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Abstract  
In the article hyper basic function neural network (HBFN) in convolutional neural networks 
instead of fully connected perceptron layers, which solve the problem of classification is 
proposed. HBFNs are generalization of traditional radial-basic function networks, which like 
multilayer perceptrons are also universal approximators. The peculiarity of hyper basic 
function neural networks is that their receptive fields are hyperellipsoids with arbitrary 
orientation of the axes in the feature space. It is assumed that, along with the synaptic 
weights, receptive field parameters are adjusted: their centers and matrices of the axis 
orientation. This approach allows to reduce the total number of synaptic weights, and 
accordingly the number of R-neurons (activation functions) of the network. Using 
multidimensional V. Epanechnikov’s functions with a hyperellipsoidal receptive field that 
can be adjusted during the learning process as activation functions permit to accelerate the 
learning process of investigated network. It should be noted that applying kernel functions in 
convolutional neural networks permits to avoid the undesirable effect of "exploiding 
gradient", which often occurs in fully connected layers. The computational experiment results 
on standard data sets confirm the effectiveness of the proposed approach and, first of all, the 
high learning speed. 
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1. Introduction 

For today the deep neural networks (DNN) are widely used for solving large class of tasks that are 
connected with Data Mining and especially Big Data Mining, first of all, pattern recognition- 
classification, forecasting, identification-emulation, natural language processing, etc. [1-4]. Here a 
special place the convolutional neural networks (CNN) have been occupied, that are designed to solve 
various problems connected with images of different natures processing. Usually, every CNN has 
multilayer feedforward architecture that can be divided onto two separate independent parts. 

The first part is – autoencoder that is used for input signal-image compression, that is commonly 
given in the matrix form. As a result of the input 2D-signal processing by the convolutional and 
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pooling layers in the output of the last pooling layer at this part of the system n-dimensional vector 
signal is formed. In fact, if the input signal-image has form of the (𝑛𝑛1 × 𝑛𝑛2)-matrix, then usually 𝑛𝑛 ≪
𝑛𝑛1𝑛𝑛2, i. e. this part of the CNN realizes compression task of the input matrix signal. The second part 
of the CNN in general case solves classification task usually, it is standard multilayer perceptron 
(MLP) whose nodes are F. Rosenblatt’s elementary perceptrons, with piecewise activation functions. 
Here it is necessary to note, that in practical implementation of the shallow neural networks (SNN) 
so-called  
sigmoidal squashing functions [5] as activation function are used, moreover, to provide universal 
approximation properties usually only three fully connected layers are enough [6, 7]. 

At the same time, learning of the standard MLP with squashing activation function is met with 
extremely unpleasant effect of the vanishing gradient, that significantly complicates the process of 
synaptic weights adjustment based on the error back propagation method. That is why, in the DNN 
instead of classic sigmoids or hyperbolic tangents linear piecewise functions are used, that provide 
desired approximation quality [8], but at the same time require of the significant increasing of the 
network’s layers, and accordingly increases the number of tuned synaptic weights. Moreover, the 
transfer learning does not always been a way to overcome this problem. 

The simplest way to overcome this problem is to implement instead of the standard MLP in the 
CNN, so-called, radial-basis function neural networks (RBFN), that include only one layer of the 
tuned synaptic weights and whose output signals are linearly depended on these weights, that allows 
to use for learning fairly simple optimization algorithms [9-12]. Such approach was implemented in 
the [13], there from the commonly known DNN were deleted perceptron’s layers and instead of them 
to the outputs of the last pooling layer standard RBFN with n input and m inputs was connected where 
m determines number of the classes into which should be divided investigated data set. 

