
K-means Clustering of Honeynet Data with Unsupervised
Representation Learning

Antonina Kashtaliana, Tomas Sochorb

a Khmelnitsky National University, Khmelnitsky, Ukraine
b Prigo University, Havirov, Czech Republic

Abstract
Networks connected to the Internet are vulnerable to malicious activity that threaten the
stability of work. The types and characteristics of malicious actions are constantly changing,
which significantly complicates the fight against them. Attacks on computer networks are
subject to constant updates and modifications. Modern intrusion detection systems should
ensure the detection of both existing types of attacks and new types of attacks about which
there might be no information available at the time of attack. Honeypots and honeynets play
an important role in monitoring malicious activities and detecting new types of attacks. The
use of honeypots and honeynets has significant advantages: they can protect working
services, provide network vulnerability detection, reduce the false positive rate, slow down
the influence of malicious actions on the working network, and collect data on malicious
activity. The analysis of the data collected by a honeynet helps detect attack patterns that can
be used in intrusion detection systems. This paper uses clustering to determine attack patterns
based on the time series of attacker activity. Using time series instead of static data facilitates
the detection of attacks at their onset. This paper proposes the joint application of k-means
clustering and a recurrent autoencoder for time series preprocessing. The weights of the
recurrent autoencoder are optimized on the basis of the total loss function, which contains
two components: a recovery loss component and a clustering loss component. The recurrent
encoder, consisting of convolutional and recurrent blocks, provides an effective time series
representation, suitable for finding similar patterns using k-means clustering. Experimental
research shows that the proposed approach clusters malicious actions monitored by a
honeynet and identifies patterns of attacks.

Keywords1
Honeynet, attack patterns, time series, k-means clustering, deep recurrent autoencoder

1. Introduction

Detecting malicious activity is critical for Internet-connected computer networks. Malicious
actions that occur on the network threaten the stability of its operation and the security of confidential
information available on the network. Malicious actions include a wide range of activities such as
attempts to destabilize the computer network, attempts to gain access to user accounts and files, and
attempts to interfere with software.

Detecting attacks on computer networks is challenging because these attacks are not static, that is,
their characteristics change in time and space, making them difficult to recognize. Therefore, it is
difficult to create a list of possible network attacks in advance, considering the ever-present
appearance of both new attacks and modifications of existing attacks. Thus, intrusion detection
systems must be able to detect various types of attacks, taking into account those about which no prior

IntelITSIS’2021: 2nd International Workshop on Intelligent Information Technologies and Systems of Information Security, March 24–26,
2021, Khmelnytskyi, Ukraine
EMAIL: yantonina@ukr.net (A. Kashtalian); tomas.sochor@osu.cz (T. Sochor)
ORCID: 0000-0002-4925-9713 (A. Kashtalian); 0000-0002-1704-1883 (T. Sochor)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:tomas.sochor@osu.cz

information exists. The approaches used to detect network attacks can be divided into three base
groups: signature-based methods, supervised learning methods, and unsupervised methods.

Signature-based attack detection methods involve first extracting certain features from the network
data and then comparing with a set of pre-installed signatures. Signature-based methods are effective
for detecting known attacks but are completely unsuitable for detecting new types of attacks and
modifications of existing attacks. At the same time, building new signatures is costly.

Supervised learning methods require labeled datasets, on the basis of which models are trained and
then used to detect malicious actions. Supervised models are often trained to detect network
anomalies, so they are also suitable for identifying new attacks that have characteristics similar to
existing signatures. In addition, supervised models make hyper-parameter optimization, or tuning,
possible. Like signature-based intrusion detection tools, supervised models require previous costs;
that is, marked datasets are necessary for training.

Unsupervised methods, unlike signature-based and supervised learning methods, require only data
collection and not the existence of previously known costs. Unlabeled data is used to train
unsupervised models. In many cases, unsupervised anomaly detection is used as the unsupervised
method. One approach to this anomaly detection is to build models that describe the normal operation
of a network, with traffic in which there are no intrusions. Then any deviations from normal behavior
can be considered as an anomaly and a possible malicious action. Such models require datasets of
normal data for training. Often, instead of labeled datasets, the intrusion detection system works with
large unlabeled data arrays that contain both normal traffic data and a certain proportion of malicious
traffic. The analysis of such large data arrays is quite challenging.

To collect data corresponding only to malicious traffic, honeypots and honeynets are used. The
main purpose of a honeynet is to be attacked by an intruder, diverting his attention from working
services and slowing the spread of the attack, while simultaneously collecting information about the
malicious actions [1]. By design, the network traffic observed on honeypots is malicious. The use of
honeypots and honeynets in computer networks has a number of advantages, in particular:
maintaining independence from the working environment; identifying zero-day vulnerabilities;
reducing the false positive rate; and collecting data on malicious acts [2]. Collecting malicious
activity data in working computer networks is problematic because it is necessary to first distinguish
between malicious and normal activity. The analysis of data collected by a honeypot involves
identifying attack patterns for further use in intrusion detection systems. One of the most appropriate
approaches for identifying patterns is clustering. Identifying patterns is not a trivial task, as clustering
methods common for all use cases do not exist. That is, any clustering approach first requires
adaptation in order to detect patterns of malicious activity in honeynets. Honeypot data can also be
used to analyze malicious activity dynamically, which helps solve the problem of early attack
detection.

