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Abstract  
The paper is devoted to the development of steganographic approaches to checking the 
integrity of an FPGA (Field Programmable Gate Array) system based on preserving the basic 
functionality of stego containers and hiding both the hash sum and other control information 
as well as the very fact of their existence. The program code of an FPGA project with a LUT-
oriented (Look-Up Table) architecture is proposed to be used to organize stego-containers 
when performing approximate calculations in floating-point formats. The development of this 
approach is based on the progressive dominance of hardware support in the processing of 
approximate data and the orientation of modern CAD systems to provide library circuit 
solutions for performing complete arithmetic operations. Floating-point formats round the 
computed result to the size of the operand. The use of these formats in FPGA systems creates 
structural redundancy in the schemes for implementing complete arithmetic operations and 
thus eliminates the influence of a number of LUTs on the rounded result. The code stored in 
these LUT units can be used to organize stego containers. A TCL-application developed for 
this purpose generates a circuit description for an analyzed FPGA system with a LUT-
oriented architecture. The following application uses the resulting description to evaluate the 
effect of LUT units on the bits of the calculated result. Experiments carried out for iterative 
array multipliers implemented in FPGA projects made it possible to estimate the volume of 
stego-containers that can be used when performing approximate calculations in floating-point 
formats.  
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1. Introduction 

A significant part of modern computer systems contains programmable components. The 
functioning of such components is determined by the program code. The program code can be 
changed at any time, which will lead to a change in the operation of the system. On the one hand, this 
is an advantage, since at any stage of operation of the system, it is possible to update its program code 
or eliminate errors found in it. On the other hand, it carries the threat of malicious interference in the 
operation of a computer system by exploiting the program code [1]. 

To minimize these threats, a large number of methods, tools and organizational measures have 
been developed [2]. Among them, operational monitoring of program code integrity plays the most 
important role [3].   
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Integrity monitoring is effective for two reasons. First, integrity monitoring can be performed at 
any stage of the system life cycle. Second, integrity monitoring can be easily combined with other 
approaches to ensuring the integrity of the program code. 

Over the last decade, FPGA (Field Programmable Gate Array) chips with LUT-oriented 
architecture have taken an increasing share of the programmable component market [4]. These chips 
are competitors of microprocessors and microcontrollers. At the same time with the possibility of 
reprogramming, FPGA demonstrate superiority over microprocessors for tasks that require high 
computing performance. Because of this specificity, FPGA are often used as components of safety-
related computer systems for industrial, military and aerospace purposes [5].  

FPGA chips are programmed by loading low-level program code (bitstream) into the configuration 
memory of these chips. Due to the criticality and importance of using FPGA microcircuits, the 
integrity of their program code is monitored every time it is updated, and can also be monitored 
regularly [6]. 

Traditionally, integrity monitoring of the program code is carried out by double calculation [7, 8] 
and comparison of hash sums [9]. When preparing the program code for monitoring, a reference hash 
sum is calculated. At the time of monitoring, the reference hash sum is compared with the newly 
calculated hash sum. In these processes, the method and location of storing the reference hash sum 
significantly affects the possibility of monitoring falsification. An effective approach to storing 
monitoring data for FPGA program code is the steganographic approach [10, 11].  

Within the framework of this approach, monitoring data (hash-sum) are embedded in the program 
code in the form of a digital watermark [12, 13]. This implementation is performed by equivalent 
transformations of the program code [14]. Therefore, the size of the program code, the operation and 
characteristics of the device are not changed.  

The digital watermark (which contains the reference hash sum) is hidden from the outside observer 
and is indistinguishable from the program code. At the time of monitoring, the hidden reference hash 
can be extracted by an authorized person who has a stego key. Also, elements of the steganographic 
approach can be used to obfuscate the FPGA program code [15, 16].  

Moreover, hash-sum hiding and obfuscation can be performed using a single system of equivalent 
transformations. The purpose of obfuscation in this case is to make it difficult to stegoanalysis 
[17, 18] aimed at detecting a digital watermark in the program code. For this reason, the development 
of approaches to steganographic hiding of integrity monitoring data is an important and relevant task. 

