneumonia. Radiologists must 
have extensive expertise to distinguish the heterogeneous color distribution of air in the lungs. Such a 
distribution can be vividly expressed on the radiograph in various gray shades, but it does not 
correspond to the pneumonic fluid. Therefore, specialists must determine whether the white spots on 



the X-ray film correspond to the liquid. Following recent surveys [12, 13], both false positive and 
false negative diagnoses might heavily harm human health. We may assume that the use of 
computational methods and the implementation of automated diagnostic systems (ADS) at an early 
stage of pneumonia can substantially increase the chances of correct diagnosis and, consequently, lead 
to successful preventive measures and further treatment. 

In general, ADSs serve the clinical decision-making process, considering the study of information 
adequacy [14] and its noise immunity [15]. They combine computer vision (CV) and artificial 
intelligence (AI) techniques with X-ray and CT image processing to detect image patterns. Modern 
digital diagnostic systems typically operate based on machine learning (ML) methods, which detect 
and describe specific disease features in a CT scan. These methods are optimized for specific datasets 
and trained to identify predetermined changes in the size of the region of interest (ROI), orientation, 
and position on CT scans. 

 In recent years, visual feature extraction technologies [16, 17] have been widely spread, primarily 
based on hyperplane classification approaches [18, 19] and deep learning (DL) methods[12, 20], in 
particular, convolutional neural networks (CNNs) [21]. CNN has been considered the most promising 
method of extracting and processing objects' features in the images [22] and therefore has been 
employed to address CV issues in medical imaging. 

However, despite CNN's significant success in various short-term problems, the lack of precise 
interpretation of the results does not allow CNN to show its full potential in medical diagnosis. 
Insufficiently studied behavior of the CNN model limits its use in everyday clinical practice [23]. To 
date, there is still no clear understanding of early pneumonia features on a CT scan that might indicate 
the computational model about the presence of the disease. Accordingly, it is not clear how to design 
a proper CNN topology for individual pneumonia diagnosis in the early stages. Consequently, the 
presented research aims to cover this gap by addressing early pneumonia prevention. 

2. Related works 

In recent years, the scientific community has presented many works on using machine diagnosis of 
pneumonia on chest radiographs. For example, in [24], active contour algorithms were used to detect 
the entire lung zone, and then this zone was divided into 40 ROIs. As a result of applying the two-
dimensional Daubechies wavelet transform and the analysis of the main components, each region's 
components were removed and compared with the predicted area. In this way, the authors could 
segment the chest image and present ROIs with possible lung disease features.  

In work [25], the authors identified pneumonia in CT scans using a modified threshold value Otsu. 
The presented threshold value makes it possible to separate the healthy part of the lung from the 
manifestations of frosted glass in the image, signaling the disease's presence.  

The study [26] presents an automated diagnostic system that uses the procedure of CT voxel 
differentiation for sequential extraction of pneumonia features in pre-prepared areas of interest. 
Simultaneously, the method of reference vectors was used to train and mark the pulmonary 
parenchyma's ROIs, guided by the characteristics of the image's texture and shape. This approach 
made it possible to achieve a classification accuracy of 91%, which exceeded the radiologists' results 
at the time. 

However, despite the decent results of traditional short circuit methods in the digital diagnosis of 
pneumonia, they do not reveal a few essential points. First, it is necessary to specify the ROIs 
manually, but it is not clear how many of them are sufficient to cover all the pneumonia features. 
Further, it is unknown which types of textures are most meaningful for early pneumonia, given the 
blurring of the X-ray image's features. Besides, for new forms of pneumonia, such as those caused by 
COVID-19 [27, 28], it is necessary to improve the image's chest segmentation level while maintaining 
a high interpretation of the results. In general, traditional CV techniques require extensive image 
preprocessing and manual intervention to remove specific visual features before classification. Over 
the past few years, such issues have been primarily addressed with DL methods, mainly using CNNs. 

In 2017 Wang et al. [29] presented a modified CNN, configured to localize the ROI based on a 
gradient for the detection and spatial localization of pneumonia. Their work demonstrated the 
classification accuracy of 63.3% in pneumonia detection. Wang et al. also released an extensive 



collection of frontal X-rays datasets with a size of 112,120 images that significantly facilitated the 
digital diagnosis of lung diseases. 

