
Convolutional hyper basis function neural network and its
online learning in the image recognition task

Yevgeniy Bodyanskiya, Anastasiia Deinekob, Oleksandr Hontsab and Oleksandr Zeleniyc

a Kharkiv National University of Radio Electronics, Control Systems Research Laboratory, Nauky av., 14,

Kharkiv, 61166, Ukraine
b Kharkiv National University of Radio Electronics, Artificial Intelligence Department, Nauky av., 14, Kharkiv,

61166, Ukraine
c Kharkiv National University of Radio Electronics, Department of Media Systems and Technologies, Nauky

av., 14, Kharkiv, 61166, Ukraine

Abstract
In the article hyper basic function neural network (HBFN) in convolutional neural networks
instead of fully connected perceptron layers, which solve the problem of classification is
proposed. HBFNs are generalization of traditional radial-basic function networks, which like
multilayer perceptrons are also universal approximators. The peculiarity of hyper basic
function neural networks is that their receptive fields are hyperellipsoids with arbitrary
orientation of the axes in the feature space. It is assumed that, along with the synaptic
weights, receptive field parameters are adjusted: their centers and matrices of the axis
orientation. This approach allows to reduce the total number of synaptic weights, and
accordingly the number of R-neurons (activation functions) of the network. Using
multidimensional V. Epanechnikov’s functions with a hyperellipsoidal receptive field that
can be adjusted during the learning process as activation functions permit to accelerate the
learning process of investigated network. It should be noted that applying kernel functions in
convolutional neural networks permits to avoid the undesirable effect of "exploiding
gradient", which often occurs in fully connected layers. The computational experiment results
on standard data sets confirm the effectiveness of the proposed approach and, first of all, the
high learning speed.

Keywords 1
Convolutional neural network, deep learning, image recognition, radial-basis function
network, hyper-basis function neural network, kernel activation function, multiclass
classification

1. Introduction

For today the deep neural networks (DNN) are widely used for solving large class of tasks that are
connected with Data Mining and especially Big Data Mining, first of all, pattern recognition-
classification, forecasting, identification-emulation, natural language processing, etc. [1-4]. Here a
special place the convolutional neural networks (CNN) have been occupied, that are designed to solve
various problems connected with images of different natures processing. Usually, every CNN has
multilayer feedforward architecture that can be divided onto two separate independent parts.

The first part is – autoencoder that is used for input signal-image compression, that is commonly
given in the matrix form. As a result of the input 2D-signal processing by the convolutional and

IntelITSIS’2021: 2nd International Workshop on Intelligent Information Technologies and Systems of Information Security, March 24–26,
2021, Khmelnytskyi, Ukraine
EMAIL: yevgeniy.bodyanskiy@nure.ua (Yevgeniy Bodyanskiy); anastasiya.deineko@gmail.com (Anastasiia Deineko);
aphontsa@gmail.com (Oleksandr Hontsa); oleksandr.zeleniy@nure.ua (Oleksandr Zeleniy)
ORCID: 0000-0001-5418-2143
View this author’s ORCID profile (Yevgeniy Bodyanskiy)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

pooling layers in the output of the last pooling layer at this part of the system n-dimensional vector
signal is formed. In fact, if the input signal-image has form of the (𝑛𝑛1 × 𝑛𝑛2)-matrix, then usually 𝑛𝑛 ≪
𝑛𝑛1𝑛𝑛2, i. e. this part of the CNN realizes compression task of the input matrix signal. The second part
of the CNN in general case solves classification task usually, it is standard multilayer perceptron
(MLP) whose nodes are F. Rosenblatt’s elementary perceptrons, with piecewise activation functions.
Here it is necessary to note, that in practical implementation of the shallow neural networks (SNN)
so-called
sigmoidal squashing functions [5] as activation function are used, moreover, to provide universal
approximation properties usually only three fully connected layers are enough [6, 7].

