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Abstract 
A model of the process of phonetic analysis of speech signals in the frequency and temporal 
spaces is highlighted in the article for the first time. The generalization of the spectral 
characteristics of the studied speech signals is formalized in the represented model as an 
optimization task of minimizing the functional of relative entropy in contrast to the existing 
models. The obtained mathematical apparatus made it possible to formulate metric for 
quantitative estimation of the quality of the phonetic analysis results and to propose an 
adaptive method of automated phonetic analysis with an integrated mechanism for 
counteracting the influence of Gaussian-type noise,  found in the studied speech signal, on 
the final result. The adequacy and functionality of the proposed model and method have been 
proved empirically. The analysis of the experiments results also showed that it is possible to 
assess the suitability of the studied speech materials for the task of authenticating a person by 
voice or speech recognition, focusing on the value of the coefficient of variability, which is 
included in the metric proposed by the authors and determined for the studied database of 
phonograms with recordings of voiced syllables of speech. Also, the values of this coefficient 
determined for the studied phonemes can be used to estimate the degree of their vocalization. 
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1. Introduction 

Modern methods of computational linguistics [1-5] are created with a focus on the use of 
technologies that process speech material automatically without constant human control. However, it 
requires upgrading of the computer speech technologies to a fundamentally new level, which can be 
achieved only by complete automation of the process of phonetic analysis of speech signals. 
Phonemes form the basic level of language description and determine its information and 
communicative characteristics. It is confirmed, in particular, by the method of forming speech 
corpora, in which phonograms of speech signals are accompanied by their transcription, which is 
nothing more than a sequence of phonemes. However, like any physiological process, speech is 
characterized by considerable variability, so there are a great number of options for phonemes 
sounding. This circumstance explains the fact that no any theoretical and software complex has been 
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created yet for the effective automatic phonetic analysis of coherent speech, although its necessity is 
extremely urgent. 

So the object of the research presented in the article is the process of clustering centers-phonemes 
in the spectral representation of the speech signals which are studied. 

2. State-of-the-Art 

The mechanism of automated phonetic analysis is an obligatory structural unit of information 
technology focused on solving such fundamental and applied phonetic problems as, for example, 
sounds recognition, the study of suprasegmental linguistic characteristics, speech synthesis, ets. As it 
was noted the final solution of computer phonetic analysis has not been found yet, but its relevance 
encourages research teams to creative search.  

There are a number of studies [6-9] based on the mathematical apparatus of digital signal 
processing. Inside of them, speech signals are analyzed directly, without taking into account their 
physiologically determined phonetic structure. The speech signal is interpreted as a non-stationary 
multi-frequency signal and processed in order to determine the transmission function that generates it. 
After its determination, the transition from signal analysis in temporal space to its study in frequency 
space is carried out, where phonemes are determined, as a rule, on the basis of summarizing the 
results of analysis of the energy of a signal. For the transition from the temporal to the frequency 
space, as a rule, variations of the Fourier transformation, based on linear perceptual coefficients or the 
wavelet-transformations are used. These signal processing methods are mentioned in order to increase 
information content and computational complexity. The advantage of such studies is their strict 
mathematical adequacy, but they completely ignore the physiological mechanism of the speech signal 
generation, therefore their automatic application for phonetic analysis demonstrates the average 
quality results. 

The second direction of research assumes the presence of a priori information about the 
transmission function of the articulatory tract. In this direction, let us single out the methods [10, 11] 
for representing a speech signal as a vector of states of an a priori given dynamic system (articulatory 
tract) with the help of a recursive filter, which allows to smooth out emissions at formant frequencies 
in time. In this context, an improved version of the method of phonetic-format analysis of the 
structure of a speech signal using linear perceptual coefficients with additional smoothing using the 
Newton-Raphson algorithm is also proposed [12]. The studies [13, 14] describe the PRAAT 
algorithm, which automatically finds the smoothest formant trajectory for short segments of the 
speech signal. The method is based on a variational polynomial approximation of short-time 
fragments of speech signals with the subsequent selection of the smoothest of them using the 
appropriate criterion. The method is fully automatic. However, the effectiveness of all these methods 
is mainly determined by the reliability of the applied a priori information. 