However, the RBFN implementation instead of the MLP also does not solves all arising problems 
because, firstly, conventional radial-basis function neural networks suffer from the so-called “curse of 
dimensionality”, when amount of the activation function in the R-neurons are exponentially increased 
dependently from the input space dimension, and, secondly, arises the problem of hyperspherical 
receptive fields centers distribution of the kernel activation functions usually as multidimensional 
Gaussians or Cauchyans type. The problem of the centers distribution usually is solved by using of 
one or another clustering algorithms (in [13], for example, standard K-means algorithm was used) that 
is connected with essential computational problems. 

An alternative to traditional RBFN, in our opinion, can be so-called hyper basis neural networks 
(HBFN) [14], which in contrast to the symmetric kernel functions of RBFN have hyperellipsoidal 
receptive fields with arbitrary orientation of the axes in network input space. And if to realize online 
tuning of all hyperellipsoids parameters including its centers, using HBFN allows to refuse from 
standard clustering procedures for finding of these centers. 

2. The hyper-basis function neural network and its online learning 

The prototype of hyper basis function network (HBFN) is traditional radial-basis function network 
[15] that consist of only one hidden layer. This hidden layer is formed by so-called R-neurons which 
realize nonlinear transformation of the input signals with so-called radial-basis, bell-shaped, potential 
function which are based on the hypersphere of a fixed radius. In the Figure 1 architecture of this 
neural network is shown. Here in this network is assumed that coordinates of hyperspherical receptive 
fields centers are fixed and do not change during learning process. HBFN is generalization of the 
standard RBFN in which hyperellipsoids with arbitrary axis orientations are used instead of spherical 
receptive fields. Thus, the centers coordinate, and orientation of the receptive fields parameters are set 
apriori and do not specified in the learning process. It is clear that significantly expand the RBFN 
could by R-neurons learning in one- or another-way i. e. perform learning in the second hidden layer. 

To the inputs of the hyper basis function neural network from the last pooling layer of the 
convolutional network the vector signals sequence 𝑥𝑥(𝑘𝑘) = (𝑥𝑥1(𝑘𝑘),𝑥𝑥2(𝑘𝑘), … , 𝑥𝑥𝑖𝑖(𝑘𝑘), … , 𝑥𝑥𝑛𝑛(𝑘𝑘))𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 
is fed to processing, where 𝑘𝑘 = 1,2, … ,𝑁𝑁 − is an observations number or discrete time of the training 
set 𝑋𝑋 = {𝑥𝑥(1),𝑥𝑥(2), … , 𝑥𝑥(𝑘𝑘), … , 𝑥𝑥(𝑁𝑁)} ⊂ 𝑅𝑅𝑛𝑛. This signal is passed on the R-neurons inputs, formed 
by kernel activation functions 



𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘)) = 𝜓𝜓𝑙𝑙 �‖𝑥𝑥(𝑘𝑘) − 𝑐𝑐𝑙𝑙‖Σ𝑙𝑙−1
2 �, 𝑙𝑙 = 1,2, … ,ℎ    

where 𝑐𝑐𝑙𝑙 − the receptive field center of the function 𝜓𝜓𝑙𝑙(∙), Σ𝑙𝑙−1 − positive (𝑛𝑛 × 𝑛𝑛) −matrix of the 
receptive field orientation, 𝜓𝜓0(𝑥𝑥(𝑘𝑘)) = 1. Usually, it can be multidimensional Gaussian  

𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘)) = 𝑒𝑒𝑥𝑥𝑒𝑒 �−‖𝑥𝑥(𝑘𝑘) − 𝑐𝑐𝑙𝑙‖Σ𝑙𝑙−1
2 �,   (1) 

Cauchyan 

𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘)) = 𝑒𝑒𝑥𝑥𝑒𝑒 �1 + ‖𝑥𝑥(𝑘𝑘)− 𝑐𝑐𝑙𝑙‖Σ𝑙𝑙−1
2 �

−1
,   (2) 

and other bell-shaped constructions. 
 

 
Figure 1: Standard radial-basis function network 

 
Visualization of the Gaussian with different width parameters is shown in the Figure 2. 

