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Abstract  
It is proposed a modification of the “piramidal” algorithm of small time series forecasting. 
“Piramidal” approach was developed in recent years, numerical results show advantages of 
this method in comparison with known approaches to extrapolation, based on the using of 
polynomials, including Newton’s extrapolation. But this approach was tested only on 
deterministic time series. In this paper piramidal approach is applied to construct 
prognoses in the case where the time series contains a random component. It is studied 
the procedure for constructing the forecast value in accordance with the pyramidal 
method and improved the main criteria of this method . The main idea of the method 
improving is to find special patterns in the table of finite differences. The improved 
method is used for the number of patients with COVID-19 forecasting in Ukraine. 
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1. Introduction 

Today, forecasting is one of the most important tasks in the study of various processes. We would 
like always to look into the future. There is a number of methods of time-series forecasting. In many 
tasks, it becomes necessary to find patterns in large volumes of data and use them for forecasting [3]. 
Data mining as well as predictive modeling is used in many fields of scientific research. In the case of 
large amount of data it can be useful wellknown statistical approaches [17]-[21]. But what to do when 
very little is known? In the case of small time series many specific features arise. It is often 
impossible to determine what is the nature of the process from the point of view of determinism, what 
is the ratio of the deterministic and random components of the process. In the deterministic case 
according to the observation data can be built  some mathematical model which is used to obtain the 
predicted value.  

There is a number of methods for solving the extrapolation problem. For the extrapolation various 
interpolation functions can be used such as: generalized polynoms  based  on the systems of 
Chebyshev functions – polynomials [1], exponential, trigonometric functions[12]; flat radial basis 
functions  [14]; splines – cubic, B-spline; Bezier curves [4]; special analytic functions and trend 
analysis [9]-[13],[15]. Neural networks also are widely used for extrapolation [8].  But how to choose 
the optimal model corresponding to a finite set of experimental data? It is obvious that an infinite set 
of curves passes through a finite set of points on the plane, and each of them can be a model of the 
process. 
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In the paper [1] it  was proposed a new method of short time series extrapolation which was called 
“piramidal”. The aim of the authors is to develop a forecasting method that would not use specific 
classes of functions or any mathematical models. “Piramidal” method is based on the procedure  of 
finding special conditions in the data obtained as special finite differences. The results of calculations 
for test functions showed the advantages of this method in comparison with approaches to extrapolate, 
based on the use of intarpolation polynomials. But piramidal approuch is comparatively new and 
requires deep in-depth research and data series validation. 

In this paper, we have attempted to apply a piramidal approach to construct prognoses in the case 
when the time series contains a random component. We study the procedure of forecast value 
constructing  in accordance with the pyramidal method and improve the main criteria of the optimal 
row choosing. The main idea of this method improving  is based on finding patterns in the table of 
finite differences. Our modification makes possible use pyramidal approach in the case of data with 
stochastic component.  

2.  “Piramidal” algorithm without midpoints 

“Piramidal” method of data extrapolation was proposed in work [1] . The main feature of this 
method is to construct a special divided differences and find their order, for which a better predicted 
value in a certain sense can be found. Then the value of the original function at the point located 
outside the interpolation interval is based on the predictive value for the divided differences using a 
special computational procedure. In works [1],[12] this method has been described taking into 
account additional interpolation at intermediate points. Since such interpolation did not play a 
significant role, here we consider an analogue of the corresponding algorithm without midpoints and 
use another notatin  

Let nf,,f,f …21  be any time-series, nx,,x,x …21  are points of time respectively. It is needed to 
estimate the future observation 1+nf  at the point nx>x . Consider the finite differences modified as 
follows: 

∆1𝑓𝑓𝑖𝑖 =
𝑓𝑓𝑖𝑖+2 − 𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖+2 − 𝑥𝑥𝑖𝑖