2. State of the Art

A variety of supervised and unsupervised learning methods as well as many data preprocessing
and analysis methods have been actively researched and used to detect and prevent threats in
computer networks. Lysenko et al. [3] researched low-speed DDoS detection based on features
inherent in botnets and the analysis of network traffic self-similarity using the Hurst coefficient.
Savenko et al. [4] proposed a method of generating malicious software signatures in which each
signature consists of two components: (1) the call frequency; and (2) the nature of critical API call
interaction. Analysis of these signatures allows us to determine the distribution of critical API calls to
malicious activity groups and to distinguish between malicious and normal traffic. Artificial immune
systems using a clonal selection algorithm have been proposed for botnet detection [5]. Finally, a
support vector machine based self-adaptive system, able to detect cyber-attacks of botnets, detect the
botnets themselves, and configure security scenarios has been proposed. This system can recognize
attacks by taking into account network activity and captured network traffic [6].

The development and application of unsupervised methods, including pattern detection and
clustering, in intervention detection systems is not new, as new types of intrusions make it difficult to
use supervised methods, which require labeled data. Portnoy et al. [7] propose a method based on

hierarchical clustering and unsupervised anomaly detection, trained exclusively on unlabeled data,
that is able to detect various types of intrusions and maintain a low false positive rate. Their algorithm
initializes an empty set of clusters and then calculates the final set of clusters in one pass, so that the
calculation time is linear, but therefore such an algorithm is not the most efficient. Mazel et al. [8]
also offers a completely unsupervised method that does not require a previous labeling of data and is
not based on the preliminary information about distribution, so it can be immediately applied to
monitor network anomalies based on the detection of anomalies and the identification of clusters of
small sizes. K-means clustering is used to identify the actions of malicious programs based on
information about the features of these actions [9]. Mohiuddin Ahmed et al. [10] discusses the
framework for detecting DoS attacks based on partitional clustering, a DoS attack is considered as a
collective anomaly, which is a pattern in data when a group of similar instances has anomalous
behavior compared to other data. Taheri et al. [11] proposes an incremental clustering algorithm for
finding clusters of attacks of various types, the work of which is based on the use of two subsets of
clusters, one of which is stable, and distances between centroids of clusters from another subset.
Different clustering methods are also used when analyzing system logs, which contain information
about most events that occur in the network [12]. It is performed both static clustering, when each
system log entry is considered as a separate point, and dynamic clustering, which takes into account
the sequences of entries and discovers more complex dependencies.

Fuzzy clustering methods are also investigated and used. Fuzzy c-means cluster analysis of
functions obtained from DNS message payloads is the basis of a botnet detection method that uses
DNS-based evasion methods [13]. The stability adaptive network reconfiguration is provided based
on semi-supervised fuzzy c-means clustering analysis of the features of the collected Internet traffic .
[14]. Fuzzy c-means clustering is used to define security scenarios [15]. Clustering objects are feature
vectors which elements can indicate the appearance of threats in computer networks.

Among advanced approaches to clustering in solving cybersecurity problems, it is worth noting a
cognitive clustering algorithm that is based on the use of a probabilistic neural network model [16].
The architecture of the model is multilayer with excitatory and inhibitory neurons providing direct
and backward connections between layers of neurons. Due to the significant development of neural
network approaches, deep learning is also used for clustering in solving many problems [17].

In general, deep clustering methods can be divided into three groups: direct deep cluster
optimization methods; methods that are based on generative models; methods based on the use of
autoencoders. Direct deep clustering methods involve creating a single deep model that performs
feature extraction and clustering by using the clustering loss function directly to optimize the deep
neural network model [18]. Variational autoencoders and generative adversarial networks (GAN) are
used as generative models. In the process of training the optimization of a reconstruction loss and
Kullback–Leibler divergence is performed to determine the distribution of features across clusters,
which allows interpolation of new samples [19]. Among GAN solutions, semi-supervised and
completely unsupervised models are offered [20], which provide insignificant calculation costs.

The autoencoders used for the clustering task have one thing in common in that they consist of an
encoder unit and a decoder unit, and are effectively trained with the use of the reconstruction loss
function. The encoder is designed to obtain a representation of the characteristics of the original data
object. Despite the general structure of most autoencoders, their architecture differs significantly
depending on the type of data for which it is designed. Autoencoders themselves are used for noise
filtering tasks [21], improving signal quality in images [22], image segmentation [23], audio signal
processing [24], etc. Auto encoders provide an efficient representation of the features of the input data
at the output of the encoder, which can be used not only to reconstruct this data, but also for the tasks
of the dimensionality reduction of data [25], classification [26] and clustering.

The methods for joint optimization of the representation of raw data features and clustering are
already used in certain applications, in particular for clustering images, in bioinformatics [27]. The
paper [28] describes convolutional neural network for obtaining image features, iterative clustering of
features based on standard k-means clustering method and accounting of clusters for updating weight
coefficients during training. In addition to the methods that work with a previously known number of
clusters, the methods are also investigated that involve determining the number of clusters in the
clustering process itself. Mautz et al. [29] proposes a method of separating hierarchical clustering
deep embedded cluster tree, for which it is not necessary to know the number of clusters. Sohil Atul

Shah et al. [30] also investigates the clustering algorithm, which performs simultaneous reduction in
the dimension of the original data and clustering. The dimensionality reduction of data is performed
by the autoencoder optimized during clustering.

The task of finding patterns and clustering anomalies of network traffic is relatively widely
investigated [31], while much less research is devoted to analyzing the honeynets traffic.