At the same time, learning of the standard MLP with squashing activation function is met with
extremely unpleasant effect of the vanishing gradient, that significantly complicates the process of
synaptic weights adjustment based on the error back propagation method. That is why, in the DNN
instead of classic sigmoids or hyperbolic tangents linear piecewise functions are used, that provide
desired approximation quality [8], but at the same time require of the significant increasing of the
network’s layers, and accordingly increases the number of tuned synaptic weights. Moreover, the
transfer learning does not always been a way to overcome this problem.

The simplest way to overcome this problem is to implement instead of the standard MLP in the
CNN, so-called, radial-basis function neural networks (RBFN), that include only one layer of the
tuned synaptic weights and whose output signals are linearly depended on these weights, that allows
to use for learning fairly simple optimization algorithms [9-12]. Such approach was implemented in
the [13], there from the commonly known DNN were deleted perceptron’s layers and instead of them
to the outputs of the last pooling layer standard RBFN with n input and m inputs was connected where
m determines number of the classes into which should be divided investigated data set.

However, the RBFN implementation instead of the MLP also does not solves all arising problems
because, firstly, conventional radial-basis function neural networks suffer from the so-called “curse of
dimensionality”, when amount of the activation function in the R-neurons are exponentially increased
dependently from the input space dimension, and, secondly, arises the problem of hyperspherical
receptive fields centers distribution of the kernel activation functions usually as multidimensional
Gaussians or Cauchyans type. The problem of the centers distribution usually is solved by using of
one or another clustering algorithms (in [13], for example, standard K-means algorithm was used) that
is connected with essential computational problems.

An alternative to traditional RBFN, in our opinion, can be so-called hyper basis neural networks
(HBFN) [14], which in contrast to the symmetric kernel functions of RBFN have hyperellipsoidal
receptive fields with arbitrary orientation of the axes in network input space. And if to realize online
tuning of all hyperellipsoids parameters including its centers, using HBFN allows to refuse from
standard clustering procedures for finding of these centers.

2. The hyper-basis function neural network and its online learning

The prototype of hyper basis function network (HBFN) is traditional radial-basis function network
[15] that consist of only one hidden layer. This hidden layer is formed by so-called R-neurons which
realize nonlinear transformation of the input signals with so-called radial-basis, bell-shaped, potential
function which are based on the hypersphere of a fixed radius. In the Figure 1 architecture of this
neural network is shown. Here in this network is assumed that coordinates of hyperspherical receptive
fields centers are fixed and do not change during learning process. HBFN is generalization of the
standard RBFN in which hyperellipsoids with arbitrary axis orientations are used instead of spherical
receptive fields. Thus, the centers coordinate, and orientation of the receptive fields parameters are set
apriori and do not specified in the learning process. It is clear that significantly expand the RBFN
could by R-neurons learning in one- or another-way i. e. perform learning in the second hidden layer.

To the inputs of the hyper basis function neural network from the last pooling layer of the
convolutional network the vector signals sequence 𝑥𝑥(𝑘𝑘) = (𝑥𝑥1(𝑘𝑘),𝑥𝑥2(𝑘𝑘), … , 𝑥𝑥𝑖𝑖(𝑘𝑘), … , 𝑥𝑥𝑛𝑛(𝑘𝑘))𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛
is fed to processing, where 𝑘𝑘 = 1,2, … ,𝑁𝑁 − is an observations number or discrete time of the training
set 𝑋𝑋 = {𝑥𝑥(1),𝑥𝑥(2), … , 𝑥𝑥(𝑘𝑘), … , 𝑥𝑥(𝑁𝑁)} ⊂ 𝑅𝑅𝑛𝑛. This signal is passed on the R-neurons inputs, formed
by kernel activation functions

𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘)) = 𝜓𝜓𝑙𝑙 �‖𝑥𝑥(𝑘𝑘) − 𝑐𝑐𝑙𝑙‖Σ𝑙𝑙−1
2 �, 𝑙𝑙 = 1,2, … ,ℎ

where 𝑐𝑐𝑙𝑙 − the receptive field center of the function 𝜓𝜓𝑙𝑙(∙), Σ𝑙𝑙−1 − positive (𝑛𝑛 × 𝑛𝑛) −matrix of the
receptive field orientation, 𝜓𝜓0(𝑥𝑥(𝑘𝑘)) = 1. Usually, it can be multidimensional Gaussian

𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘)) = 𝑒𝑒𝑥𝑥𝑒𝑒 �−‖𝑥𝑥(𝑘𝑘) − 𝑐𝑐𝑙𝑙‖Σ𝑙𝑙−1
2 �, (1)

Cauchyan

𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘)) = 𝑒𝑒𝑥𝑥𝑒𝑒 �1 + ‖𝑥𝑥(𝑘𝑘)− 𝑐𝑐𝑙𝑙‖Σ𝑙𝑙−1
2 �

−1
, (2)

and other bell-shaped constructions.

Figure 1: Standard radial-basis function network

Visualization of the Gaussian with different width parameters is shown in the Figure 2.

Figure 2: Standard Gaussian with different width parameters

The outputs of the all R-neurons are fed to the inputs of the m adaptive linear associators (ALA),
that in fact are essentially ordinary adders with adjusteable synaptic weights at the inputs. Thus, at the
outputs of the adders the signals are appeared in the form

𝑦𝑦�𝑗𝑗(𝑘𝑘) = 𝑤𝑤𝑗𝑗0 + ∑ 𝑤𝑤𝑗𝑗𝑙𝑙𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘))ℎ
𝑙𝑙=1 = ∑ 𝑤𝑤𝑗𝑗𝑙𝑙𝜓𝜓𝑙𝑙(𝑥𝑥(𝑘𝑘)) = 𝑤𝑤𝑗𝑗𝑇𝑇𝜓𝜓�(𝑥𝑥(𝑘𝑘))ℎ

𝑙𝑙=0 (3)

where 𝜓𝜓�(𝑥𝑥(𝑘𝑘)) = (1,𝜓𝜓𝑇𝑇(𝑥𝑥(𝑘𝑘)))𝑇𝑇, 𝜓𝜓�𝑥𝑥(𝑘𝑘)� = �𝜓𝜓1(𝑥𝑥(𝑘𝑘)), … ,𝜓𝜓𝑙𝑙�𝑥𝑥(𝑘𝑘)�, … ,𝜓𝜓ℎ(𝑥𝑥(𝑘𝑘))�
𝑇𝑇

, 𝑗𝑗 =
1,2, … ,𝑚𝑚, ℎ > 𝑛𝑛 − determines the amount of the hyper basis functions, that are included in the
network.

In the case when the quadratic error is used as a learning criterion, the signals (3) are the outputs of
the all network, if the cross-entropy criterion and reference signal one hot coding is used, at the
outputs of the system the every observation membership level for the all possible classes 𝑗𝑗 =
1,2, … ,𝑚𝑚 are additionally appear.

Next it is easy to write the gradient procedure of the RBFN’s synaptic weights tuning:
𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘 + 1) = 𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘) + 𝜂𝜂𝑤𝑤(𝑘𝑘 + 1) �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘)𝜓𝜓��𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘),Σ𝑙𝑙−1(𝑘𝑘)�� ×

× 𝜓𝜓𝑙𝑙 �‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)‖Σ𝑙𝑙−1(𝑘𝑘)
2 � (4)

(here 𝑤𝑤𝑘𝑘𝑇𝑇(𝑘𝑘) = �𝑤𝑤𝑗𝑗0(𝑘𝑘),𝑤𝑤𝑗𝑗1(𝑘𝑘), … ,𝑤𝑤𝑗𝑗ℎ(𝑘𝑘)�𝑇𝑇 , 𝜂𝜂𝑤𝑤(𝑘𝑘 + 1) − the learning rate parameter of the
synaptic weights), kernel functions centers [15]:

𝑐𝑐𝑙𝑙(𝑘𝑘 + 1) = 𝑐𝑐𝑙𝑙(𝑘𝑘)− 𝜂𝜂𝑐𝑐(𝑘𝑘 + 1) �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 + 1)𝜓𝜓��𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘),Σ𝑙𝑙−1(𝑘𝑘)�� ×