2. Literature Review and Goal of the Paper 

The steganographic approach to data protection is based on the imperceptible (not attracting 
attention) embedding of protected data into an information object – a stego container. The main 
conditions for such embedding are: 

1. Immutability of the main functionality for stego container as a result of implementation; 
2. Indistinguishability of the embedded data from the stego container data. 
The greatest development is the direction of steganography [19], which uses multimedia files as 

stego containers: bitmap images, digital video, digitized sound. The basis of steganography methods 
in this direction is that multimedia data are analogous and approximate nature. Images, video and 
sound are originally analog phenomena, converted to binary representation as a result of the use of 
appropriate analog sensors and then digitizing their readings.  

Due to this, the elementary units of multimedia stego containers (pixels for bitmap images and 
video, samples for digitized sound) have areas of different significance. The presence of these areas is 
due to unequal bits of the digital representation of analog data. The least significant bits of pixels and 
samples contribute very little to the quantitative equivalent of these values. Because of this, the 
distortion of these bits does not affect the main function of the multimedia stego container. Such 
insignificant areas in the data of multimedia stego containers are manifested both in the spatial 
domain of their presentation and in the transformation domain. Methods of digital steganography use 
these insignificant areas as places for embedding hidden data. 

Unlike multimedia stego containers, the FPGA code is not approximate data, but exact. It is 
impossible to change the bits of the FPGA program code by the methods used in multimedia 



steganography. This is due to the fact that such changes will lead to distortion of the functioning of 
the device. Because of this, steganographic methods based on equivalent transformations are used for 
FPGA program code [20]. These methods, in the process of data embedding, equivalently modify the 
values of the program code without affecting the operation of the device and its characteristics. 

Thus, it can be stated that the following assignment of steganographic methods to the types of 
stego-containers has developed:  

• for multimedia stego containers, methods for non-equivalent changes in the data of 
elementary container units; 
• for containers with exactly represented data (for example, for FPGA program code) – 
methods for equivalent transformation of container data. 
At the same time, the structure of the FPGA program code has the potential to perform non-

equivalent embedding similar to those used for multimedia stego containers as well. Such embedding 
is possible for FPGA program code implementing arithmetic operations on approximate data. 

Approximate data processing has long dominated precision calculations and continues to 
consolidate its dominance. This process can be traced on the example of the personal computer 
development, which shows an objective nature in the constant strengthening of hardware support for 
approximate calculations. The focus on approximate data processing begins with optional Intel 
283/387 co-processors that support floating-point computations in hardware [21]. Then the floating-
point data processing goes to the Intel 486DX central processor. The Pentium family offers the use of 
FPU (Floating-Point Unit) pipelines for accelerated processing of approximate data. A modern 
graphics processor contains thousands of FPU pipelines, which are used for parallel execution of 
approximate computations using CUDA technology [22]. 

Nobody planned such a development of personal computers. But this plan could be drawn up, 
since it is being implemented as a result of the natural process of structuring all types of resources for 
the peculiarities of the natural world. The history of the development of the computer world shows to 
the greatest extent the influence of two such features: parallelism and proximity, fuzziness of the 
natural world [23].  

Following this development vector is motivated by a significant increase in important indicators. 
For several decades, personal computers have increased the clock frequency and, accordingly, the 
throughput from KHz to GHz. At the same time, the amount of memory increased from MB to TB. 
Thus, the main indicators of personal computers were simultaneously improved by a factor of 
millions. 

Following the development vector that supports approximate computing can be observed in new 
directions of improving information technologies, including Big Data, Internet of Things and 
Everything, Cyber-physical and Safety-related systems, receiving initial data from sensors. These 
measurement results are approximate data [24-26]. 

Scientific directions are being developed, first of all, within the framework of the development of 
approximate models and methods that work under conditions of fuzziness [27-29], give and use 
approximate estimates of the significance of the information received and processed [30-32]. 

Thus, the development of steganography in the field of approximate data processing, including 
FPGA systems, is quite natural. 

It should also be noted that this direction is supported by FPGA designing, which is still on the 
way to structuring under the fuzziness of the natural world. This feature is evident in CAD systems 
that support FPGA designing. They provide a wide range of library circuit solutions focused on 
performing complete arithmetic operations for accurate calculations and practically do not support the 
features of processing approximate data. The use of library circuits in approximate calculations 
demonstrates structural redundancy that can be used to organize stego-containers. 

The presence of structural redundancy in circuit implementations of complete arithmetic 
operations is confirmed by the practice of using truncated calculations, which show an almost twofold 
simplification of the circuit without loss of accuracy in the case of performing the truncated operation 
with mantissas in an iterative array multiplier [33, 34]. 