3. K-means Clustering with Recurrent Autoencoder

Clustering data changed over time is complicated due to the opacity of the similarity measure
compared to static data. In addition, time series can have different dimensions and the relationships
between them often have an implicit nature. Direct clustering of time series requires the use of high-
dimensional data and is often unable to detect hidden relationships between objects. Therefore, in
most cases, prior extraction of feature is required, that is, the transformation into a feature space
suitable for correct clustering.

3.1. The collection of data by the honeynet

The honeynet, part of which is shown in Figure 1, is a multilevel set of intelligent honeypots that
continuously monitor the network. The honeynet includes external honeypots connected to the
Internet before the firewall, honeypots located in DMZ zone, internal honeypots located inside the
network. The honeynet with static honeypots contain virtual ones. An important advantage of such a
honeynet is the ability to track the spread of distributed attacks and detect their patterns. This process
in most cases is divided into three stages [32]: a) selection and removal of features and presentation of
patterns; b) determining similarity measures suitable for pattern detection; c) grouping of similar
patterns.

Figure 1: A Part of Honeynet

The first step involves extracting from the data array certain features that represent the relevant

characteristics of malicious actions. Data collected by the honeynet and data obtained from their
analysis: the number of malicious sources per time unit; the number of new malicious sources per
time unit; the number of malicious sources in a particular IP aggregation; the number of malicious
sources relative to the number of attacks; the number of packets received per time unit; the volume of
data received per time unit; the number of packets sent per time unit; the volume of data sent per time
unit; the number of e-mails received per time unit; the volume of data per message; the number of

sessions per time unit; session duration; time between sessions; “lifetime” of a malicious source.
These data form time series of malicious activity on honeypots:

𝑋𝑋1 = 𝐱𝐱11, 𝐱𝐱21, … , 𝐱𝐱𝑡𝑡1, 𝑋𝑋2 = 𝐱𝐱12,𝐱𝐱22, … , 𝐱𝐱𝑡𝑡2, … 𝑋𝑋𝑛𝑛 = 𝐱𝐱1𝑛𝑛, 𝐱𝐱2𝑛𝑛, … , 𝐱𝐱𝑡𝑡𝑛𝑛,
here n – the number of honeypots in the honeynet, t – duration of the time window. The time window
shifts in time with a step, the value of which depends on the time required for calculations. Feature
data are numeric; the values of different features are in different ranges, so they require pre-scaling. It
is expediently to use scaling in the range [0, 1] of each feature. Time series of each feature {𝑥𝑥1,
𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} is converted into a series {𝑥𝑥´1, 𝑥𝑥´2, … , 𝑥𝑥´𝑛𝑛} according to the relation𝑥𝑥´ = 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
.

The data that the honeynet collects is a time series that is actually continuous over time. To cluster
and identify patterns, it is necessary to select a time window within which the analysis will be
conducted. To select the window duration, two approaches can be selected: 1) a time window of fixed
duration tw, which shifts in time in increments ts; 2) a time window derived from the previous
segmentation. The first approach is simple and requires only two values. Bayesian change point
analysis can be used to obtain a time window based on segmentation [33]. It should be noted that
segmentation of multidimensional time series is a separate task, and its solution goes beyond the
consideration of this work.

Identifying patterns does not provide an unambiguous procedure for any types of data. Different
clustering methods provide different group separation; moreover, the same clustering method can lead
to different results with different initial initialization. Therefore, it is extremely important from the
many existing clustering methods and similarity measures to choose those that best group the
available data [34]. This is one of the reasons for the use of many approaches to identifying patterns
and their grouping in honeynets.

3.2. The autoencoder architecture

Pre-processing of time series is performed on the basis of the neural network recurrent autoencoder
(Fig. 1).

Figure 2: Recurrent Autoencoder Architecture

The autoencoder consists of a recurrent encoder and a recurrent decoder. The recurrent encoder

consists of a convolutional unit (Fig. 2, a) and a recurrent unit (Fig. 3). The convolutional unit
includes a convolutional layer with a convolution kernel n×1 (n = 3, 5, 7 – a size of a kernel along
time axis, thus convolution performs along a time axis), maxpool layer with a kernel 2×1 (2 - size of a
kernel along time axis) and batchnormalization layer. Maxpool laeyr is used in the case of reducing

Original frame x1, x2, …, xn

Convolutional Unit

Recurrent Unit

En
co

de
r

Feature Representation y1, y2, …, yn

Recurrent Unit

Deconvolutional Unit

Reconstructed frame x1, x2, …, xn

De
co

de
r

Compute
Cluster Loss

K-means
Clustering

the number of samples before processing by the recurring block. Using a 2×1 kernel halves the
number of points along the time axis.

Figure 3: Convolutional (a) and Deconvolutional (b) Units

The Recurrent Unit is a stack of m LSTM layers with residual connections (Fig. 3). LSTM is a

modification of the RNN architecture, which is useful for modeling given sequences. RNN training to
account for long-term dependencies are a very difficult task due to the problem of a vanishing and
exploding gradient. One solution to eliminate the problem of the exploding gradient is to use the
clipping gradient, that is, reducing the gradient that exceeds the determined threshold value [35].
Adding residual connections adds flexibility to the neural network to avoid vanishing or exploding
gradient [36]. Since the gradient is transmitted through the layers, this allows increasing the number
of layers in the recurrent block and improves the representation of features at its output. At the output
of the last layer of this stack, a representation of the features of the initial time series is obtained. The
information signal of the stack of LSTM layers from each input x(t) to each hidden layer and from
each hidden layer to the output y(t) passes in accordance with the ratios:

𝑥𝑥´(𝑡𝑡,𝑘𝑘) = 𝑥𝑥(𝑡𝑡)‖𝑦𝑦´(𝑡𝑡, 𝑘𝑘 − 1),𝑦𝑦(𝑡𝑡) = 𝑦𝑦´(𝑡𝑡, 1)‖…‖𝑦𝑦´(𝑡𝑡,𝐾𝐾),
𝑖𝑖(𝑡𝑡,𝑘𝑘) = (𝑊𝑊𝑘𝑘𝑥𝑥𝑘𝑘𝑥𝑥´(𝑡𝑡,𝑘𝑘) + 𝑊𝑊𝑘𝑘ℎ𝑘𝑘ℎ(𝑡𝑡 − 1,𝑘𝑘) + 𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘𝑐𝑐(𝑡𝑡 − 1,𝑘𝑘) + 𝑏𝑏𝑘𝑘𝑘𝑘),
𝑓𝑓(𝑡𝑡,𝑘𝑘) = �𝑊𝑊𝑘𝑘𝑥𝑥𝑘𝑘𝑥𝑥(𝑡𝑡) + 𝑊𝑊𝑘𝑘ℎ𝑘𝑘ℎ(𝑡𝑡 − 1,𝑘𝑘) + 𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘𝑐𝑐(𝑡𝑡 − 1,𝑘𝑘) + 𝑏𝑏𝑘𝑘𝑘𝑘�,

𝑐𝑐(𝑡𝑡,𝑘𝑘) = 𝑓𝑓(𝑡𝑡,𝑘𝑘)𝑐𝑐(𝑡𝑡 − 1,𝑘𝑘) + 𝑖𝑖(𝑡𝑡,𝑘𝑘) tanh(𝑊𝑊𝑘𝑘𝑥𝑥𝑘𝑘𝑥𝑥´(𝑡𝑡, 𝑘𝑘) + 𝑊𝑊𝑘𝑘ℎ𝑘𝑘ℎ(𝑡𝑡 − 1,𝑘𝑘) + 𝑏𝑏𝑘𝑘𝑘𝑘),
𝑜𝑜(𝑡𝑡,𝑘𝑘) = (𝑊𝑊𝑘𝑘𝑥𝑥𝑘𝑘𝑥𝑥´(𝑡𝑡 − 1,𝑘𝑘) + 𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘𝑐𝑐(𝑡𝑡,𝑘𝑘) + 𝑏𝑏𝑘𝑘𝑘𝑘),

ℎ(𝑡𝑡,𝑘𝑘) = 𝑜𝑜(𝑡𝑡,𝑘𝑘) tanh−1�𝑐𝑐(𝑡𝑡,𝑘𝑘)�,
𝑦𝑦(𝑡𝑡,𝑘𝑘) = 𝑊𝑊𝑘𝑘𝑘𝑘ℎ(𝑡𝑡,𝑘𝑘) + 𝑏𝑏𝑘𝑘𝑘𝑘.

here || denotes concatenation of vectors; h(t,k) is a hidden state of a layer k for time moment t; i, f, o
are the input, forget, and output gates respectively. This representation displays the characteristics of
the initial time series and is used for further clustering, as well as for calculating the component of the
clustering loss function (1).

Figure 4: Recurrent Unit

x0
1 x0

2 x0
n

x1
n x1

2 x1
1

LSTM1 LSTM1 LSTM1

xm
n xm

2 xm
1

LSTMm LSTMm LSTMm

x0
3

x1
3

LSTM1

xm
3

LSTMm

3.3. The loss function of the autoencoder

The loss function for encoder training consists of two components: the loss function for
reconstruction of the input signal by the decoder and the loss function for clustering

𝐿𝐿(𝜃𝜃) = 𝐿𝐿𝑟𝑟(𝜃𝜃) + 𝐿𝐿𝑘𝑘(𝜃𝜃). (1)
The reconstruction loss function by the decoder 𝐿𝐿𝑟𝑟(𝜃𝜃) belongs to the loss functions used for

regression problems. Functions that are offered to use for training of the recurrent autoencoder:
-mean squared error

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝜃𝜃) = 1
𝑛𝑛
∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2𝑛𝑛
𝑘𝑘=1 , (2)

here iy is a target value; iy~ is a value of neural network model output.
-mean absolute error

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝜃𝜃) = 1
𝑛𝑛
∑ |𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘|𝑛𝑛
𝑘𝑘=1 . (3)

-Huber loss function

𝐿𝐿𝐻𝐻(𝜃𝜃) = 1
𝑛𝑛
∑ 𝑙𝑙𝛿𝛿𝑛𝑛
𝑘𝑘=1 , 𝑙𝑙𝛿𝛿 = �

1
2

(𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2, |𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘| ≤ 𝛿𝛿,

𝛿𝛿|𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘| −
1
2
𝛿𝛿2, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒,

(4)

here δ is a threshold value determining which error to consider sufficiently small.
-log-cosh loss

𝐿𝐿𝐿𝐿𝐻𝐻𝐿𝐿(𝜃𝜃) = 1
𝑛𝑛
∑ log�cosh�(𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)��𝑛𝑛
𝑘𝑘=1 . (5)

As well as the reconstruction loss function, the clustering loss function 𝐿𝐿𝑘𝑘(𝜃𝜃) can be selected from
a specific list depending on the clustering method and the nature of the similarity measure between
objects. K-means clustering is chosen as the clustering method due to the comparable simplicity of its
implementation and the comparable speed of calculations that this method can provide. The previous
preprocessing of the original time series by a recurrent autoencoder and the use of an appropriate
measure of similarity ensures that the relationships between the time series of data collected by the
honeynet are correctly identified. The main disadvantage of the k-means clustering method is the need
to have preliminary information about the number of clusters. However, there is no exact information
on the number of types of attacks that occur or will occur in the network. Therefore, the number of
clusters should be determined in the clustering process.