 
Figure 2: Standard Gaussian with different width parameters 
 

The outputs of the all R-neurons are fed to the inputs of the m adaptive linear associators (ALA), 
that in fact are essentially ordinary adders with adjusteable synaptic weights at the inputs. Thus, at the 
outputs of the adders the signals are appeared in the form 



𝑦𝑦�𝑗𝑗(𝑘𝑘) = 𝑤𝑤𝑗𝑗0 + ∑ 𝑤𝑤𝑗𝑗𝑙𝑙𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘))ℎ
𝑙𝑙=1 = ∑ 𝑤𝑤𝑗𝑗𝑙𝑙𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘)) = 𝑤𝑤𝑗𝑗𝑇𝑇𝜓𝜓�(𝑥𝑥(𝑘𝑘))ℎ

𝑙𝑙=0  (3) 

where 𝜓𝜓�(𝑥𝑥(𝑘𝑘)) = (1,𝜓𝜓𝑇𝑇(𝑥𝑥(𝑘𝑘)))𝑇𝑇, 𝜓𝜓�𝑥𝑥(𝑘𝑘)� = �𝜓𝜓1(𝑥𝑥(𝑘𝑘)), … ,𝜓𝜓𝑙𝑙�𝑥𝑥(𝑘𝑘)�, … ,𝜓𝜓ℎ(𝑥𝑥(𝑘𝑘))�
𝑇𝑇

, 𝑗𝑗 =
1,2, … ,𝑚𝑚, ℎ > 𝑛𝑛 − determines the amount of the hyper basis functions, that are included in the 
network. 

In the case when the quadratic error is used as a learning criterion, the signals (3) are the outputs of 
the all network, if the cross-entropy criterion and reference signal one hot coding is used, at the 
outputs of the system the every observation membership level for the all possible classes 𝑗𝑗 =
1,2, … ,𝑚𝑚 are additionally appear. 

Next it is easy to write the gradient procedure of the RBFN’s synaptic weights tuning: 
𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘 + 1) = 𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘) + 𝜂𝜂𝑤𝑤(𝑘𝑘 + 1) �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘)𝜓𝜓��𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘),Σ𝑙𝑙−1(𝑘𝑘)�� × 

× 𝜓𝜓𝑙𝑙 �‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)‖Σ𝑙𝑙−1(𝑘𝑘)
2 �    (4) 

(here 𝑤𝑤𝑘𝑘𝑇𝑇(𝑘𝑘) = �𝑤𝑤𝑗𝑗0(𝑘𝑘),𝑤𝑤𝑗𝑗1(𝑘𝑘), … ,𝑤𝑤𝑗𝑗ℎ(𝑘𝑘)�𝑇𝑇 , 𝜂𝜂𝑤𝑤(𝑘𝑘 + 1) − the learning rate parameter of the 
synaptic weights), kernel functions centers [15]: 

𝑐𝑐𝑙𝑙(𝑘𝑘 + 1) = 𝑐𝑐𝑙𝑙(𝑘𝑘)− 𝜂𝜂𝑐𝑐(𝑘𝑘 + 1) �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 + 1)𝜓𝜓��𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘),Σ𝑙𝑙−1(𝑘𝑘)�� × 

× 𝜓𝜓′ �‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)‖Σ𝑙𝑙−1(𝑘𝑘)
2 � Σ𝑙𝑙−1(𝑘𝑘)�𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)�,  (5) 

(here 𝜂𝜂𝑐𝑐(𝑘𝑘 + 1) − the learning rate parameter of the activation function centers) and matrix of the 
receptive hyperelipsoids orientation [16] 
 

Σ𝑙𝑙−1(𝑘𝑘 + 1) = Σ𝑙𝑙−1(𝑘𝑘) + 𝜂𝜂Σ(𝑘𝑘 + 1) × 
× �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 + 1)𝜓𝜓� �(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1), Σ𝑙𝑙−1(𝑘𝑘)�� × 

× 𝜓𝜓�‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1)‖Σ𝑙𝑙−1
2 � (𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1))(𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1))𝑇𝑇 (6) 

(here 𝜂𝜂Σ(𝑘𝑘 + 1) − the learning rate of the receptive hyperellipsoids tuning). 
The learning algorithms (4)-(6) are enough simple form the computational point of view, but they 

are not protected from the possible effect of the “exploding gradient” in the case when the derivatives 
of the function type (1), (2) acquire small values. 