× 𝜓𝜓′ �‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)‖Σ𝑙𝑙−1(𝑘𝑘)
2 � Σ𝑙𝑙−1(𝑘𝑘)�𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)�, (5)

(here 𝜂𝜂𝑐𝑐(𝑘𝑘 + 1) − the learning rate parameter of the activation function centers) and matrix of the
receptive hyperelipsoids orientation [16]

Σ𝑙𝑙−1(𝑘𝑘 + 1) = Σ𝑙𝑙−1(𝑘𝑘) + 𝜂𝜂Σ(𝑘𝑘 + 1) ×
× �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 + 1)𝜓𝜓� �(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1), Σ𝑙𝑙−1(𝑘𝑘)�� ×

× 𝜓𝜓�‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1)‖Σ𝑙𝑙−1
2 � (𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1))(𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1))𝑇𝑇 (6)

(here 𝜂𝜂Σ(𝑘𝑘 + 1) − the learning rate of the receptive hyperellipsoids tuning).
The learning algorithms (4)-(6) are enough simple form the computational point of view, but they

are not protected from the possible effect of the “exploding gradient” in the case when the derivatives
of the function type (1), (2) acquire small values.

3. The HBFN learning based on the quadratic activation function

In the [13] as an activation functions of the radial-basis neural network (RBFN) using the
quadratic functions was proposed

𝜓𝜓𝑙𝑙�𝑥𝑥(𝑘𝑘)� = 1 − ‖𝑥𝑥(𝑘𝑘)−𝑐𝑐𝑙𝑙‖2

𝜎𝜎𝑙𝑙
2 (7)

that in fact are kernel V. Epanechnikov’s function [17], where parameter 𝜎𝜎𝑙𝑙2 determines
hyperspherical receptive field radius of this function.

In this paper the modified V. Epanechnikov’s function with hyperellipsoidal receptive field with
arbitrary orientation is proposed to use instead of (7):

𝜓𝜓𝑙𝑙�𝑥𝑥(𝑘𝑘)� = 1 − ‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙‖Σ−1
2 (8)

whose derivatives acquire zero value only at one point, where 𝑥𝑥(𝑘𝑘 + 1) = 𝑐𝑐𝑙𝑙 and automatically does
not suffer from the “exploding gradient” effect. In this situation the gradient learning procedure (4)-
(6) takes very simple form:

𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘 + 1) = 𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘) + 𝜂𝜂𝑤𝑤(𝑘𝑘 + 1) ×

× �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘)𝜓𝜓� �𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘),Σ𝑙𝑙−1(𝑘𝑘)�� × (9)

× �1 − ‖𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)‖Σ𝑙𝑙−1(𝑘𝑘)
2 �,

𝑐𝑐𝑙𝑙(𝑘𝑘 + 1) = 𝑐𝑐𝑙𝑙(𝑘𝑘)− 𝜂𝜂с(𝑘𝑘 + 1) ×

× �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 + 1)𝜓𝜓� �𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘), Σ𝑙𝑙−1(𝑘𝑘)�� × (10)

× 𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘 + 1)Σ𝑙𝑙−1(𝑘𝑘)�𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘)�,
Σ𝑙𝑙−1(𝑘𝑘 + 1) = Σ𝑙𝑙−1(𝑘𝑘) − 𝜂𝜂с(𝑘𝑘 + 1) ×

× �𝑦𝑦𝑗𝑗(𝑘𝑘 + 1) −𝑤𝑤𝑗𝑗𝑇𝑇(𝑘𝑘 + 1)𝜓𝜓� �𝑥𝑥(𝑘𝑘 + 1), 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1), Σ𝑙𝑙−1(𝑘𝑘)�� × (11)

× 𝑤𝑤𝑗𝑗𝑙𝑙(𝑘𝑘 + 1)�𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1)�(𝑥𝑥(𝑘𝑘 + 1) − 𝑐𝑐𝑙𝑙(𝑘𝑘 + 1))𝑇𝑇
that essentially simplifies its numerical implementation.