, 𝑖𝑖 = 1,𝑛𝑛 − 1����������, 

∆2𝑓𝑓𝑖𝑖 =
∆1𝑓𝑓𝑖𝑖+2 − ∆1𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖+3 − 𝑥𝑥𝑖𝑖+1

, 𝑖𝑖 = 1,𝑛𝑛 − 2����������, 

∆3𝑓𝑓𝑖𝑖 =
∆2𝑓𝑓𝑖𝑖+2 − ∆2𝑓𝑓𝑖𝑖
𝑥𝑥𝑖𝑖+4 − 𝑥𝑥𝑖𝑖+2

, 𝑖𝑖 = 1,𝑛𝑛 − 3����������, 

… 
In general case we have: 

∆𝑗𝑗𝑓𝑓𝑖𝑖 = ∆𝑗𝑗−1𝑓𝑓𝑖𝑖+2−∆𝑗𝑗−1𝑓𝑓𝑖𝑖
𝑥𝑥 𝑖𝑖+𝑗𝑗+1−𝑥𝑥 𝑖𝑖+𝑗𝑗−1

,                                                     (1) 

where 𝑗𝑗 = 1,𝑝𝑝�����, 𝑖𝑖 = 1,𝑛𝑛 − 𝚥𝚥���������,𝑝𝑝 = �
𝑛𝑛−1
2

,𝑛𝑛 = 2𝑘𝑘 + 1,
𝑛𝑛−2
2

,𝑛𝑛 = 2𝑘𝑘.
  

It is obvious that the finite differences (1)  approximate the derivatives and differ from the classical 
ones, which are considered in the construction of Newton's interpolation polynomials. Note that if we 
find the value  ∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘+1 for any index 𝑘𝑘 of the table of finite differences it can be easily constructed 
the predicted value of the function at the point 𝑥𝑥𝑛𝑛+1(see Fig. 1, 2) according to the following 
computational procedure: 

∆𝑗𝑗−1𝑓𝑓𝑛𝑛−2𝑗𝑗+3 = ∆𝑗𝑗−1𝑓𝑓𝑛𝑛−2𝑗𝑗+1 + ∆𝑗𝑗𝑓𝑓𝑛𝑛−2𝑗𝑗+1(𝑥𝑥𝑛𝑛−𝑗𝑗+2 − 𝑥𝑥𝑛𝑛−𝑗𝑗),  𝑗𝑗 = 𝑘𝑘, 1�����. (2) 
Let’s consider such modification of the finite differences: 

∆�𝑗𝑗𝑓𝑓𝑛𝑛−2𝑗𝑗+1 =
�
∆𝑗𝑗−2𝑓𝑓𝑛𝑛−2(𝑗𝑗−2)−∆

𝑗𝑗−2𝑓𝑓𝑛𝑛−2(𝑗𝑗−2)−1
𝑥𝑥𝑛𝑛−𝑗𝑗+2−𝑥𝑥𝑛𝑛−𝑗𝑗+1

−
∆𝑗𝑗−2𝑓𝑓𝑛𝑛−2(𝑗𝑗−2)−1−∆

𝑗𝑗−2𝑓𝑓𝑛𝑛−2(𝑗𝑗−2)−2
𝑥𝑥𝑛𝑛−𝑗𝑗+1−𝑥𝑥𝑛𝑛−𝑗𝑗

�

(𝑥𝑥𝑛𝑛−𝑗𝑗+2−𝑥𝑥𝑛𝑛−𝑗𝑗)/2
, (3) 



The logic for constructing  finite differences (3) is as follows. Let consider the simplest case (see  

Fig. 1), 𝑗𝑗 = 2 , ∆�2𝑓𝑓𝑛𝑛−3 =
�𝑓𝑓𝑛𝑛−𝑓𝑓𝑛𝑛−1
𝑥𝑥𝑛𝑛−𝑥𝑥𝑛𝑛−1

−𝑓𝑓𝑛𝑛−1−𝑓𝑓𝑛𝑛−2
𝑥𝑥𝑛𝑛−1−𝑥𝑥𝑛𝑛−2

�

(𝑥𝑥𝑛𝑛−𝑥𝑥𝑛𝑛−2)/2
.  