There are many well-known methods based on the acoustic-frequency model of the vocal tract, 
created as a result of studies of the acoustic-physiological direction [15-17]. However, this model was 
created as a tool for synthesizing speech signals, so its application for their analysis did not show 
outstanding results in terms of quality. The direction [18] of research, based on the analysis of speech 
signals with the interpolation of the appearance of phonemes based on the data of the energy peaks of 
the formants of the studied signal in the passband is known. To increase the effectiveness of these 
methods, corpora of regional dialects of North America has been created, which contains 134000 
formants identified by human experts. However, the effectiveness of these methods is generally 
determined by the presence of this specialized corpora. A fundamentally new direction of research is 
the study of the representation of phonemes by neurolinguistic structures of the human brain [18, 19]. 
In this context, phonetic analysis can also be viewed as a new tool for studying psychological and 
physiological phenomena. The methods that implement this concept are based on machine learning 
algorithms. Their effectiveness is completely determined by the representativeness of the training 
information used, the generalization of which has just begun. 

So, let’s try to take into account the strengths and weaknesses of the above mentioned methods by 
defining the subject of study as the methods of acoustic theory of speech formation and information 
theory, the results of which will be generalized using the methods of probability theory and 
mathematical statistics. 



3. Materials and Methods 

3.1 Statement of research 

According to the provisions of the complex theory of phonation, the quantum of oral speech is the 
phoneme, the number of which is finite and different for all languages. It is the combination of 
phonemes that forms the semantic quantum of speech – the morpheme. 

Neurolinguistic research suggests that despite the psycho-physiologically determined variability of 
phoneme pronunciation, in the human mind in the process of learning the appropriate language for 
each r -th phoneme formed a cluster of its speech pattern with center rx∗ , { }r r rjx X x∗ ∈ = , 1, rj J= , 

1,r R= , where rjx  is the j -th allophone of the r -th phoneme; rJ  is the power of the studied set of 
allophones of the r -th phoneme; R  is the total number of phonemes in the studied language. 
Accordingly, in the process of perception of a speech signal ( )X t  by a person in discrete time, the 
first is represented by a set of the characteristic vectors ( )х t  extracted from the corresponding 
segment of the original speech signal of duration t∆ . The value of t∆  is chosen so as to consider the 
fragment of the speech signal limited in this way to be quasi-stationary with a duration of [ ]10,20τ ∈  
ms greater than the average duration of the phonemic utterance in the studied language. Then the 
phonetic analysis of the speech signal ( )X t , represented by the set ( )1 2. , , Lx x x x=   of characteristic 
vectors ( )х t , 1,2, ,t L=  , will be understood as the task of assigning each segment ( )х t  to one of 
the classes from the set rX : ( ) v vx t x X∗≡ ∈ , where vX  is a subset of the set rX  determined as a 
result of classification, v R≤ . This classification task can be solved using machine learning methods 
or methods of information theory and mathematical statistics, for example, based on the functional of 
relative entropy [20]. 

Let the density of probability distribution xP  of the multidimensional matrix х  belong to some set 
of alternative multidimensional densities of distributions of probability distributions rP  defined on a 
finite set { }rХ  of phonemes of the studied language: { }x rP P∈ . Therefore, the task of phonetic 
analysis of the speech signal represented by the set х  can be reduced to finding such a probability 
density from a certain set of alternatives { }rP , the difference of which from xP  is minimal according 
to the selected metric µ . If we consider the distribution law of the appearance of each phoneme 
normal with zero mathematical expectation and autocorrelation matrix rK  of dimension n n× , n L≤ : 

( )0,r rP Norm K= , then a necessary condition for solving the above task is to calculate the set of 

differences ( )x rP Pµ  between the empirical distribution xP  and each alternative from the set { }rP . 
When studying speech signals in frequency space, a characteristic parameter for estimating the 
desired differences for the set of alternatives { }rP  is the set of values of power spectral densities 

( ){ }rG f , { }1,f F∀ ∈  ( ) 0rG f > , where F  is the upper limit of the frequency range for the 
empirical speech signal. We take this into account by defining the required estimates of differences as 
a functional of relative entropy: 

( ) ( )
( )

( )
( )

1 ln 1
2

F
x x

x r
r rF

G f G f
P P df

F G f G f
µ

−

 
= − −  

 
∫ , (1) 

where 1,r R= , ( )xG f  is the estimate of the power spectral density of the empirical speech signal 
represented by the set х . 

