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Abstract  
This paper presents three methods (factorization, exhaustive search and replacement) of four 
equal bit size moduli sets formation in a residue number system modified perfect form. This 
allows using the bit grid registers more efficiently. Such problem is relevant for asymmetric 
cryptography and noise-protected coding algorithms. The theoretical bases of residue number 
system, its perfect and modified perfect forms are considered, their advantages and 
disadvantages are defined. It is shown that the most commonly used moduli in the form of 
power of two, Mersenne numbers and Fermat numbers require searching for the inverse 
element and multiplying by it, which makes it difficult to recover a decimal number from its 
residues using the Chinese remainder theorem. A modified perfect form of the residue 
number system simplifies this procedure. The graphical dependency of the fourth modulo on 
two prior ones with one known modulo is presented. Different bit sizes of moduli sets are 
considered. It is shown that in sets of four modulo with the same bit size in a modified 
perfect form of residue number system, the first and fourth moduli are negative, second and 
third are positive. 
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1. Introduction 

Nowadays the rapid progress in the information technology area, in particular in mission-critical 
applications, leads to the new demands for improved reliability, performance and productivity of 
various computing systems [1]. Modern requirements for reliability of information transmission using 
technical means lead to a decrease in productivity or increase in time and computational complexity 
and, accordingly, to increased energy consumption [2]. On the other hand, economic factors and 
development level of the technical means also impose appropriate restrictions. Therefore, it is advised 
to use special code systems that do not have such restrictions to solve these problems [3]. However, 
existing approaches and methods for data  transmission and processing, that operate in positional 
numeral system (PNS), can not achieve increased requirements data processing reliability without 
reducing the performance of computing system with limited hardware and economic resources [4, 5]. 
It's caused by such disadvantages of PNS as high digit capacity, strictly consistent structure and the 
presence of inter-bit transfers, that complicate the architecture of computing systems and reduce their 
speed [6]. 
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The most relevant task is the processing speed improvement for large amounts of numerical data in 
asymmetric cryptography [7] and noise-protected coding problems during data transmission [8-10]. 
One of the possible ways of solving it is to use non-positional number systems, in particular, the 
residue number system (RNS). Data processing and transmission in RNS has a number of advantages 
due to independence, lack of inter-bit transfers, low bit size and equality of residues, as well as 
possibility of parallel arithmetic operations execution. However, currently RNS is used only for 
solving some specialized problems [11-16], due to required conversion of binary code, which is used 
by universal computers and data processing devices, into RNS code, which allows to parallelize 
computational processes [17, 18]. In addition, RNS has a number of disadvantages that have slowed 
down its development, in particular, difficulties in performing division and numbers comparison 
operations [19]. But since the main operations in asymmetric cryptography are multiplication and 
exponentiation, the use of RNS becomes a very effective tool for processing multi-bit numbers [20] in 
asymmetric encryption of information flows. Furthermore there are effective correction codes 
developed for RNS, that are able to detect and correct error packages [21]. 

2. Theoretical basics of RNS and its usage in asymmetric cryptosystems  

Let us consider positive pairwise coprime integers zррр ,...,, 21 , which are called bases or system 
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selected moduli system. RNS is a non-positional number system in which the nonnegative integer N 
can be presented as a set of nonnegative residues from division of this number on the chosen bases of 
the system, such as  

bi=Nmod pi.      (1) 
The RNS usage in computational algorithms is possible due to the presence of a certain 

isomorphism between mathematical operations on integers and the corresponding operations on the 
system of nonnegative integers over individual moduli. Moreover, the addition, multiplication and 
exponentiation of any nonnegative integers are completely identical to the corresponding operations 
performed on the residues system [18]. 

The reverse conversion into a positional number system is usually based on the Chinese remainder 
theorem [22]: 
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element should be calculated: 

iii pMm mod1−= .      (3) 
Obviously, one of the ways to increase the speed of computers that use RNS is the choice of 

specialized moduli sets, on which significantly depends the execution time of both modular and non-
modular operations. Therefore, for each specific application with the specified arithmetic operations, 
hardware components and constraints, it is necessary to select the appropriate set of moduli. For 
example, digital signal processing requires fewer modules than cryptography. 