3. The HBFN learning based on the quadratic activation function 

In the [13] as an activation functions of the radial-basis neural network (RBFN) using the 
quadratic functions was proposed 

𝜓𝜓𝑙𝑙�𝑥𝑥(𝑘𝑘)� = 1 − ‖𝑥𝑥(𝑘𝑘)−𝑐𝑐𝑙𝑙‖2

𝜎𝜎𝑙𝑙
2      (7) 

that in fact are kernel V. Epanechnikov’s function [17], where parameter 𝜎𝜎𝑙𝑙2 determines 
hyperspherical receptive field radius of this function. 

In this paper the modified V. Epanechnikov’s function with hyperellipsoidal receptive field with 
arbitrary orientation is proposed to use instead of (7): 

𝜓𝜓𝑙𝑙�𝑥𝑥(𝑘𝑘)� = 1 − ‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙‖Σ−1
2     (8) 

whose derivatives acquire zero value only at one point, where 𝑥𝑥(𝑘𝑘 + 1) = 𝑐𝑐𝑙𝑙 and automatically does 
not suffer from the “exploding gradient” effect. In this situation the gradient learning procedure (4)-
(6) takes very simple form: 

𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘 + 1) = 𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘) + 𝜂𝜂𝑤𝑤(𝑘𝑘 + 1) × 

× �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘)𝜓𝜓� �𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘),Σ𝑙𝑙−1(𝑘𝑘)�� ×  (9) 

× �1 − ‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)‖Σ𝑙𝑙−1(𝑘𝑘)
2 �, 

 
𝑐𝑐𝑙𝑙(𝑘𝑘 + 1) = 𝑐𝑐𝑙𝑙(𝑘𝑘)− 𝜂𝜂с(𝑘𝑘 + 1) × 

× �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 + 1)𝜓𝜓� �𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘), Σ𝑙𝑙−1(𝑘𝑘)�� ×   (10) 



× 𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘 + 1)Σ𝑙𝑙−1(𝑘𝑘)�𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)�, 
Σ𝑙𝑙−1(𝑘𝑘 + 1) = Σ𝑙𝑙−1(𝑘𝑘) − 𝜂𝜂с(𝑘𝑘 + 1) × 

× �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 + 1)𝜓𝜓� �𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1), Σ𝑙𝑙−1(𝑘𝑘)�� ×  (11) 

× 𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘 + 1)�𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1)�(𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1))𝑇𝑇 
that essentially simplifies its numerical implementation. 

4. The computational experiments results  

For numerical analysis of the approach under consideration, the convolutional neural network 
VGG-16 in which the fully connected layers of the multilayer perceptron were replaced by a hyper 
basic function neural network with a different number of R-neurons and, accordingly, tuned synaptic 
weights was used as a prototype. Architecture of the proposed convolutional hyper basis function 
network is shown in the Figure 3. 

For the program realization of the proposed convolutional hyper basis function network model 
programming environment "Python 3.8" and “Keras” library were used [18, 19]. 

For solving binary classification task data set “Dogs&Cats” from “Kaggle” was used. This data set 
consists of the 25000 colorful dogs and cats images. The output set was divided into tree subsets: the 
training data set – 17500 images, test data set – 3750 images and validation one – 3750 images.  

For the multiclass classification data set “CIFAR-10”, that consists of the 60000 colorful images 
32 × 32 from different classes: planes, cars, birds, cats, dogs and others with 6000 images in every 
class. At the same time training subset consists of the 45000 samples, test subset – 5000 samples and 
validation one 10000 samples. 