It is possible to identify a stationary stochastic process rP  in metric (1) by means of spectral 

analysis of data { }, 1, , 1,rjx r R j J= = : 



( ) ( )
1

1 J
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j
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According to Wiener-Hitchkin theorem, the estimation of the power spectral density (2) is related 
to the autocorrelation matrix rK  of the empirical speech signal х  by the discrete Fourier transform. 
However, such an estimate is possible only under the condition 1n >> , while the estimation of the 
power spectral density ( )rG f  for a small amount of experimental data is of practical interest: 
J << ∞ . So, the aim of the study is the analytical formalization of the process of phonetic analysis of 
a speech signal in frequency and temporal spaces based on the functional of relative entropy, oriented 
towards the use of text-dependent voice authentication in information technology. The objectives of 
the research are: - creation of a model of the process of phonetic analysis of a speech signal in 
frequency and temporal spaces; - formalization of the metric for estimation of the quality of the 
results of the process of phonetic analysis based on the functional of relative entropy; - formalization 
of the adaptive method of automated phonetic analysis focused on achieving optimal results, assessed 
in the created metric; - empirical proof of the adequacy of the created mathematical model and 
analysis of the functionality of the created method. 

3.2 Model of phonetic analysis of speech signals in temporal and frequency 
spaces 

A fundamental issue for the analytical formalization of the process of phonetic analysis of speech 
signals is to determine the centers of clusters r rv rx x v= = , { }1,v J∈ ,  for empirical realizations of 

{ }rjx , { }1,j J∈  in the metric ( )rjxµ : 
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is a functional of relative entropy between i -th and j -th parametric interpretations of allophones of 
r -th phoneme in frequency space. Semantic generalization of expressions (1) and (4) allows us to 
determine the frequency range where the center of the cluster of the r -th phoneme is as 

( ) ( )J
r rvG G f= , v J≤ , 1,r R= . (5) 

However, with the identified autocorrelation matrix rK  it is possible to analytically formalize the 
analysis of the studied speech signals in temporal space analog of criterion (3), the classification 
decision in which is made on the basis of a set of values of statistics defined by expression 

( )
ˆ ˆ1 log

2r
r r

K Kx tr n
n K K

ρ
  

= − −      
, 1,r R= , (6) 

where K̂  is a selective estimate of autocorrelation matrices of the studied empirical speech signal 
( )x x t= , 1,2, ,t L=  ; ( )tr А  is the trace of the matrix А . The sample estimate K̂  is determined 

based on the following considerations. Let the speech pattern rX  of the r -th phoneme be determined 
on the basis of the analysis of the set of its utterances rjx , 1, rj J= : { }r rjX x= . In this case, each 

utterance rjx  is formed by a sequence of L  samples ( ){ }rjx t  obtained with the periodicity 

( ) 12Т F −= . Divide this sequence into frames of duration n  samples, n L<< , grouping them into a 

set of data vectors { }rjix  of dimension n L n× − . 