4. The computational experiments results

For numerical analysis of the approach under consideration, the convolutional neural network
VGG-16 in which the fully connected layers of the multilayer perceptron were replaced by a hyper
basic function neural network with a different number of R-neurons and, accordingly, tuned synaptic
weights was used as a prototype. Architecture of the proposed convolutional hyper basis function
network is shown in the Figure 3.

For the program realization of the proposed convolutional hyper basis function network model
programming environment "Python 3.8" and “Keras” library were used [18, 19].

For solving binary classification task data set “Dogs&Cats” from “Kaggle” was used. This data set
consists of the 25000 colorful dogs and cats images. The output set was divided into tree subsets: the
training data set – 17500 images, test data set – 3750 images and validation one – 3750 images.

For the multiclass classification data set “CIFAR-10”, that consists of the 60000 colorful images
32 × 32 from different classes: planes, cars, birds, cats, dogs and others with 6000 images in every
class. At the same time training subset consists of the 45000 samples, test subset – 5000 samples and
validation one 10000 samples.

Figure 3: Convolutional hyper basis function network is shown at the Figure 1.

In the learning process for solving binary classification task designed hyper basis function neural
networks were tuned by five epochs. The results of this process are shown in the Figure 4. The results
of the multiclass classification are shown in the Figure 5 and for network learning in this situation 50
epoch were used.

Figure 4: Results of the network learning for binary classification

Figure 5: The network learning results for multiclass classification

To improve classification accuracy the learning rate parameters were significantly reduced and
assumed as a constant value at the level 𝜂𝜂(𝑘𝑘) = 10−6 for all tuned variables. The results of this
learning process are demonstrated in the Figure 6 and Figure 7. Summarized numerical results of
HBFN training are shown in the Table 1.

Table 1
Numerical results of the HBFN training

Training stage

Accuracy results
Binary classification Multiclass classification

First training stage 89.71 % 58.56 %
Second training stage 92.99 % 66.65%

The quality of the classification results significantly depends on the R-neurons number in the

network. In the Table 2 the binary classification results are demonstrated, at the same time in the
second column the synaptic weights tuning results are shown and in the third column – the tuning
results of the synaptic weights and receptive fields are presented.

The training results of convolutional neural network with hyper basis layer is shown in the
Figure 8. Average time for learning model of the proposed convolutional hyper basis neural network
was one hour and 9 minutes.

Figure 6: The results of the second stage of training for binary classification network

Figure 7: The results of the second stage of network training the multiclass classification

Figure 8: The results of training convolutional neural network with hyper basis layer.

Table 2
The results of the binary classification

Numbers of R-neurons Only synaptic weights tuning Tuning of the synaptic weights
and receptive fields

2048 93.94% 94.07%
1024 92.83% 93.31%
516 88.43% 92.88%
256 87.07% 92.37%
128 87.12% 92.35%
64 84.96% 90.48%
32 80.34% 92.55%
16 72.72% 92.56%

Table 3 shows the results of multiclass classification.

Table 3
The results of the multiclass classification

Numbers of R-neurons Only synaptic weights tuning Tuning of the synaptic weights
and receptive fields

4096 67.27% 67.77%
2048 67.11% 68.12%
1024 66.52% 67.32%
512 66.57% 67.35%
256 67.02% 67.20%
128 66.66% 66.94%
64 65.92% 66.70%
32 64.10% 66.62%

Final comparison results of binary and multiclass classification are shown in the Table 4.

Table 4
Comparison results of binary and multiclass classification

Comparison
parameters

Binary classification Multiclass classification
Standard CNN CNN + HBFN Standard CNN CNN + HBFN

Model accuracy 92.99% 92.35% 66.65% 67.02% 66.62%
number of
parameters

24 449 24 449 68 362 68 362 8 549

Here is interesting to note that if the less is number of R-neurons amount in the HRFN then more

important is tuning of the receptive fields parameters, then more is speed – then more is velocity of
process tuning.