Loss function for k-means clustering
𝐿𝐿𝑘𝑘(𝜃𝜃) = ∑ ∑ 𝑒𝑒𝑗𝑗𝑘𝑘 ∙ 𝑑𝑑�𝑥𝑥𝑗𝑗 , 𝜇𝜇𝑘𝑘�𝐾𝐾

𝑘𝑘=1
𝑁𝑁
𝑗𝑗=1 , (6)

here 𝑥𝑥𝑗𝑗 is an object; 𝜇𝜇𝑘𝑘 is a centroid of a cluster k; 𝑒𝑒𝑗𝑗𝑘𝑘 is a boolean value that represent the
membership of the object 𝑥𝑥𝑗𝑗 to a cluster with a centroid 𝜇𝜇𝑘𝑘; 𝑑𝑑�𝑥𝑥𝑗𝑗, 𝜇𝜇𝑘𝑘� is a measure of similarity
between an object 𝑥𝑥𝑗𝑗 and a centroid 𝜇𝜇𝑘𝑘.

The measure of similarity used for clustering time series includes [37]:
-Euclidean distance

𝑑𝑑𝑒𝑒(𝑥𝑥, 𝜇𝜇) = �∑ (𝑥𝑥𝑘𝑘 − 𝜇𝜇𝑘𝑘)2𝑛𝑛
𝑘𝑘=1 , (7)

here n is the number of observations. It should be noted that the Euclidean distance is invariant with
respect to features in the time domain, so this distance is difficult to apply to the original time series.

-Pearson correlation coefficient
𝑑𝑑𝑟𝑟(𝑥𝑥, 𝜇𝜇) = 𝑛𝑛∑ 𝑥𝑥𝑚𝑚𝜇𝜇𝑚𝑚−∑ 𝑥𝑥𝑚𝑚 ∑ 𝜇𝜇𝑚𝑚𝑚𝑚

𝑚𝑚=1
𝑚𝑚
𝑚𝑚=1

𝑚𝑚
𝑚𝑚=1

�𝑛𝑛∑ 𝑥𝑥𝑚𝑚
2−�∑ 𝑥𝑥𝑚𝑚𝑚𝑚

𝑚𝑚=1 �
2𝑚𝑚

𝑚𝑚=1 �𝑛𝑛∑ 𝜇𝜇𝑚𝑚
2−�∑ 𝜇𝜇𝑚𝑚𝑚𝑚

𝑚𝑚=1 �
2𝑚𝑚

𝑚𝑚=1

. (8)

-Mahalanobis distance
𝑑𝑑𝑚𝑚(𝑥𝑥, 𝜇𝜇) = �(𝑥𝑥 − 𝜇𝜇)𝑇𝑇 ∙ 𝐶𝐶−1(𝑥𝑥 − 𝜇𝜇), (9)

-Distance obtained by dynamic time warping algorithm [38]. This distance is a mapping of two
vectors and can be applied to vectors of different lengths 𝐱𝐱 = 𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛 and 𝛍𝛍 = 𝜇𝜇1,𝜇𝜇2, … ,𝜇𝜇𝑛𝑛. The
matrix of dimension n×m contains the distances �𝑥𝑥𝑘𝑘, 𝜇𝜇𝑗𝑗� between two points.

The warped path 𝑊𝑊 = 𝑒𝑒1,𝑒𝑒2, … ,𝑒𝑒𝑚𝑚 ((𝑚𝑚,𝑛𝑛) ≤ 𝑘𝑘 < 𝑚𝑚 + 𝑛𝑛 + 1) is formed in accordance with
rules: а) limit condition: 𝑒𝑒1 = 𝐶𝐶(1, 1), 𝑒𝑒𝐾𝐾 = 𝐶𝐶(𝑛𝑛,𝑚𝑚); б) monotonicity condition:, , 𝑎𝑎 ≥ 𝑎𝑎´, 𝑏𝑏 ≥ 𝑏𝑏´;

в) step size condition: 𝑒𝑒𝑘𝑘 = 𝐶𝐶(𝑎𝑎, 𝑏𝑏), 𝑒𝑒𝑘𝑘−1 = 𝐶𝐶(𝑎𝑎´, 𝑏𝑏´), 𝑎𝑎 − 𝑎𝑎´ ≤ 1, 𝑏𝑏 − 𝑏𝑏´ ≤ 1. Among the set of
paths corresponding to the above conditions, the one corresponding to the minimum ratio is selected:

𝑑𝑑𝑤𝑤(𝑥𝑥, 𝜇𝜇) = min�∑ 𝑒𝑒𝑘𝑘𝐾𝐾
𝑘𝑘=1 ,

(10)

3.4. Training and feature extraction with recurrent autoencoder

Clustering time series which represent honeypots data using a recurrent autoencoder includes the
following steps:

1) Collection and preprocessing of data including actually data collection by the honeynet;
selection of time window duration; scaling.