It is obvious, that ∆�2𝑓𝑓𝑛𝑛−3 is a discrete analogue of the second derivative. The main idea of this 
approach is to find an additional condition when it  is satisfied the equation: 

∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘+1 = ∆�𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘+1                                                               (4) 
Considering (1) and (3), we have: 

∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘+1 = ∆𝑘𝑘−1𝑓𝑓𝑛𝑛−2𝑘𝑘+3−∆𝑘𝑘−1𝑓𝑓𝑛𝑛−2𝑘𝑘+1
𝑥𝑥 𝑛𝑛−𝑘𝑘+2−𝑥𝑥 𝑛𝑛−𝑘𝑘

, 

∆𝑘𝑘−1𝑓𝑓𝑛𝑛−2𝑘𝑘+3 − ∆𝑘𝑘−1𝑓𝑓𝑛𝑛−2𝑘𝑘+1
𝑥𝑥 𝑛𝑛−𝑘𝑘+2 − 𝑥𝑥 𝑛𝑛−𝑘𝑘

=

=
�
∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2(𝑘𝑘−2) − ∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2(𝑘𝑘−2)−1

𝑥𝑥𝑛𝑛−𝑘𝑘+2 − 𝑥𝑥𝑛𝑛−𝑘𝑘+1
−
∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2(𝑘𝑘−2)−1 − ∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2(𝑘𝑘−2)−2

𝑥𝑥𝑛𝑛−𝑘𝑘+1 − 𝑥𝑥𝑛𝑛−𝑗𝑗
�

𝑥𝑥𝑛𝑛−𝑘𝑘+2 − 𝑥𝑥𝑛𝑛−𝑘𝑘
2

. 

From the last equation we get: 
∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2𝑘𝑘+5 − ∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2𝑘𝑘+3

𝑥𝑥 𝑛𝑛−𝑘𝑘+3 − 𝑥𝑥 𝑛𝑛−𝑘𝑘+1
= 

= 2 ∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2(𝑘𝑘−2)−∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2(𝑘𝑘−2)−1

𝑥𝑥𝑛𝑛−𝑘𝑘+2−𝑥𝑥𝑛𝑛−𝑘𝑘+1
− ∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2(𝑘𝑘−2)−1−∆𝑘𝑘−2𝑓𝑓𝑛𝑛−2(𝑘𝑘−2)−2

𝑥𝑥𝑛𝑛−𝑘𝑘+1−𝑥𝑥𝑛𝑛−𝑘𝑘
                      (5) 
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Figure 1: Structure of the table of modified finite differences  
 

 
Figure 2:  Illustration to the spatial generalization of the "pyramidal" method 
 



The method is based on the search for conditions under which the error |∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘+1 − ∆�𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘+1|  
is minimal.  

In [1],[6]  was proposed the following algorithm Ξ , which consists of the next steps. 
1. Construction the table of finite differences according to (1). 
2. Finding a row in the  table of finite difference according to the condition: 
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3. Calculation the value ∆�𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘+1 according to (3). 
4. Building predictive value according to the procedure (2). 
Spatial generalization of the "pyramidal" method was proposed in [12]. To construct the 

"predictive" value of some surface at the selected point, it is proposed to consider paths passing 
through lattice nodes, where the values of the corresponding surface are known and a special 
parameter (measure) of the predictability of the function is determined. Then, a predictive value is the 
result of one-dimensional "pyramidal" approach for the function values through the path for which the 
degree of predictability is   maximal. 