Non-equivalent steganographic data embedding based on approximate computations and structural 
redundancy of FPGA systems can be combined with equivalent embedding, using version redundancy 
of LUT-oriented architecture [35, 36].  



In this case, a hybrid scheme of steganographic data embedding into the FPGA program code 
appears. In this scheme, both embedding approaches (equivalent and non-equivalent) can play the 
same or different roles (hiding monitoring data, obfuscating of program code, false embedding). For 
example, one approach performs embedding to hide monitoring data, while the other is used to code 
obfuscation or for false embedding. 

One of the conditions for the applicability of the proposed non-covalent implementation is to 
ensure that the volume of the stego container is sufficient for the indicated roles. Based on this, the 
goal of this paper is to estimate the volume of the stego container obtained by applying non-
equivalent transformations to the FPGA program code. 

3. Proposed approach to steganographic data embedding into FPGA program 
code 

When performing arithmetic operations, it is typical to require results that are the same size as the 
operands. This requirement is common in floating point specifications. When performing an operation 
on n-bit operands, an n-bit result must be obtained. For a number of arithmetic operations, the size of 
the result naturally exceeds the size of the operands. In this case, the full result is calculated first. 
After that, rounding is performed and the lower bits are removed. As a result, the size of the result is 
made equal to the size of the operands.  

For example, when performing the operation of multiplying n-bit mantissa of floating-point 
numbers, a complete 2n-bit result is obtained. This result is then rounded off by discarding the lower 
n bits. The remaining bits form the required n-bit result. 

It should be noted that performing multiplication is a typical pattern for approximate calculations 
in general. Indeed, the representation and processing of approximate floating-point data is generally 
accepted and absolutely dominant. At the same time, the normal form of representation of numbers in 
these formats makes multiplication a key operation of approximate calculations, since it is used in the 
very record of floating-point data [37]. 

For example, one and a half million is represented as 1.5 × 106, where 1.5 is the mantissa, 10 is the 
base of the number system, 6 is the exponent. This representation determines the use of multiplication 
in all operations with mantissas in one form or another. In this case, the complete results of the 
operations inherit various properties of the product, including doubling the size of the operands in 
dual-operand operations. 

For approximate calculations, the bits of the complete result can be divided into two subsets: 
retained (most significant) bits and discarded (least significant) bits [38]. Distortion in the least 
significant bits of the result does not affect the final result of the operation. When implementing such 
arithmetic operations on FPGA in its structure can be separated the elementary calculating units, 
which participate in the formation of only least significant (discarded) bits of the result. Due to this, 
the program code of such units may be non-equivalently modified and such modification will not 
affect the result of the device operation. 

Further, the proposed approach and its evaluation are shown using the example of the 
multiplication operation. However, they can be extended to other arithmetic operations, in which the 
result is obtained by discarding the least significant bits. 

Let А = <an-1, an-2, …, a0>, B = <bn-1, bn-2, …, b0>, C = <c2n-1, c2n-2, …, cn, cn-1, cn-2, …, c0> be the 
operands and the complete result for the multiplication operation, respectively. To convert the result C 
to the required format (when specifying the same size of the operands and the result), the high-order 
n-bits of the result are retained and the low-order ones are discarded.  

Thus, the bits of the complete result form two ordered sets: 
CMSB = < c2n-1, c2n-2, …, cn>, CLSB = < cn-1, cn-2, …, c0> (1) 

where CMSB – set of most significant bits; 
 CLSB – set of least significant (discarded) bits. 

The main elementary units of FPGA structure microcircuits are LUT (Look Up Table), which are 
generators of logical function of m variables, where m is the number of inputs of the LUT unit. 
Modern families of FPGA contain LUTs with the number of inputs from 4 to 8 and, accordingly, 
memory from 16 to 256 bits.  



The LUT is programmed to calculate a specific logic function by a 2m-bit program code. An FPGA 
chip that implements an arithmetic operation on approximate data, as a rule, is assembled from library 
modules designed to perform complete operations. Such chip contains LUT units that are used to 
calculate the least significant bits of the operation result and do not have any effect on the most 
significant bits: 

LIE ⊂ L, (2) 
where L – set of all LUTs in an FPGA project that implements arithmetic operations; 
 LIE – a subset of LUTs that are involved in the calculating of least significant bits only and not 
involved in the calculating of most significant bits. 