 
Figure 3: Convolutional hyper basis function network is shown at the Figure 1. 
 

In the learning process for solving binary classification task designed hyper basis function neural 
networks were tuned by five epochs. The results of this process are shown in the Figure 4. The results 
of the multiclass classification are shown in the Figure 5 and for network learning in this situation 50 
epoch were used. 

 



 
Figure 4: Results of the network learning for binary classification 

 

 
Figure 5: The network learning results for multiclass classification 
 



To improve classification accuracy the learning rate parameters were significantly reduced and 
assumed as a constant value at the level 𝜂𝜂(𝑘𝑘) = 10−6 for all tuned variables. The results of this 
learning process are demonstrated in the Figure 6 and Figure 7. Summarized numerical results of 
HBFN training are shown in the Table 1. 
 
Table 1 
Numerical results of the HBFN training 

 
Training stage 

Accuracy results 
Binary classification Multiclass classification 

First training stage 89.71 % 58.56 % 
Second training stage 92.99 % 66.65%  

 
The quality of the classification results significantly depends on the R-neurons number in the 

network. In the Table 2 the binary classification results are demonstrated, at the same time in the 
second column the synaptic weights tuning results are shown and in the third column – the tuning 
results of the synaptic weights and receptive fields are presented.  

The training results of convolutional neural network with hyper basis layer is shown in the 
Figure 8. Average time for learning model of the proposed convolutional hyper basis neural network 
was one hour and 9 minutes. 

 
Figure 6: The results of the second stage of training for binary classification network  

 



 
Figure 7: The results of the second stage of network training the multiclass classification  
 

 
Figure 8: The results of training convolutional neural network with hyper basis layer. 

 



Table 2 
The results of the binary classification 

Numbers of R-neurons Only synaptic weights tuning Tuning of the synaptic weights 
and receptive fields 

2048 93.94% 94.07% 
1024 92.83% 93.31% 
516 88.43% 92.88% 
256 87.07% 92.37% 
128 87.12% 92.35% 
64 84.96% 90.48% 
32 80.34% 92.55% 
16 72.72% 92.56% 

 
Table 3 shows the results of multiclass classification. 

 
Table 3 
The results of the multiclass classification 

Numbers of R-neurons Only synaptic weights tuning Tuning of the synaptic weights 
and receptive fields 

4096 67.27% 67.77% 
2048 67.11% 68.12% 
1024 66.52% 67.32% 
512 66.57% 67.35% 
256 67.02% 67.20% 
128 66.66% 66.94% 
64 65.92% 66.70% 
32 64.10% 66.62% 

 
Final comparison results of binary and multiclass classification are shown in the Table 4. 
 

Table 4 
Comparison results of binary and multiclass classification 

Comparison 
parameters 

Binary classification Multiclass classification 
Standard CNN CNN + HBFN Standard CNN CNN + HBFN 

Model accuracy 92.99% 92.35% 66.65% 67.02% 66.62% 
number of 
parameters 

24 449 24 449 68 362 68 362 8 549 

 
Here is interesting to note that if the less is number of R-neurons amount in the HRFN then more 

important is tuning of the receptive fields parameters, then more is speed – then more is velocity of 
process tuning. 

5. Conclusions 

The convolutional hyper basis function neural network was proposed. This CNN differs from 
another because instead of the fully connected perceptron layers that solve classification task, it 
contains in its architecture HBFN that is generalization of conventional RBFN but besides synaptic 
weights it can tune too parameters of the receptive fields that are in common case hyperellipsoids with 
arbitrary axes orientation in feature space. This approach permits automatically to solve the problem 
of activations kernel functions centers distribution, to reduce their amount i. e. to increase the learning 



speed that is very important essentially for deep neural network. The computational experiments 
confirm effectiveness of the approach under consideration. 
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