3.  Modification of the Ξ -algoritm 

Without loss of generality we can consider uniform grid, 5.01 =− −kk xx . In this case finite 
differences (3) can be easy to calculate. The illustration of the calculation the value ∆�𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘+1 is 
presented in the Fig. 3 (this is a part of the transposed table in the Fig. 1). In this table, the values l

k f∆ ,

1+∆ l
k f  2+∆ l

k f 3+∆ l
k f  are known, 4+∆ l

k f  is unknown. Other values recorded in selected cells are also 
unknown. According to (3) we can find 123 484 +++ ∆+∆−∆ l

k
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k
l

k fff  and it is easy to find  another 
unknown values according to procedure (5), for example,  
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Figure 3: Illustration of the calculation modified finite differences (3) in the case of uniform grid.  
Unknown values in the table cells are highlighted 

 
For a more detailed analysis of the Ξ -algorithm , it is necessary to consider the required and 

sufficient conditions for the fulfillment of the relation (4). 
We can use two results. In [3] it is investigated that procedure of building prediction according ещ 

formula (4) is equivalent to the cubic extrapolation . Thus, the task of determining the forecast value 
in the corresponding row of the pyramidal method is equivalent to the cubic forecast based on the last 
4 values of the data series, ∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘−3,∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘−2 ∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘−1, ∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘. If a cubic curve passes through the 
last four points and predictable fifth point, equation (4) is satisfied. 

Next additional result can be easily obtained and is deals with  quadratic extrapolation. Equation 
(3) is satisfied if and only if the parabola passes through the points: 
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Thus, we have two criteria of (3) satisfaction: “cubic”  and “quadratic”. 
Let us analyze a cases when  parabola or a cubic curve gives the best forecast. It is obvious such  

property that faster interpolation curve grows on the forecast interval, the greater is probability of 
extrapolation error based on this curve.  

Let us consider first three points of series (7) for the “quadratic” criteria or four points  
(𝑥𝑥𝑛𝑛−𝑘𝑘−3,∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘−3), (𝑥𝑥𝑛𝑛−𝑘𝑘−2,∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘−2), (𝑥𝑥𝑛𝑛−𝑘𝑘−1,∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘−1,), (𝑥𝑥𝑛𝑛−𝑘𝑘 ,∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘)  for the “cubic”  
one. 

Let the point data sequence and the rate change are increasing. In this case, the quadratic or cubic 
forecast will also give an increase, but the real function may increase according to a significantly 
different law and error of the forecasting may be large. Let the point data sequence is increasing and 
the rate of change decreases. Then the nature of the uncertainty will significantly depend on the rate 
of growth and approach to a corresponding local extremum, the farther the extremum point from the 
observed interval, degree of uncertainty of the real function increases. 

Let the abscissa of the point of the local extremum is inside the observed interval. In this case, the 
quadratic or cubic prediction is in the region of exiting from the zone of small change of function. The 
uncertainty can be large.  

Let the quadratic or cubic interpolation curve have an extremum that coincides with the last 
observed point. In this case, the uncertainty is minimal, because if the real function also has a local 
extremum there, then the error is minimal. At the same time, if the real function does not have a local 
extremum at the last point, but it still reduces the growth rate. The curve optimally predicts a certain 
sequence of data if the forecast interval is in the area of a local extremum. 

Thus, we can propose the following modification of the finite difference table row selection 
procedure, for which an unknown predictive value is constructed by formula (3).  

Condition β. In piramidal algorithm instead of condition (6) it is selected that line of the table of 
finite differences for which last observation point deviates minimally from the point of local 
extremum, determined by the cubic or quadratic interpolation curve. 

Note that condition (6) describes a partial case of condition β. It can be proved  that under 
condition (6) the points (𝑥𝑥𝑛𝑛−𝑘𝑘−3,∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘−3), (𝑥𝑥𝑛𝑛−𝑘𝑘−2,∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘−2), (𝑥𝑥𝑛𝑛−𝑘𝑘−1,∆𝑘𝑘𝑓𝑓𝑛𝑛−2𝑘𝑘−1,) lie on one 
line. This means that the function that passes through these points changes the convexity. Then the 
cubic polynomial at the last point has either an approach to the local extremum, or a rapid increase in 
the function, which will lead to a larger prediction error.  