2) Training of a recurrent autoencoder, which consists of two stages: initial training and tuning.
The initial training of the autoencoder involves training the model without taking into account the
final loss of clustering and aims to form initial representations of the features of the time series. The
loss function (1) in the 1st learning step has only one component – the reconstruction decoder loss
function, which is selected from (2)-(5):

𝐿𝐿(𝜃𝜃) = 𝐿𝐿𝑟𝑟(𝜃𝜃).
The autoencoder tuning is performed taking into account the clustering loss function (6), one of

the similarity measures (7) - (10) is used. The autoencoder loss function takes the form (1). To
calculate the clustering loss function, the features representation 𝐲𝐲 = 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑚𝑚 obtained at the
output of the encoder is used. Model tuning is a process of continuous (periodic) training of the
model, takes into account current changes in the dataset.

3) Feature extraction. A recurrent autoencoder encoder is used to obtain a feature representation.
4) A clustering procedure, which provides next operations:
a) Calculate the clustering algorithm for different cluster quantity NC values from 1 to NCmax; here

NC - the number of clusters, NCmax - the maximum number of clusters.
b) Calculate the integral distance criterion for each NC between objects within a cluster 𝐽𝐽 =

∑ 𝑑𝑑(𝐶𝐶𝑙𝑙)𝑙𝑙
𝑘𝑘=1 𝑙𝑙⁄ ; here 𝑑𝑑(𝐶𝐶𝑙𝑙) is the distance between objects within one cluster; l is the number of

clusters. This distance for the cluster 𝐶𝐶𝑘𝑘 = {𝑋𝑋1,𝑋𝑋2, …𝑋𝑋𝑚𝑚} is determined by the relationship 𝑑𝑑(𝐶𝐶𝑘𝑘) =
∑ ∑ 𝑑𝑑(𝑋𝑋𝑎𝑎 ,𝑋𝑋𝑏𝑏)𝑚𝑚

𝑏𝑏=1
𝑚𝑚
𝑎𝑎=1 𝑚𝑚⁄ ; here 𝑑𝑑(𝑋𝑋𝑎𝑎 ,𝑋𝑋𝑏𝑏) is distance between two objects, which is determined by one

of the relations (6)-(9) depending on which measure of similarity was chosen for clustering.
c) Selection from the set of calculated integral criteria {𝐽𝐽𝑁𝑁𝐿𝐿1, 𝐽𝐽𝑁𝑁𝐿𝐿2, … } the minimum one and

corresponding to it the number of NC and the set of centroids 𝛍𝛍1(𝜇𝜇11,𝜇𝜇21, …𝜇𝜇𝑛𝑛1), …,
𝛍𝛍𝑁𝑁𝐶𝐶�𝜇𝜇1

𝑁𝑁𝐶𝐶 , 𝜇𝜇2
𝑁𝑁𝐶𝐶 , …𝜇𝜇𝑛𝑛

𝑁𝑁𝐶𝐶�. Cluster centroids represent patterns of attacks that operate in the honeynet.
The clustering process is periodically repeated to continuously update attack patterns.

Accordingly, steps 1 to 4 of the clustering procedure are repeated. It is possible to exclude the initial
training of the autoencoder from the update procedure, and in the case of critical computation time
requirements, this exception is advisable.

4. Results & discussion

The analysis of data of the honeynet on the basis [39-41] was conducted. For analysis, a dataset
was created which contained time series of data: the number of malicious sources per time unit; the
number of new malicious sources per time unit; the volume of data received per time unit; the volume
of data sent per time unit; the volume of data per message; the number of sessions per time unit;
session duration; “lifetime” of a malicious source (Fig. 5). A fixed size window and a window derived
from the previous segmentation were used to determine the length of the time series. Clustering was
performed using different combinations of an autoencoder reconstruction loss function and a
clustering similarity measure. The results were comparable to the pre-labeled patterns and are shown
in Table 1. The best results among similarity measures are shown by dynamic time warping distance,
which is quite logical, since this distance is more invariant to some displacements compared to other
similarity measures. However, when using this similarity measure, the calculation time is the longest,
which should be correlated with the performance requirements.

Figure 5: Initial and Clustered Fragment of Time Series Represented Honeynet Data
Table 1
Clustering Accuracy Values (percentage)

Clustering Similarity
Measure

Autoencoder
Loss Function

Euclidian
Distance

Pearson
correlation
coefficient

Mahalanobis
distance

Dynamic Time
Warping
Distance

Mean Squared Error 69 79 71 83
Mean Absolute Error 69 80 70 83
Huber Loss Function 70 82 71 84

Log-cosh Loss 67 81 69 81

5. Conclusions

The use of honeypots and honeynets to collect and analyze the characteristics of the activity of
attackers allows to detect new attacks in addition to the known ones, to find among them attacks with
similar characteristics, and accordingly to identify patterns of new attacks. A properly designed
honeynet allows tracking malicious actions at all points in a working computer network. The
information provided by such a honeynet, together with the corresponding analysis, allows real-time
monitoring of malicious actions, clustering them, obtaining patterns of attacks to which the network is
exposed, and therefore increases the security of the computer network in general.

In the paper, it is proposed to use time series of attackers’ activity to identify patterns of attacks,
which are formed on the basis of data collected by a honeynet. To obtain a representation of the
characteristics of multidimensional time series, it is proposed to use the recurrent autoencoder, which
is built on the basis of convolutional and recurrent units. The advantage of using a recurrent block is
that it effectively processes the features of multidimensional time series. The recurrent unit is a stack
of LSTM layers with residual connections, which helps to avoid the vanishing and exploding gradient
when optimizing the weights. The clustering loss function together with the autoencoder loss function
is used to optimize the recurrent autoencoder, which generally increases the accuracy of clustering.
Because of such preprocessing of time series with a recurrent autoencoder, it is possible to use not
only measures of similarity ordinary for time series (dynamic time warping, Pearson correlation
coefficient), but also Euclidean distance and Mahalanobis distance.