Hereinafter the LUTs included in the LIE set will be referred to as inessential LUTs. The program 
code of inessential LUTs can be non-equivalently modified in order to steganographically embed 
additional data into it. This modification will distort the result, but only in the least significant bits. 
Since these bits are discarded during rounding, the modification of the program code of LIE units will 
not affect the final result, converted in the used format to the number of operand bits. 

It is necessary to evaluate what volume of stego container provides the proposed non-equivalent 
approach to data embedding. For this purpose, an experimental evaluation is performed, in which the 
stego-containers are binary multipliers of different size, implemented on FPGA. 

4. Experimental estimation of the stego container volume 

The purpose of the experiment is to estimate the portion of inessential (included in the LIE set) 
LUT units in the total number of LUT units of the arithmetic device implemented on the FPGA. The 
multiplication operation is chosen as the target function of the device. This is due to the fact that this 
operation is key to performing approximate calculations. 

4.1. The process of forming the initial data of the experiment 

The initial data for the experiment were formed using the CAD system Intel Quartus Prime 20.1 
Lite Edition [39, 40] and the software that we developed. The process of obtaining the initial data was 
as follows. 

Five FPGA projects were created in the Intel Quartus Prime environment using library 
components. Each of these projects implements a multiplier of the corresponding size. For the 
experiment, we used iterative array multipliers with operands of 4, 6, 8, 12 and 16 bits. The 
multipliers have been configured to produce a complete 2n-bit result from the n-bit operands. Thus, 
we were available the result that takes place before the bits are discarded. 

 Further, in the Intel Quartus Prime environment, synthesis was performed, as well as project 
placement and routing. The FPGA Intel Cyclone IV EP4CE15F23A7 [41] was selected as the target 
chip for the synthesis. 

After placement and routing, a software application developed by us was used. This application is 
developed in TCL [42] and allows to interact with Intel Quartus Prime using the API (Application 
Programming Interface) [43] of this CAD system. TCL application extracts detailed information 
about the FPGA design structure from the internal Intel Quartus CAD database.  

The extracted information includes:  
a) a description of the LUTs included in the project;  
b) program codes of each of the LUT units;  
c) information about the connections of the LUTs with each other, as well as with the inputs and 

outputs of the chip.  
The result of the functioning of the developed TCL application is the structure of the FPGA 

project presented in a form suitable for further analysis. This analysis was performed using the second 
application developed by us using the free programming environment Delphi 10 Seattle demo 
version [44]. 

 



4.2. The main part of the experiment 

The main part of the experiment was implemented in the environment of the second application we 
developed. This application takes raw data (information about the structure of the FPGA project) and 
determines which of the project LUTs are inessential. 

The process of analyzing LUT units is as follows. For each of the possible joint values of the 
multiplier operands A and B, the following steps are performed. 

Step 1: The 2n-bit result of the multiplication of operands A and B is calculated. 
Step 2: The correct values are fixed at the outputs of each of the FPGA project LUT units. 
Step 3: The values at the output of each FPGA project LUT are inverted sequentially (changed 

from correct to incorrect). For each of these distortions, the value of the result error is recorded. The 
error value is calculated as a modulus of difference between the correct result value and the result 
value obtained after inversion.  

Each of the LUT units of the project is associated with the maximum value of the error that arose 
as a result of the distortion of the output value of this unit. The stored error value is updated when the 
current error is greater than the stored error. 

The values of the maximum error obtained as a result of the operand values enumeration allow to 
decide whether the LUT unit belongs to a subset of inessential units. For n-bit multiplier, if the 
maximum error corresponding to the LUTi unit is less than 2n, then this error appears only in the 
discarded bits of the result CLSB = <cn-1, cn-2, …, c0>.  

This means that for any values of the operands, the distortion of the values at the output of the 
LUTi unit does not lead to the distortion of the most significant bits of the result. 

Thus, the decision rule for assigning an n-bit multiplier LUT unit to a subset of inessential units is 
as follows: 

if max_error(LUTi) < 2n then LUTi ∈ LIE, (3) 
where max_error(LUTi) – the maximum error value assigned to the unit LUTi. 

 
Fig. 1 shows the window of the second software application we developed. This window contains 

the experiment results for an 8-bit multiplier. In this window, for each LUT (1 ... 101) unit of the 
FPGA project, the value of the minimum and maximum errors obtained during the experiment is 
presented.  

At the bottom of the window, you can see the statistics of errors that appear in each individual bit 
of the result.  

Line B contains the bit numbers of the result from right to left, starting with the first least 
significant bit.  