Then the sample estimate of the hypothetical normal distribution is defined as the arithmetic mean 
in the form 

1

1ˆ
L n

T
rj rji rji

i
K x x

L n

−

=

=
− ∑ , 1, rj J= , (7) 

where Т  symbolizes the transposition operation. Substituting the value of the sample estimate (7) 
into expression (6) we obtain for the pattern rX  a matrix of statistics of dimension r rJ J× : 

ˆ ˆ1 log
2

rj rj
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rk rk

K K
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ρ
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We find the sum of the values of the columns of the matrix (8) : 
rJ

rjk rk
j l
ρ ρ

=

=∑ , 1, rk J= , and 

analytically formalize oriented on the description of the studied speech signal in the temporal space 
the analogous to criterion (3): 

arg minr r r rk
k

v x x θ ρ∗= = = , 1,r R= . (9) 

Determined according to expression (7) for j θ= , the sample autocorrelation matrix ˆ
rK θ  for the 

center of the cluster rx∗  will determine the optimal decisive statistics when substituting in (6). After 
analyzing expressions (4) and (6), we can conclude that the entropy of the estimate of the center of the 
cluster of phoneme will decrease with increasing value of J . 

Therefore, with the center of the cluster for the r -th phoneme determined by expression (3) or (9), 
it is possible to determine the optimal estimate of the power spectral density ( )J

rG  for this phoneme on 
the basis of expression (5). If such actions are implemented for all R  phonemes of the studied 
language, then we obtain a phonetic-acoustic database, the universality of which will increase with 
increasing number of phonemes pronounced during the formation of the model, i.e. the parameter J . 

3.3 Formalization of metrics for qualitative evaluation of the results of 
phonetic analysis of the studied language in the paradigm of the proposed 
model 

Based on the provisions of the acoustic theory of speech formation, we present a model of the j -th 
utterance of the r -th phoneme by the autoregression function of the form 

( ) ( ) ( ) ( )
1

S

rj rj rjrj
s

x l a s x l s lη
=

= − +∑ , 1,2,l =  , 1,j J=


, 1,r R= , (10) 

which is uniquely determined by the set of coefficients ( ){ }, 1,rja s s S=  by power S n≤  and a 

variance 2
rjσ  of the generating Gaussian process ( ){ }, 1,2,rj l lη =  . A property of such a 

representation that is relevant for us is that the estimation of the power spectral density of the studied 
signal obtained on the basis of the autoregression model with a finite set of coefficients 

( ){ }, 1,rja s s S=  will always satisfy the condition of regularity: ( ) 0rG f > . However, given the 
functional of relative entropy used by us for phonetic analysis, the possibility of normalizing the 
speech signals described by the autoregression model of the form (10) to the value of their specific 
entropy ( ) 20.5lnrj rjh x σ=  is especially relevant for us and allows to achieve the desired level by the 

variance 2 2
0rj constσ σ= =  of the generating process rjη . Accordingly, if we take into account the fact 

that the variance 2
0σ  does not change when a person utters not just phonemes, but words or even short 

phrases, then expression (4) can be simplified to the form 
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When analyzing the speech signal in the temporal space analog of expression (11) will be the 
target adaptation of expression (6), namely: 

( ) ( )2

2
0

1i rj
i rj

x
x

σ
ρ

σ
= − , (12) 

where the variance ( )2
i rjxσ  is determined by expression 

( ) ( ) ( )( )22
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1 L
i

i rj rj
l S

x y l
L S

σ
= +

=
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in which the parameter ( ) ( )i
rjy l  characterizes the change of the studied speech signal ( ){ }rj rjx x l= , 

l L≤ , after its passage і -th bleaching filter 
( ) ( ) ( ) ( ) ( )

1

S
i

rj rj ri rj
s

y l x l a s x l s
=

= − −∑ . (14) 

Expressions (11) and (12) through criteria (3) and (9), respectively, allow us to identify the optimal 
standards rx  for all studied phonemes r R∈ . An additional positive point is that when applying 
criterion (9) to calculate statistics (12) a target bleaching filter (14) is used which allows to effectively 
reduce the sensitivity of the result of phonetic analysis to the potential presence of Gaussian noise in 
the empirical speech signal. 