Further research on modifications of the autoencoder architecture is planned to improve the
representation of time series features. It is also planned to investigate the methods of segmentation of
multidimensional time series and their impact on the accuracy of clustering.

6. References

[1] S. Tomas, Study of Internet Threats and Attach Methods Using Honeypots and Honeynets,
Computer Networks 431 (2014) 118–127.

[2] T. Sochor, M. Zuzcak, Attractiveness Study of Honeypots and Honeynets in Internet Threat
Detection, Computer Networks 522 (2015) 69-81. doi: 10.1007/978-3-319-19419-6 7.

[3] S. Lysenko, K. Bobrovnikova, S. Matiukh, I. Hurman, O. Savenko, Detection of the botnets’
low-rate DDoS attacks based on self-similarity, International Journal of Electrical and Computer
Engineering 10 4 (2020) 3651-3659

[4] O. Savenko, A. Nicheporuk, I. Hurman, S. Lysenko, Dynamic signature-based malware detection
technique based on API call tracing, CEUR-WS 2393 (2019) 633-643

[5] S. Lysenko, K. Bobrovnikova, O. Savenko. A Botnet Detection Approach Based on The Clonal
Selection Algorithm, in: Proceedings of 2018 IEEE 9th International Conference on Dependable
Systems, Services and Technologies, DeSSerT-2018, Kyiv, Ukraine, 2018, pp. 424-428.

[6] S. Lysenko, K. Bobrovnikova, O. Savenko and A. Kryshchuk, BotGRABBER: SVM-Based Self-
Adaptive System for the Network Resilience Against the Botnets’ Cyberattacks,
Communications in Computer and Information Science, 1039 (2019) 127-143. doi: 10.1007/978-
3-030-21952-9_10

[7] L. Portnoy, E. Eskin, S. Stolfo. Intrusion Detection with Unlabeled Data Using Clustering.
Proceedings of ACM. CSS Workshop on Data Mining Applied to Security (DMSA2001.
Citeseer, 2001.

[8] J. Mazel, P. Casas, P. Owezarski. Sub-Space Clustering and Evidence Accumulation for
Unsupervised Network Anomaly Detection. Proceedings of the Third International Conference
on Traffic Monitoring and Analysis, ser. TMA’11. Berlin: Springer-Verlag, 2011, pp. 15–28.

[9] N.A. Rosli, W. Yassin, M.F. Faizal, S.R. Selamat. Clustering Analysis for Malware Behavior
Detection using Registry Data. (IJACSA) International Journal of Advanced Computer Science
and Applications, 10 12 (2019) 93-102

[10] M. Ahmed, A. N. Mahmood. Novel Approach for Network Traffic Pattern Analysis using
Clustering-based Collective Anomaly Detection, Annals of Data Science, 2 (2015)

[11] S. Taheri, A.M. Bagirov, I. Gondal, S. Brown. Cyberattack triage using incremental clustering
for intrusion detection system. Internation Journal of Information Security, 19 (2020) 597–607.
doi: https://doi.org/10.1007/s10207-019-00478-3.

[12] M. Landauer, F. Skopik, M. Wurzenberger, A. Rauber. System log clustering approaches for
cyber security application: A survey. Computers & Security 92 (2020) 101739 1-17.

[13] S. Lysenko, O. Pomorova, O. Savenko, A. Kryshchuk and K. Bobrovnikova DNS-based Anti-
evasion Technique for Botnets Detection, in: Proceedings of the 8-th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications, Warsaw, 2015, pp. 453–458.

[14] O. Savenko, S. Lysenko, A. Kryschuk, Multi-agent based approach of botnet detection in
computer systems Communications in Computer and Information Science, 291, 2012, 171-180

[15] S. Lysenko, O. Savenko, K. Bobrovnikova, A. Kryshchuk Self-adaptive System for the
Corporate Area Network Resilience in the Presence of Botnet Cyberattacks, Communications in
Computer and Information Science, 860 (2018). doi: https://doi.org/10.1007/978-3-319-92459-
5_31.

[16] R. Kozma, J. L. G. Rosa and D. R. M. Piazentin Cognitive clustering algorithm for efficient
cybersecurity applications. The 2013 International Joint Conference on Neural Networks
(IJCNN), Dallas, TX, 2013, pp. 1-8, doi: 10.1109/IJCNN.2013.6706774.

[17] E. Min, X. Guo, Q. Liu, G. Zhang, J. Gui, J. Long. A Survey of Clustering With Deep Learning:
From the Perspective of Network Architecture IEEE Access, vol. 6, pp. 39501-39514, 2018, doi:
10.1109/ACCESS.2018.2855437

[18] M. Kampffmeyer, S. Løkse, F. M. Bianchi, L. Livi, A. Salberg, R. Jenssen, Deep Divergence-
Based Approach to Clustering. Neural networks : the official journal of the International Neural
Network Society, 113 (2019) 91-101.

[19] J. Zhuxi, Z. Yin, T. Huachun, T. Bangsheng, Z. Hanning, Variational Deep Embedding: An
Unsupervised and Generative Approach to Clustering, arxiv.org 1611.05148.

[20] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel. InfoGAN:
Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.
https://arxiv.org/abs/1606.03657.

https://doi.org/10.1007/s10207-019-00478-3
https://doi.org/10.1007/978-3-319-92459-5_31
https://doi.org/10.1007/978-3-319-92459-5_31
https://arxiv.org/abs/1611.05148
https://arxiv.org/abs/1606.03657

[21] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features
with denoising autoencoders, in: Proceedings of the 25th international conference on Machine
learning, ACM, 2008, pp. 1096–1103.