4. Numerical results 

To illustrate our method, let’s consider data set on the incidence of COVID-19 in Ukraine (Official 
statistics of the Ministry of Health of Ukraine, ttps://www.pravda.com.ua/cdn/covid-19/cpa/). Let 
consider statistics from 22.12.20 until 10.01.21. We have input time series: 6545, 8513, 10136, 
11490, 11035, 7709, 6113, 4385, 6988, 7986, 9699, 9432, 5038, 4576, 4158, 5334, 6911, 8997, 5676, 
4846, 5011. Results of the evaluation according to our modified piramidal algorithm are in Fig. 4.  

According to the condition β, we analyze distanсes from the last observation point 
(xn−k+2,∆k−2fn−2+4k,) for cubic extrapolation or point 
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for the quadratic extrapolation to the point of corresponding local extremum.  
The illustration of the process of finite differences is presented in the Fig. 4. Small distance was 

found for the row 8 for the quadratic extrapolation, = 8 , optimal distance –for the row 2. Graphs of 



the corresponding interpolation curves for the first case (row 8) are on the Fig. 5. You can see that 
both extrapolation curves give good results, last points are not far from the points of the 
corresponding local extremums. 

Our predictive value is 4023, real value-4288.  
We can also consider for this data set another row number 2 in the Fig. 6. This is optimal situation, 

for the quadratic extrapolation distanсe from the last observation point to the point of local extremum 
tends to 0 (see Fig. 5). Cubic extrapolation also gives good result. Our predictive value is 4675. 
 

0 9432 5038 4576 4158 5334 6911 8997 5676 4846 5011 4023 
1 -4661 -4856 -880 758 2753 3663 -1235 -4151 -665 -823  
2 -6302 3781 5614 3633 2905 -3988 -7814 570 3328   
3 11153 11916 -148 -2709 -7621 -10719 4558 11142    
4 16063 -11301 -14625 -7473 -8010 12179 21861 -1660    
5 -31662 -30688 3828 6615 19652 29871 -5832 2491    
6 -41818 35490 37303 15824 23256 -7652 1982     
7 92760 79121 -19666 -14047 -6196 3067      
8 111588 -112426 -93168 -1074 1814       
9 -277732 -340592 5574 -7689        

10 -681184 3626 -31729         
11 -27278 -75495          
Figure 4: Illustration of the process of finite differences table analysis 
 

 
Figure 5: Graphs of the cubic (left) and quadratic extrapolation curves  
 

Let’s consider next value 4288 (number of COVID  incidence in Ukraine 11.01.21) and add it to 
our data set. If we try to build prediction using piramidal approuch , there is not good situation 
according to the condition β for all roads of table of finite differences, predictive  value is 794 (see 
Fig. 8), it is far from reality. This means that we cannot find predictive patterns in such dataset. In 
such situation we must use another method. 

Let us consider other points of observation: 5116, 6409.  We also can find good situation for the 
forecasting (see Fig. 11), predictive value is 7081 (see Fig. 10), real observation is7925. Let us 
consider next point 7925 and add it to our data set . Result of the forecasting is in the Fig. 12, 9422. 
Real value is 9699. 
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0 4576 4158 5334 6911 8997 5676 4846 5011 4675 
1 -880 758 2753 3663 -1235 -4151 -665 -171  
2 5614 3633 2905 -3988 -7814 570 3980   
3 -148 -2709 -7621 -10719 4558 11142    
4 -14625 -7473 -8010 12179 21861 -1660    
5 3828 6615 19652 29871 -5832 2491    
6 37303 15824 23256 -7652 1982     
7 -19666 -14047 -6196 3067      
8 -93168 -1074 1814       
9 5574 -7689        

10 -31729         
Figure 6: Illustration of the process of finite differences table analysis 
 
 