Modify the analytical form of criterion (3) taking into account expression (11), resulting in 
( )
( )

( )
( )1

1 1 11 1
2 2

REF FJ
rj RE

rv rv
j rv rvF F

G f G f
df df

J F G f F G f
µ µ

= − −
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∑ ∫ ∫ . (15) 

The value of the functional of relative entropy (15) substituted in expression (5) allows us to 
identify the optimal estimate of the power spectral density of the r -th phoneme, which is potentially 
more reliable than the estimate of maximum likelihood calculated by expression (2). This thesis can 
be rationally substantiated by the fact that the reliability of the estimate (2) depends only on the 
representativeness of the empirical data, whereas when calculating the estimate (5) based on the 
functional (15), firstly, according to expression (14), the empirical data get rid of potentially present 
in the studied speech signal Gaussian noise, secondly, the empirical data are further generalized by 
autoregressive models of the form (10), the reliability of which can be increased by increasing the 
order of the models s  in the range from 1 to J  inclusive. 

In fact, the estimate (2) allows us to determine the circumference of a center of the cluster for the 
power spectral density of the r -th formant, while the estimate (5) taking into account expression (15) 
allows changing the value of the order of s  to find a center of the cluster of the r -th phoneme as a 
result of the solution optimization task. Let’s generalize the just stated concept by modifying 
expression (15) taking into account expressions (12)-(14). We obtain 
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1 1 1 10 0
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where ( )2
rjM lχ  is the 2χ -distribution of the stochastic quantity l  with M L S= −  degrees of 

freedom. The greatest influence on the value of RE
rvµ  calculated by expression (16) is caused by the 

variability of the characteristics of allophones of the r -th phoneme, which is generalized by the 
coefficient of variability 1rji rjiµ µ= + . The value of this coefficient depends on the individual speech 
characteristics of the persons whose speech signals are being studied and can vary widely. To some 
extent, the asymptotic properties of the 2χ -distribution will smooth out these fluctuations: 
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= =>>
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Let us denote the standard deviation of the coefficient of variability rµ  of the characteristics of 
allophones of the cluster rX  of the corresponding phoneme as 

[ ] ( )2

1

1 1
J

r rjv
j

SD
J

µ µ
=

= +∑ . (18) 

Expression (18) is in fact a Gaussian model for stochastic estimation of the coefficient of variation 
RE
rvµ . The mathematical expectation of the characteristic of variability of rµ  of values (11) within the 

cluster of the r -th phoneme is determined by the expression 

[ ]
1

1 J

r rjN
j

M
J

µ µ
=

= ∑ . (19) 

The standard deviation of the characteristic of variability of values (11) within the cluster of the r -
th phoneme is determined by the expression 

( )2 22 rr
r

M
MJ MJ

µσσ = = . (20) 

The statistical meaning of the parameter rσ  is as follows – the larger the value of rσ , the lower 
the density of the cluster of the r -th phoneme. Using expressions (18), (19) and (20), we define the 
confidence interval r∆  of the spectral estimation of the r -th phoneme as 

[ ]82r p r p rz z SD
MJ

σ µ∆ = = , (21) 

where pz  is the coefficient of proportionality, р  is the confidence probability. For example, for the 
Gaussian distribution with 0,95р =  the tabular value of the coefficient pz  is equal to 1,96 . 

The confidence interval (21) determines the reliability of the estimate (5) and, accordingly, 
criterion (1) for the spectral representation of the phonemes of the studied language. It is obvious that 
the variability of the spectral characteristics of the phonemes of the studied language will decrease 
with: - increasing the homogeneity of the studied speech material; - reducing the level of presence in 
the studied speech material of non-Gaussian noise; - increasing the number of persons-donors of 
speech material. 

Note that the influence of the first factor analytically takes into account expression (21), the 
influence of the second factor analytically takes into account expression (14), while taking into 
account the outflow of the third factor on the variability of spectral characteristics of phonemes of the 
studied language is worth additional analytical explanations.  

We introduce a modifier for the confidence interval described by expression (21), which will take 
into account the number of donors of speech material, which was studied by generalizing the spectral 
characteristics of the corresponding phonemes: ( )I

r∆ , where 1,2,І =   is the index of donor of speech 
material. Accordingly, expression (21) was obtained for ( )1

r∆ . For cases when 2,3,І =  , based on 
expression (21) we obtain: 

( )
( )

( )

( )

( )1 1 1
I I

r r
r

r r

I µδ
µ

∆
= = ≥
∆

. (22) 

Naturally, as І  increases, the value of the coefficient rδ  will increase nonlinearly, eventually 
reaching saturation at І І ∗= . The value of І ∗  will depend on the factors just mentioned, but the 
analytical formalization of this dependence requires additional theoretical research. 