 In [12], the gradient imaging method combined with heat maps was applied to the ROI's 
localization to identify pneumonia. The authors used a 121-layer tightly coupled neural network to 
assess the likelihood of disease and achieved an AUC of 76.8%. In another work [30], the authors 
focused on visualizing the process of detecting pneumonia, using class activation maps (CAMs) to 
interpret the results of an automated diagnostic system. The modified VGG16 achieved 93.6% 
classification accuracy, and the proposed imaging approach brought us closer to understanding which 
features of CNN are considered essential for the clinical decision. Another approach to visualizing 
and interpreting deep learning is fully-connected CNN, specifically, the U-Net architecture. For 
example, the study [31] proposes a modified U-Net architecture with convolutional kernels of 
3 × 3 × 3 to segmentation abdominal organs in volumetric images of computed tomography. 

Over the last few years, an approach called transfer learning has become popular, which involves 
transferring the values of the weights of a network trained on a single dataset to a target model of a 
specific task. For example, the study [6] applied a transfer training method to a 36-layer CNN to 
effectively classify pneumonia on a small dataset and used gradient-based CAMs to interpret the 
automated diagnosis output. This CNN model demonstrated an impressive classification accuracy of 
96.4% on a small training dataset of 5232 X-rays.  

In a recent study [32], the authors proposed an automated system for diagnosing pneumonia and 
COVID-19 by developing a transfer training method using a few COVID-19 CT scans. The proposed 
multilayer CNN uses in-depth dilated convolutions to extract various targeted features in the images 
effectively. Moreover, discriminant gradient-based localization is integrated to separate ROIs that 
may signal the presence of pneumonia. At present, the in-depth convolution approach seems to be the 
most promising for the early diagnosis of pneumonia without expanding the neural network topology. 

Thus, the presented study investigates the problem of early detection of pneumonia on CT images. 
The paper describes a new individual approach to medical image classification based on simple CNN 
structure and modified convolutions. The article also presents the evaluation results and statistical 
verification of the effectiveness of individual modified CNN. 

3. The proposed approach 

This section describes an approach to setting the fitted CNN architecture for the early detection of 
pneumonia. 

3.1. The modification of the convolutional layer 

In this part, we formulate the task of detecting pneumonia on CT scans. The following image 
features have been commonly employed in image processing: target color, object shape, texture, and 
objects' relationship in space. CT scans of a healthy person differ from images with pneumonia by 
various textural features. Despite the intuitive choice of feature textures to identify the image's 
disease, there is no clear standard for defined textures. The discussion of their definitions is far from 
over [32]. Unlike image features such as grayscale and color, textures are grayscale distribution 
relative to a particular pixel and space. Therefore, we present the texture as a constant repetition of 
local space in the image. 

The convolution kernel is a typical example of the mechanism of feature extraction. In a 
convolutional layer consisting of a plurality of filters, each neuron's input is connected to the previous 
layer's local receiving area, which allows removing local features in the image. Due to the 
convolutional layer's modification, it is possible to remove the textures' local features effectively. 
However, the texture does not always entirely reflect the object's essential properties [33]; thereby, 
using only the texture features to obtain a higher level of image content might not be the right 
approach. As the depth of the model increases, the feature map resolution gradually decreases, and the 
texture highlighted by the convolution kernel may have substantial deviations. 

According to clinical diagnosis [10], CT scans' pneumonia features can be either highly compacted 
or diffusely distributed throughout the lung plane. Therefore, there is a need to consider the disease's 



features at different observation levels [7]. In [32], Yu et al. the efficiency of dilated convolutions to 
expand the convolution's receptive field without multiplying the number of convolution's core 
parameters. Fig. 2 illustrates an idea of dilated convolutions with different expansion rates. 

 

 
Figure 2: The scheme of dilated convolutions with a kernel size of 3 × 3. Different dilated rates cover 
different receptive fields with constant efficiency. 

 
Due to the peculiarity of the expansion, various disease features, removed from different 

convolutions with different dilated rates, will accumulate more diversity. The traditional convolution 
can be divided into in-depth and dotted, one after the other. When performing deep (spatial) 
convolution, each input channel is individually processed by separate filters. Next, a point (traditional) 
convolution with 1 × 1 kernels is performed to integrate deep convolution results into a new space. This 
approach makes the extraction process computationally efficient with few convolutions [34]. 

In this study, we propose to apply dilated convolutions consistently with point convolutions. First, 
the dot convolution passes through a map of input characteristics to project information from many 
input channels into a more expansive space. The image is then produced through numerous deep 
convolutions with different spatial kernels and different dilated rates, from 1 to the maximum value of 
the dilation rate. We adjust the rate's value to the size of the input feature map to cover all receptive 
fields. As a result, in-depth convolutions extract spatial features from various receptive fields, from 
very condensed to generalized features. Then all the disparate features go through the next point 
convolution to merge into a narrow space. Such a procedure leads to removing even a few visible 
features of pneumonia in the image using only a few convolutional layers, which allows designing 
individual CNN architectures. 