5. Conclusions

The convolutional hyper basis function neural network was proposed. This CNN differs from
another because instead of the fully connected perceptron layers that solve classification task, it
contains in its architecture HBFN that is generalization of conventional RBFN but besides synaptic
weights it can tune too parameters of the receptive fields that are in common case hyperellipsoids with
arbitrary axes orientation in feature space. This approach permits automatically to solve the problem
of activations kernel functions centers distribution, to reduce their amount i. e. to increase the learning

speed that is very important essentially for deep neural network. The computational experiments
confirm effectiveness of the approach under consideration.

6. References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521 (2015) 436–444, doi:10.1038.
[2] J. Schmidhuber, ”Deep Learning in Neural Networks: An Overview”, Neural Networks, 61,

(2015), 85-117, doi:10.1016/j.neunet.2014.09.003.
[3] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, The MIT Press, 2016,

doi:10.1007/s10710-017-9314-z.
[4] D. Graupe, Deep Learning Neural Networks: Design and Case Studies, New Jersey: World

Scientific, 2016.
[5] G. Cybenko, ”Approximation by superposition of a sigmoidal function”, Math. Control Signals

Systems 2, (1989), 303-314, doi:10.1007/BF02551274.
[6] K. Hornik, M. Stinchkombe, H. White, “Multilayer feedforward networks are universal

approximators”, Neural Networks, 2 (1989), 359-366.
[7] K. Hornik, ”Approximation capabilities of multilayer feedforward networks”, Neural Networks,

4 2 (1994), 251-257, doi:10.1016/0893-6080(91)90009-T.
[8] Ch. Huang, “ReLU Networks Are Universal Approximators via Piecewise Linear or Constant

Functions”, Neural Computation, vol. 30, (2020), 1-30, doi:10.1162/neco_a_01316.
[9] J. Moody, C. J. Darken, “Fast learning in networks of locally tuned processing units”, Neural

Computation 1 (1989), 281-294, doi:10.1162/neco.1989.1.2.281.
[10] T. Poggio, F. Girosi, Network for approximation and learning, Proc. IEEE, 79 (9), 1990, pp.

1481-1497, doi:10.1002/ecjc.4430760808.
[11] J. Park, I. W. Sandberg, “Universal approximation using radial-basis function network,” Neural

Computation, 3 (1991), 246-257, doi:10.1007/978-3-7908-1826-0_1.
[12] J. A. Leonard, M. A. Kramer, L. H. Ungar, Using radial-basis function to approximate a function

and its error bouns, IEEE Trans. on Neural Networks, 3, 1992, pp. 594-603, doi:
10.1109/72.143377.

[13] M. Amirian, F. Schwenker, Radial basis function networks to learn similarity distance metric and
improve interpretability, IEEE Access, 8, 2020, pp. 123087-123097, doi:
10.1109/ACCESS.2020.3007337.

[14] Y. Zhou, T. Mu, Zh-H. Pang, Ch. Zheng, “A survey on hyper basis function neural network”,
System Science & Control Engineering, 7 1 (2019), 495-507,
doi:10.1080/21642583.2019.1699474.

[15] Ye. Bodyanskiy, O. Tichenko, A. Deineko, An evolving radial basis neural network with
adaptive learning of its parameters and architecture, Automatic Control and Computer Science,
49 5 (2015), 255-260.

[16] R. Tkachenko, P. Tkachenko, I. Izonin, V. Vitynskyi, N. Kryvinska, Y. Tsymbal, Comittee of the
combined RBF-SGTM neural-like structures for prediction tasks, Lecture Notes in Computer
Science, 16th International conference on mobile web and intelligent information systems,
MobiWIS 2019, Istanbul, Turkey, August 26–28, vol. 11673, 2019, pp. 267–277

[17] V. A. Epanechnikov, Nonparametric estimation of multivariate probability density, Probability
Theory and its Application, 14 2 (1968), pp. 156-161.

[18] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture
for computer vision, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016.
pp. 2818-2826.

[19] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition", Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2016. 836 p, doi:10.1364/OE.395866.

	1. Introduction
	2. The hyper-basis function neural network and its online learning
	3. The HBFN learning based on the quadratic activation function
	4. The computational experiments results
	5. Conclusions
	6. References