Therefore, the theoretical material presented in section 3.2 has found its application in the 
analytical formalization of the metric { }, , ,r r r rµ σ δ∆ , focused on the qualitative evaluation of the 



results of phonetic analysis. The use of autoregressive analysis in deriving the functional of relative 
entropy rµ  allows to determine the spectral characteristics of the center of the cluster of the r -th 
phoneme as a result of solving the optimization task by changing the order s  of regression models 
created to describe the studied speech signals. We can quantify the quality of the phonetic analysis 
performed in this way by calculating the value of the coefficient of variability rδ . 

4. Results 

A group of 20 students from the Department of the Theory and Practice of Translation, Faculty of 
Foreign Languages, Vasyl’ Stus Donetsk National University (Ukraine, Vinnytsia) was formed to 
conduct experiments. At the initial stage of the experiments, it was assumed that each student, using a 
microphone connected to a computer, would record phonograms with sequentially, repeatedly (ten 
times), at the same tempo, pronounced long English phonemes [i:], [a:], [u: ], [ͻ:], [z:] (one phoneme - 
one phonogram). An AKG P420 microphone without an amplifier connected to a Creative Audigy Rx 
sound card integrated into a computer was used for the experiments. Sound recording processes were 
supported by Sound Forge Pro for Windows.  

Phonograms were recorded with a sampling rate of 8000 Hz ( 4000F =  Hz), quantization of 16 
bits, mono and stored in .wav format. Subsequently, the phonograms were programmatically 
processed in order to form clusters for the corresponding phonograms { }rX , 1,2, , 5r R= = ,  and to 
determine the centers of the clusters based on model (3)-(11). Preliminary phonetic analysis of 
phonograms was performed using the Praat program developed by the Institute of Phonetic Sciences 
from the University of Amsterdam. To use the mathematical apparatus proposed in the article, 
phonograms were processed in frames with a duration of 160L =  ( 20≈  ms).  

For spectral analysis of phonograms with speech signals using the autoregression model, the 
Berg’s algorithm was used [21], known for its high resolution in the analysis of short-term signals and 
guaranteed stability of the calculated forming filter. To enable the comparison of power spectral 
densities according to criterion (1), the source speech material was presented in the Mel-space of the 
bank of the corresponding filters with triangular averaging functions. 

As a result, the frequency characteristic parameters of the studied speech signals were obtained in 
the form of weighted sums of power spectral densities in uniform intervals lasting 55 mels (a total of 
31 counts for overlapping the frequency range [ ]200,3400  Hz). 

As a result, 20 personalized phonetic databases { }rX  of the same volume 5R =  were formed and 
also more than 1000 integrated phonetic databases { }r І

X  were formed as a result of joint processing 

of phonograms of two, three, etc. students. For the primary set of phonetic data { } { }{ },r r ІX X , 

1, 5r R= = , 2,10І = , obtained as a result of the described actions, the values of the coefficient of 
variability were calculated by expression (15) and by expression (22) with a change in the order of the 
autoregression models used. 

Empirical dependences of the value of the coefficient of reliability of the results of phonetic 
analysis rδ  on the number of students І , whose speech material was used to form the corresponding 
primary integral phonetic bases { }r ІX , for phonemes [i:] and [a:] are presented in Figure 1.  

Potentially, the experiment was oriented to arrange the phonemes of the studied language 
according to the level of their informativity for the task of authentication of the person by voice. 

The second experiment aimed to recognize the isolated syllables of English words formed by as 
many studied phonemes as possible. The authors formed a working dictionary of 200 selected English 
words. Each of the students read the words from the working dictionary for recording in the 
phonogram. The word order for all recording procedures was the same. Each speaker-student repeated 
the reading-recording procedure five times.  