[22] K. Zeng, J. Yu, R. Wang, C. Li and D. Tao, "Coupled Deep Autoencoder for Single Image
Super-Resolution," in IEEE Transactions on Cybernetics, vol. 47, no. 1, pp. 27-37, Jan. 2017,
doi: 10.1109/TCYB.2015.2501373.

[23] K. Sohn, H. Lee, X. Yan, Learning structured output representation using deep conditional
generative models, in: Advances in Neural Information Processing Systems, 2015, pp. 3483–
3491.

[24] K. Sohn, H. Lee, X. Yan, Learning structured output representation using deep conditional
generative models, in: Advances in Neural Information Processing Systems, 2015, pp. 3483–
3491.

[25] Y. Raut, T. Tiwari, P. Pande, P. Thakar, Image Compression Using Convolutional Autoencoder.
In: Kumar A., Paprzycki M., Gunjan V. ICDSMLA 2019. Lecture Notes in Electrical
Engineering, vol 601. Springer, Singapore. https://doi.org/10.1007/978-981-15-1420-3_23.

[26] M. Aamir, N. M. Nawi, H. B. Mahdin, R. Naseem, M. Zulqarnain. Auto-Encoder Variants for
Solving Handwritten Digits Classification Problem. International Journal of Fuzzy Logic and
Intelligent Systems, 20 1 (2020) 8-16. doi: http://doi.org/10.5391/IJFIS.2020.20.1.8.

[27] Md Rezaul Karim, Oya Beyan, Achille Zappa, Ivan G Costa, Dietrich Rebholz-Schuhmann,
Michael Cochez, Stefan Decker, Deep learning-based clustering approaches for bioinformatics,
Briefings in Bioinformatics, Volume 22, Issue 1, January 2021, Pages 393–415.

[28] M. Caron, P. Bojanowski, A. Joulin, M. Douze, Deep Clustering for Unsupervised Learning of
Visual Features In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds) Computer Vision –
ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, 11218. doi:
https://doi.org/10.1007/978-3-030-01264-9_9.

[29] D. Mautz, C. Plant, C. Böhm, DeepECT: The Deep Embedded Cluster Tree. Data Sci. Eng. 5,
419–432 (2020). doi: https://doi.org/10.1007/s41019-020-00134-0.

[30] S, A, Shah, V. Koltun, Deep Continuous Clustering, arxiv.org 1803.01449.
[31] P. Owezarski, A near real-time algorithm for autonomous identification and characterization of

honeypot attacks, in: Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security, ser. ASIA CCS ’15. New York, NY, USA: ACM, 2015, pp. 531–542.

[32] M. Nawrocki, M. Wählisch, T. C. Schmidt, C. Keil, J. Schönfelder. A Survey on Honeypot
Software and Data Analysis, arxiv.org 1608.06249.

[33] X. Wang, J. W. Emerson. Bayesian Change Point Analysis of Linear Models on Graphs.
arxiv.org 1509.00817.

[34] Jain A.K. Data clustering: 50 years beyond k-means Pattern recognition letters, vol. 31, no. 8, pp.
651–666, 2010.

[35] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural networks, in:
Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia, USA,
2013, 1310–1318.

[36] J. Kim, M. El-Khamy, J. Lee. Residual LSTM: Design of a Deep Recurrent Architecture for
Distant Speech Recognition, arxiv.org 1701.03360.

[37] F. Iglesias, W. Kastner, Analysis of Similarity Measures in Times Series Clustering for the
Discovery of Building Energy Patterns Energies 6 (2013) 579-597.

[38] Keogh E. Exact Indexing of Dynamic Time Warping, in: Proceedings of the 28th International
Conference on Very Large Data Bases, Hong Kong, China, 20–23 August 2002; pp. 406–417.

[39] Traffic Data from Kyoto University's Honeypots, URL: https://www.takakura.com/Kyoto_data/.
[40] Lysenko, S., Savenko, O., Bobrovnikova, K., Kryshchuk, A., Savenko, B.: Information

Technology for Botnets Detection Based on Their Behaviour in the Corporate Area Network. In:
International Conference on Computer Networks, 2017, pp. 166-181. Springer, Cham.

[41] Drozd O., Kharchenko V., Rucinski A., Kochanski T., Garbos R., Maevsky D. Development of
Models in Resilient Computing, Proc. of 10th IEEE International Conference on Dependable
Systems, Services and Technologies (DESSERT' 2019), Leeds, UK, June 5-7 2019, pp. 2-7
(2019), doi: 10.1109/DESSERT.2019.8770035.

https://doi.org/10.1007/978-981-15-1420-3_23
https://doi.org/10.1007/978-3-030-01264-9_9
https://doi.org/10.1007/s41019-020-00134-0
https://arxiv.org/abs/1803.01449
https://arxiv.org/abs/1608.06249
https://arxiv.org/abs/1509.00817
https://arxiv.org/abs/1701.03360
https://www.takakura.com/Kyoto_data/

	1. Introduction
	2. State of the Art
	3. K-means Clustering with Recurrent Autoencoder
	3.1. The collection of data by the honeynet
	3.2. The autoencoder architecture
	3.3. The loss function of the autoencoder
	3.4. Training and feature extraction with recurrent autoencoder

	4. Results & discussion
	5. Conclusions
	6. References