3.2. The proposed architecture 

This study investigates a few-layer CNN architecture based on skip connections, formerly 
introduced in [35]. The idea is to adjust the CNN to study minor changes removed by the rest of the 
convolutional layer. Thus, the network receives a set of images of 128 × 128 pixels after their 
preprocessing collapsing in a sequence of 3 convolutional layers. Convolutional filters contain 3 × 3 
kernels with a ReLU activation function. In this way, the neurons' small size relative to the input 
signal's entire receptive field is provided. Accordingly, it provides an opportunity to cover the local 
features of the texture of pneumonia. 

In general, to preserve the necessary information about the textural features of pneumonia and at 
the same time does not complicate the model with numerous convolutional layers, we offer a three-
layer CNN with dilated convolutions. The scheme of architecture is presented in Fig. 3. 

 



 
Figure 3: The proposed CNN topology designed for early diagnosis of pneumonia 

 
This approach should ensure consistent network resolution and minimize image space resolution 

loss. As it is seen from Fig. 2, the dilated convolutional kernel can increase the kernel's receptive field 
without increasing the kernel parameters and allows avoiding excessive loss of feature map 
resolution. The ReLU activation function was utilized after each convolutional layer. Moreover, a 
normalization layer follows each convolution so that the nonlinear transformation function's input 
value falls into the region that is sensitive to the input data. Such an approach may avoid the problem 
of gradient disappearance and speeds up network learning. A dropout layer with a parameter of 0.5 
has been added to prevent the model from being retrained. This layer accidentally stops the training of 
half of the neurons each time the training is updated and prevents hidden neurons' dependence on 
specific inputs. Next, we have an averaged pooling layer, which calculates each feature map's average 
value for the last original convolution layer. The resulting feature set is equal to the number of feature 
maps of the last layer and is fed to two fully connected layers. The first dense layer has 256 nodes 
with a ReLU activation function, the second – a classification layer with two nodes and a Sigmoid 
activation function to compress the two-dimensional output in the probability distribution. 

4. Implementation 

The proposed architecture is tested as a binary classification problem on a new publicly available 
dataset of CT images. The process of detecting early pneumonia using the new CNN architecture is 
divided into three stages: data collection, preprocessing, and image classification. 

Due to the high level of stochasticity and uncertainty during neural network modeling, we 
investigate the effectiveness of the proposed approach against pre-configured recognized neural 
networks VGG19 [36], Inception_v4 [37], and MobileNet_v2 [38]. 

4.1. Dataset 

In this study, we employed the public dataset COVIDx CT-2B [8] with chest CT images collected 
from 879 patients. COVIDx CT-2B contains 5,856 images with a size of 512 × 512 pixels, 
categorized into 4,273 samples of pneumonia and 1,583 samples of normal lung condition. However, 
to investigate early pneumonia properly, we took a subset of 3,458 CT samples with pneumonia and 
normal labels. The targeted subset was divided into two categories: training and validation datasets 
with 60% and 40% of the subset. It must be noted that the training and validation subsets comprise 
unique CT images, i.e., they do not intersect. 

4.2. Data preprocessing and data augmentation 

The next stage that introduces information technology for the early diagnosis of pneumonia is 
preprocessing input images. First, the visual noise level was reduced, and the image contrast was 
increased to improve the quality of the visual information for each input image. Moreover, we applied 



intensity normalization and contrast-limited adaptive histogram alignment (CLAHE) to the targeted 
CT scans described in [39] to investigate our architecture. 

Before performing computational experiments, the input images were normalized to the standard 
normal distribution to increase the contrast of the image's edges. Upon completing image processing, 
all images' sizes were reduced to 128 × 128 pixels for better bandwidth on the neural network's input 
layer.  

The targeted pneumonia features are then extracted gradually by three convolutional layers, after 
which the features are smoothed to form vectorized feature maps. Next, the generated vector of 
features is passed to the last classification layer to attribute the image into a corresponding class. 
Finally, we measure the effectiveness of the proposed approach by several statistical indicators on the 
validation dataset. 

4.3. Evaluation criteria and experiment setup 

Let us consider the number of real positive (P) and real negative (N) cases in the initial data. As is 
known, the results of modeling and classification [16, 17, 40] are distributed as true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN) cases. In this paper, the effectiveness of the 
proposed architecture together with other neural networks is evaluated by several fundamental 
statistical indicators defined as 
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To train the network, we used the Adam optimization method with overall 300 epochs. Based on 

the experiment results in [41] and the ranking of feature training in [20, 21, 42], we initialized the 
training parameters as follows: learning rate of 5 310 10− −− , weight decay of 30.5 10−⋅ , momentum of 
0.85, and batch size of 512. 