Prerequisites for the reading process were: - clear diction; - stable pronunciation rate; - division of 
words into syllables with a clear fixation of pauses between the latter. Subsequently, the content of 
individual bases of phonograms was processed by the procedure of reducing variability (21). 



Accordingly, individual databases of original and processed phonograms were formed for each 
student.  

An integrated database of original phonograms was also formed by averaging the spectral 
characteristics of the content of individual databases of original phonograms. Subsequently, the 
content of the integrated database of original phonograms was processed by the method generalized 
(22), resulting in an integrated database of processed phonograms.  
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Figure 1: Dependence of the value of the coefficient of reliability of the results of phonetic analysis 
rδ  on the number of students for: a) phoneme [i:]; b) phonemes [a:] 

 
Next, an iterative process was performed to add to the content of all databases of phonograms the 

Gaussian noise of such power as to obtain variants of all databases of phonograms with a signal-to-
noise ratio of 5,10,15, ,30  dB, respectively. As a result, seven sets of personalized and integrated 
databases of original and processed phonograms were obtained. Speech recognition in the created sets 
of phonogram databases was carried out using the most popular currently professional APIs: Cloud 
Speech from Google and Microsoft Speech from Microsoft. The results of the experiments in the 
metric ( )SNRε  are shown in Figure 2.  
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Figure 2: Dependence of the relative error of recognition of isolated syllables on the signal-to-noise 
ratio in the corresponding set of databases of phonograms 



The relative error of recognition of isolated syllables for all sets of databases of phonograms (Set 
1: personalized databases of processed phonograms; Set 2: personalized databases of processed 
phonograms; Set 3: database of integrated original phonograms Set 4: database of integrated 
processed phonograms) was calculated as the ratio of the absolute value of the difference between the 
number of correctly and incorrectly recognized syllables to the total number of syllables in the 
corresponding sets of databases of phonograms. 

5. Discussion 

From the empirical results of estimating the dependence of the value of the reliability coefficient 
of the results of phonetic analysis rδ  on the number of speaking students І  shown in Figure 1 it is 
seen that the hypothesis formulated in the theoretical part of the article about the existence of phonetic 
data saturation threshold has been empirically confirmed. It is seen that the value of the characteristic 

( ) supr r rIδ δ δ ∗→ =  is limited from above by the value of rδ
∗ , the value of which is essentially 

phonemic-dependent. Based on this fact, we can conclude that by changing the volume and method of 
forming an integrated database of phonograms of phonemes can be profiled for their intended use or 
in the task of authentication of the person by voice (low value of rδ ) or in the task of semantic 
analysis of text (high value of rδ ).  

The received estimation will be not only qualitative, but also quantitative, which is especially 
relevant for information technology of text-dependent authentication of the person by voice, focused 
on the application in the structure of information system for critical use with authentication of the 
person-user by voice [22-26].  

Note the values of the coefficients [ ]:
r
іδ  and [ ]:

r
аδ  shown in Figures 1a and 1b, respectively, for the 

same values of I . It is seen that the values of [ ]:
r
іδ  are many times larger than the values of [ ]:

r
аδ  and 

this tendency only increases with increasing I . Given that the value of the coefficient rδ  for the 
target phoneme characterizes the degree of density of its cluster from the volume and source of speech 
material, it can be argued that phonemes with a relatively high value of the coefficient rδ  (for the set 

[ ] [ ]{ }: :,і
r

a
rδ δ  is [ ]:

r
іδ ) carry more information about individual of speaker’s voice. This should be taken 

into account when creating a representative dictionary of passphrases for information technology of 
text-dependent authentication of the person by voice.  

Finally, we pay attention to the value of the confidence intervals for the values of the coefficients 
[ ]:
r
іδ  and [ ]:

r
аδ  shown in Figures 1a and 1b, respectively. Recall that the values of confidence intervals 

calculated by expressions (21), (22) depend on the order of the autoregression model (10) used to 
describe the studied speech signal and the degree of compensation of the influence of Gaussian noise 
present in the studied speech signal (14).  