 
Figure 7: Graphs of the cubic (left) and quadratic extrapolation curves for the optimal case 
 
 

 6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 
5038 4576 4158 5334 6911 8997 5676 4846 5011 4288 337 

-4856 -880 758 2753 3663 -1235 -4151 -665 -558 -4674  
3781 5614 3633 2905 -3988 -7814 570 3593 -4009   

11916 -148 -2709 -7621 -10719 4558 11407 -4579 1   
-11301 -14625 -7473 -8010 12179 22126 -9137 330    
-30688 3828 6615 19652 30136 -21316 6972 995    
35490 37303 15824 23521 -40968 16768 6402     
79121 -19666 -13782 -10212 30554 12210      

-112426 -92903 116704 40378 18375       
-204491 418684 26074 20726        
974148 -42958 10250         

Figure 8: Part of the finite differences table  
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Figure 9: Graphs of the quadratic extrapolation curves 
 
 

9 9,5 10 10,5 11 
5011 4288 5116 6409 7081 
-558 105 2121 1965   
770 2679 1860     

-914 5412     
18928 1656    

1326 -1551    
-556     

Figure 10: Part of the finite differences table  
 

 
Figure 11:  Graphs of the cubic (left) and quadratic extrapolation curves 
 

The peculiarity of this example is that we have good compliance with the condition β only by 
quadratic extrapolation. Cubic extrapolation shows (see Fig. 13) that forecast point is in zone of 
convexity changing. This gives a good agreement with the quadratic extrapolation. But cubic 
extrapolation cannot be used independently, since it is impossible to assert by four points that the fifth 
is in the zone of convexity changes for the predicted function . 

5. Conclusions 

Thus, it is presented a new modification of the “piramidal” algorithm of data forecasting. Keeping 
the basic idea of the pyramidal approach, we have changed the procedure for selecting a row in the 
finite difference table where  predicted value is found. The improved procedure allowed us to 
efficiently use the previously proposed piramidal approach for forecasting time series containing a 
stochastic component. Our approach works by finding certain patterns in a small series of data. 
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6,5 7 7,5 8 8,5 9 9,5 10 10,5 11 
6911 8997 5676 4846 5011 4288 5116 6409 7925 9422 
3663 -1235 -4151 -665 -558 105 2121 2809 3013   

-3988 -7814 570 3593 770 2679 2704 892     
-10719 4558 11407 200 -914 1934 2613     
12179 22126 -4358 -12321 1734 3527 2586    
30136 -16537 -34447 6092 15848 4032 -465    

-36189 -64583 22629 505043 3818 -1353     
-88104 58818 569626 -2228 -4732      
110831 657730 -15926 -10093       
732052 -35820 -18521        

Figure 12: Part of the finite differences table  
 
 

 
Figure 13: Graphs of the cubic (left) and quadratic extrapolation curves 

 
To illustrate our method, we consider data set on the incidence of COVID-19 in Ukraine from 

22.12.2020 until 14.01.21. Numerical results have demonstrated the high efficiency of our  technique 
of forecasting. Relative forecasting errors are within 2,8%-10,5%. Note that the errors could also be 
associated with inaccuracies in recording the number of cases in different regions of Ukraine. 

In the process of the algorithm justification we obtaine interesting additional results. For example, 
equivalence of the prediction procedure according to the formula (4) and cubic extrapolation makes it 
possible to significantly improve, in the context of computational complexity, the classical method for 
constructing a forecast based on a cubic interpolation polynomial. Indeed, there is no need to compose 
a system of 4 algebraic equations and solve it to find the parameters of a cubic polynomial. It is 
enough to construct Fig. 3 and perform simple corresponding calculations which are described in 
detail in paragraph 2 (abscissa of the first interpolation point can be arbitrary, but the distances 
between the abscissas of all points must be the same). 

The proposed method is generic and can be used to extrapolate the time series in arbitrary areas of 
research, including the construction of series of short-term forecasts of economic dynamics. 
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