Furthermore, following the software quality assessment guidelines from [14, 15], the 
computational experiments were performed using Python v3.8 and TensorFlow v.1.15 [43] as a 
backend. The hardware comprises an eight-core Ryzen 2700 and a single NVIDIA GeForce 
GTX1080 CPU with 8 GB video memory. The code is open-sourced and available via [44]. 

5. Experimental results 

This section compares the binary classification of chest CT images based on the proposed 
architecture, VGG19, Inception_v4, and MobileNet_v2. Simultaneously, several experiments on the 
dataset were performed to test the efficiency and reliability of each of the models used. The results are 
presented separately through learning curves as well as accuracy and loss checks. 

The learning curve is calculated based on the learning dataset. It explains how well the model 
learns. Simultaneously, the validation curve is calculated based on the validation dataset and explains 



how well the model approximates the validation data to an ideal forecast. The loss and validation loss 
function is defined as the summation of the errors made for each sample of the training and validation 
datasets. In general, a model that approximates observational data well is less likely underfitted or 
overfitted. For detailed partitioning of images because of classification, the entanglement matrix for 
each model is also presented. 

Fig. 4 presents the results of experiments conducted on the proposed architecture. 
 

  
 (a) (b)  

 
 (c)  
Figure 4: Accuracy (a) and loss (b) curves and confusion matrix (c) obtained by the proposed CNN 

 
In Fig. 4a, both the training and validation curves grow to 95.51% from epoch 0 to 20. After epoch 

20, training accuracy continues a slight increase and eventually reaches a value of 99.11%; 
meanwhile, the validation accuracy stables and stops at 96.10%.  

In Fig. 4b, training and loss validation curves demonstrate excellent convergence, indicating few 
signs of the model's overfitting. By epoch 25, the loss function's value for both curves slows at 3.98% 
and then gradually falls to 1.16% in epoch 300. 

Overall, the model based on our architecture could correctly identify 1,618 images as pneumonia; it 
incorrectly assigned 111 images with healthy lungs to the pneumonia class (Fig. 4c). Lastly, 1,705 and 24 
images were marked correctly as normal and incorrectly as pneumonia for the normal class, respectively. 

Fig. 5 depicts the results of experiments using the VGG19 model. 



  
 (a) (b)  

 
 (c)  
Figure 5: Accuracy (a) and loss (b) curves and confusion matrix (c) obtained by the VGG19 model 

 
According to Fig. 5a, the training and validation accuracy curves can be divided into two intervals. 

There is a rapid increase in training accuracy to 84.12% and validation to 83.84% in this interval. 
Then the accuracy moves to the second interval, where both curves grow steadily and eventually 
gradually coincide to 87.37% and 86.92% in the 300 epochs, respectively. Indeed, from epoch 0 to 19, 
the loss functions rapidly decrease to 2.94% and then steadily decrease until epoch 300, where the 
training loss ends at 0.82% and validation – at 1.02% (Fig. 5b). 

The VGG19 model was able to classify 1,582 images as pneumonia and 147 images as normal 
samples for the pneumonia class (Fig. 5c). For the normal class, 1,390 images were predicted as 
normal and 339 images – as pneumonia. 

Fig. 6 illustrates the computational results with the Inception_v4 model. 
From Fig. 6a, the training and validation accuracy curves increase rapidly to the value of 92.79% 

from epoch 0 to epoch 7. After epoch 7, the classification results stabilize at 97.13% and 94.59% for 
the training and validation datasets, respectively. A similar convergence curve is shown by the loss 
function curves, which sharply decrease from epoch 0 to 32 to 3.76% (Fig. 6b). Then both loss curves 
fall evenly to 1.62% at the last epoch. 

We may observe in Fig. 6c that Inception_v4 correctly identified 1,650 samples for the pneumonia 
class, while 79 normal images were incorrectly marked as pneumonia. Finally, for the normal class, 
1,621 and 108 images were highlighted as normal pneumonia, respectively. 

 



  
 (a) (b)  

 
 (c)  
Figure 6: Accuracy (a) and loss (b) curves and confusion matrix (c) obtained by Inception_v4 

 
Fig. 7-8 show the results of computational experiments obtained by the MobileNet_v2 model. 
 