Accordingly, the low variability of the confidence interval for the phoneme [i:] indicates the high 
density of its cluster despite the different origin of the studied speech material and the potentially non-
Gaussian form of the distribution function of the corresponding signal. In the context of the acoustic 
theory of speech formation, this is, in fact, a quantitative estimate of the degree of vocalization of this 
phoneme. At the same time, the high variability of the confidence interval for the phoneme [a:] (with 
increasing І  from 2 to 10, the width of the confidence interval decreased by almost 20 times) can 
potentially indicate a significantly lower vocalization of this phoneme. Accordingly, the proposed 
mathematical apparatus provides a potential opportunity to organize the set of phonemes of the 
studied language by quantifying the degree of their vocalization.  

Let’s analyze the experimental results shown in Figure 2. It becomes obvious that the 
generalization of phonetic information, whether simple averaging of spectral characteristics in certain 
frequency ranges or analytically substantiated in Chapter 3 of the article generalization based on the 
value of the coefficient of reliability of phonetic analysis rδ , has a positive effect on solving the task 
of automated recognition of syllables by the most modern specialized information systems. However, 



it is seen that the effect of noise leads to a rapid nonlinear increase in the relative error of recognition 
of isolated syllables ε .  

Depending on the studied set of databases of phonogram, the value of the relative error ε  at the 
limit value of 5 dB of the studied range of the signal-to-noise ratio increased by 2.5-7 times. These 
results allow us to recommend the application of the generalized expression (14) approach to the 
filtering of Gaussian noise in the speech signal to empirical signals, the estimation of the level of the 
signal/noise ratio is in the range [ ]40,20  dB. It is also obvious that it is necessary to continue the 
search for more efficient methods of filtering or compensating for noise for processing empirical 
speech signals with a low signal-to-noise ratio – [ ]15,5SNR∈  dB.  

Finally, the lowest values of the relative error of recognition of isolated syllables ε  were obtained 
when working with the content of the integrated database of processed phonograms, which was 
obtained using the procedure proposed by the authors, generalized by expression (22). This result is 
an empirical proof of the adequacy of the mathematical apparatus presented in the article.  

6. Conclusions 

Without exaggeration, phonetic analysis is a “cornerstone”, which is the basis of modern human-
machine information technologies, focused on the target interpretation of speech signals. In particular, 
automated phonetic analysis is the basis of approaches to solving such tasks as authentication of the 
person by voice, speech recognition, determination of the speaker’s emotional state, semantic 
interpretation of the text, etc. However, the quality of the results demonstrated by modern automated 
systems of phonetic analysis is inversely proportional to the amount of educational information 
available to them. Thus, the task of improving the quality of phonetic analysis in conditions of limited 
educational information is relevant.  

A model of the process of phonetic analysis of speech signals in the frequency and temporal spaces is 
highlighted in the article for the first time. The generalization of the spectral characteristics of the studied 
speech signals is formalized in the represented model as an optimization task of minimizing the functional 
of relative entropy in contrast to the existing models.  

The obtained mathematical apparatus made it possible to formulate metric for quantitative estimation of 
the quality of the phonetic analysis results and to propose an adaptive method of automated phonetic 
analysis with an integrated mechanism for counteracting the influence of Gaussian-type noise,  found in 
the studied speech signal, on the final result.  

The adequacy and functionality of the proposed model and method have been proved empirically. The 
analysis of the experiments results also showed that it is possible to assess the suitability of the studied 
speech materials for the task of authenticating a person by voice or speech recognition, focusing on the 
value of the coefficient of variability, which is included in the metric proposed by the authors and 
determined for the studied database of phonograms with recordings of voiced syllables of speech. Also, the 
values of this coefficient determined for the studied phonemes can be used to estimate the degree of their 
vocalization. 

Further research is planned to be focused on the oriented to the task text-dependent authentication 
of the person by voice and on the phonetic analysis of the most common Germanic, Indo-European, 
Romance and Slavic languages with the help of the created theoretical and applied complex.  
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