Line Q shows the number of LUT units affecting the calculated result in the bit with the specified 
number.  

Line A shows the portion of LUT units whose influence on the result does not exceed the weight 
of the specified bit. For a given FPGA project, this estimate is nearly the same as the number of such 
LUT units. 

4.3. Discussion of experimental results 

The results of the experiment made it possible to obtain the number of inessential LUT units in 
multiplier circuits implemented on FPGA. Since the values at the outputs of inessential units do not 
affect the most significant bits (which remain after rounding) of the result, the program code of these 
units can be subjected to non-equivalent modification. Thus, the number of inessential units makes it 
possible to estimate the volume of the stego container formed in the environment of the LUT-circuit 
of the multiplier.  

Table 1 shows the experimental results obtained for multipliers with operand sizes of 4, 6, 8, 12 
and 16 bits. 
 
 
 



 
Figure 1: Experiment Results Window for 8-Bit Multiplier 
 
Table 1 
Experiment Results 

Size of operands and final result 4 6 8 12 16 
Size of the result before rounding 8 12 16 24 32 

Total number of LUTs 30 61 101 208 341 
Number of inessential LUTs 12 24 40 86 145 

Portion of inessential LUT units 
among all units 40% 39,3% 39,6% 41,3% 42,5% 

Minimum volume of stego 
container (bits) 12 24 40 86 145 

Maximum volume of stego 
container (bits) when the number 

of inputs of LUT units is 4 
192 384 640 1376 2320 

 
In experimental FPGA projects, the portion of inessential LUT units ranged from 39.3% to 42.5%. 
Table 1 also shows the upper and lower estimates of the stego container volume obtained by 

applying the proposed non-equivalent data embedding. The operation of an m-input LUT is specified 



by a 2m bit program code (usually m is between 4 and 8). Thus, each inessential LUT can be used to 
embed a minimum of 1 and a maximum of 2m bits. For LUTs with a memory size of 16 bits, the 
maximum stego container value increases from 192 to 2320 bits with an increase in operand size from 
4 to 16 bits. 

The obtained estimates allow us to state that the volume of stego containers is sufficient to 
implement the hash sums of 128, 160, 256 and 512 bits, which are commercially used now.  

The FPGA systems used in the experiment make it possible to provide steganographic storage of 
data blocks, the size of which does not exceed 2320 bits. 

5. Conclusions and Directions of the Further Research 

The paper proposes an approach that allows steganographic embedding of additional data into the 
FPGA program code. In contrast to the known approaches, it is proposed to do this not by means of 
equivalent changes, but by means of non-equivalent modifications of the FPGA program code. To 
implement this approach, it is proposed to identify inessential LUT units in the structure of FPGA 
systems, which perform the processing of approximate data.  

This approach is based on two features of the ICT development: the dominance of hardware 
support in the processing of approximate data, which is usually performed in floating-point formats, 
and the orientation of FPGA design to perform complete arithmetic operations. The intersection of 
these features creates structural redundancy that can be used to organize stego containers in circuits 
with a LUT-oriented architecture. 

A feature of these units is that they are involved only in the calculation of the least significant bits 
of the result. Since such bits are discarded during rounding, the values of inessential units do not 
distort the final calculation result. The program code of inessential LUT units is proposed to be used 
for steganographic embedding of additional data. 

Experimental study of the proposed approach made it possible to estimate the volume of the stego 
container formed by the program code of inessential LUT units. The results of the experiment showed 
the sufficiency of the volume of the stego container for storing data used in the processes of 
monitoring the integrity of the FPGA program code. 

As further directions of research begun in this paper, the following can be emphasized. This paper 
investigates the effect of autonomous non-equivalent change in the values of the outputs of LUT units 
on the result of multiplication. It is of interest to study the effects of joint non-equivalent changes in 
subsets of LUTs on the result. Thus, the first direction of further research is to estimate the volume of 
the stego container under conditions of joint non-equivalent changes of subsets of LUT units. 

Also of interest is the study of approaches to such a non-equivalent embedding that is not detected 
by means of on-line testing [45, 46]. Existing on-line testing means are usually based on the residue 
checking. In the case of checking of the result before the discarding of least significant bits, such 
checking can detect errors in the operation of the device with a non-equivalent embedding. Because of 
this, making the non-equivalent embedding invisible to residue checking is the second direction of 
further research on the topic of this paper. 
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