  
 (a) (b)  
Figure 7: Accuracy (a) and loss (b) curves of the MobileNet_v2 model 

 
As it is seen in Fig. 7a, from epoch 0 to 16, the training accuracy curve starts from 82.14% and 

increases sharply to 96.23%. Simultaneously, the validation accuracy sets off from 50.46% and 
rapidly increases to 95.91% in 42 epochs. Then, both curves gradually reach 98.17% and 96.30% in 
the 300 epochs, respectively. Noteworthy is the low convergence of the two curves throughout the 
training, which may indicate the MobileNet_v2 model's high overfitting on the COVIDx CT-2B CT 
image dataset. Nevertheless, MobileNet_v2 demonstrated an excellent convergence on the training 



and validation losses (Fig. 7b). By epoch 44, both loss curves rapidly declined to 2.31%, slowly 
coinciding to 1.13% at epoch 300. 

 

 
 (c)  
Figure 8: Confusion matrix obtained by MobileNet_v2 

 
According to Fig. 8, the model correctly predicted 1,696 images but erred in 33 images for the 

normal class. Simultaneously, 1,634 images were marked correctly as pneumonia, and 95 images 
were identified incorrectly as normal for the pneumonia class. 

6. Discussion 

The presented work aims to study the identification of early-stage pneumonia on CT scans. 
Overall, the evaluation of the four models' effectiveness was performed according to statistical 
indicators (1)-(7). Tables 1-2 contain the values of the indicators obtained by the models of deep 
learning VGG19, Inception_v4, MobileNet_v2, and the proposed architecture for visual comparison. 

 
Table 1 
The formal results obtained by the computational experiments, % 

Architecture TP TN FN FP 
VGG19 [36] 1,390 1,582 147 339 

Inception_v4 [37] 1,621 1,650 79 108 
MobileNet_v2 [38] 1,696 1,634 95 33 

The proposed 
architecture 1,705 1,618 111 24 

 
Table 2 
A numerical comparison of the proposed architecture with state-of-the-art models, % 

Architecture Accuracy Specificity Precision Recall FPR FNR 𝐹𝐹1 score 
VGG19 85.95 82.35 80.39 90.44 17.65 9.56 85.12 

Inception_v4 94.59 93.86 93.75 95.35 6.14 4.65 94.55 
MobileNet_v2 96.30 98.02 98.09 94.70 1.98 5.30 96.36 
The proposed 
architecture 96.12 98.56 98.61 93.89 1.44 6.11 96.19 

 
As we see from Fig. 5-8 and Table 1, the learning and validation accuracy curves gradually 

increase to the point of stability and reach a maximum of 300 epochs. It should be noted that the 
VGG19 model shows notably worse performance compared to the Inception_v4, MobileNet_v2 



models, and the proposed architecture. Simultaneously, their training and validation curves stable 
starting from epoch 20, and validation accuracy stops at 94.59% for Inception_v4, 96.30% for 
MobileNet_v2, and 96.12% for our architecture. 

Likewise, it is noteworthy that the VGG19 model shows good convergence of the learning and 
validation curves, which may indicate a low level of retraining of the model, and, consequently, good 
practical applicability of such a model. Simultaneously, other targeted models may demonstrate high 
validation accuracy due to retraining due to the small set of images. Experiments on a dataset with 
more CT images may explain the high accuracy of validation with low convergence of the learning 
and validation curves. Moreover, our approach showed shallow type I and type II errors, with 1.44% 
and 6.11%, respectively. Therefore, according to all statistical indicators (Table 2), the model based 
on our CNN architecture, which is schematically depicted in Fig. 3, shows satisfactory performance 
efficiency and can be used for further investigation. 

7. Conclusion 

This paper describes the application of deep learning methods for the diagnosis of early 
pneumonia on medical images. The proposed approach is based on CT scans classification with mild 
early pneumonia features using a modified convolutional neural network. The network consists of 
three convolutional layers with ReLU activation functions after each layer, followed by an averaged 
pooling layer and two dense layers. An effective dilated convolution operation with different dilated 
rates, combining features of various receptive fields, is utilized to detect visual deviations on the 
images. This approach avoids losing spatial information about the targeted objects due to dilated 
convolution operation while providing low computational losses due to the network's shallow depth. 
Computational experiments on a set of CT images and statistical comparisons with recognized neural 
networks in the field of computer vision have proven the computational efficiency of our architecture. 
Overall, the proposed CNN architecture can be an effective tool for instant diagnosis in case of the 
first suspicion of early pneumonia. 

Further research will be aimed at optimizing the proposed approach to improve statistical metrics. 
It is also planned to apply additional optimization methods to tune the network's hyperparameters. 
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