In the vast majority of works moduli, such as 2k, 2k±1, are considered, which allows using of bit 
grid registers effectively [23-25]. The worst modulo, which has the greatest execution complexity (it 
can be the largest one or the complex type modulo), defines the general parameter of the direct 
converter or the arithmetic channel. 

Additionally, RNS offers many different moduli sets of different types and different quantities for 
certain applications, which significantly affect all parts of the hardware implementation, including 
direct converters, modular arithmetic channels, inverse converters. In particular, [26-27] presents safe 
and effective approaches for RNS usage on elliptic curves in cryptography. They are especially 
effective as a response to attacks on the side channel of the source and for protection when the 



malfunctions are injected in the computer system. In [28, 29], efficient algorithms for the RSA-
cryptographic system implementation based on RNS were developed, and the experimental studies 
showed that they have greater speed and better resistance to brute force attacks compared to the 
classical ones. In paper [30] the methods for fast execution of arithmetic operations such as addition, 
multiplication and exponentiation in the modular number system with the implementation of 
cryptographic transformations were developed, which show a significant reduction in the execution 
time of the crypto algorithms basic operations. 

But all the considered approaches require calculation of the inverse element (3) and multiplying it 
by (2), which significantly reduces the speed while recovering decimal number from the RNS [31-33]. 
This is, along with the difficulties in dividing and comparing numbers, the main drawback that has 
slowed down the development of RNS. One of the options to simplify this procedure is to use 
different forms of RNS. In particular, in [34] methods for perfect form (PF) of RNS formation, where 
modules system рі is selected so that the values of all coefficients mi=1, are developed and 
investigated. This approach eliminates the complicated procedure of finding a multiplicative inverse 
element by modulus and multiplying by it while using a Chinese remainder theorem. However, the PF 
of RNS has a limited application, because the bits of the corresponding moduli, and therefore the 
residues, significantly differ, which leads to irrational usage of the bit grid registers. In addition, the 
first moduli must be equal to 2 and 3, which limits its usage while building a modules system with the 
same bit size. 

In [35] modified perfect form (MPF) of RNS was developed, which satisfies the condition: 
1mod =ii pM , рі-1  or ii pM mod =±1.    (4) 

In this case coefficients mi=1 and accordingly the sum in (2) change the sign. In addition to 

eliminating mentioned drawback of the PF RNS, it significantly reduces the sum ∑
=

z

i
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1
 in (2), 

which in many cases will not exceed the value of the calculation range. This will simplify the finding 
of residue by modulo Р. 

However, currently there are no methods of constructing moduli systems that meet the conditions 
of MPF RNS and have the same bit size, which will allow using the bit grid registers for efficient 
asymmetric cryptography problems solving problems and noise-tolerant coding. This work is devoted 
to the elimination of this shortcoming. 

3. Methods for construction MPF RNS moduli system of the same bit size 

3.1. Factorization method 

To construct a system of moduli with the same bit size for MPF RNS using the factorization 
method, we write expression (4) as a system: 
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Mathematical calculations similar to the ones performed in [33] lead to the following expression: 
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where γ =0, 1, 2, 3, ... . 
To simplify the calculations, the selected coefficient unlike the PF RNS, can be equal to 0, which 

for a given number of moduli corresponds to the largest value Р. So the last equality can be described 
as: 

zzzz pppppppppp 13211321 ...
111...111

−−
±=+++++ .  (7) 



Since the use of rational fractions necessarily presents rounding of the results with a certain 
accuracy, for the convenience of software implementation of the developed method, expression (7) 
should be reduced to a common denominator: 
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Suppose that last two moduli pz-1 and pz are unknown. Therefore (8) can be defined as: 
( ) ( ) .1............... 12213212312321 ±=+++++ −−−−−− zzzzzzzz pppppppppppppppp   (9) 

Let’s consider:  
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After substituting (10) into (9) and performing some mathematical transformations we get a 
condition that must be satisfied to determine a MPF RNS moduli set of any capacity with two 
unknown moduli: 

( ) ( ) abpppppppppppp zzzz =++++± −−−−
2

221321231232 ............ . (11) 
Therefore, the left part (10) should be factorized, and the parameters а and b are determined based 

on it. Additionally, as a result of (10), the moduli рz and рz-1 should be integers, so 
( ) ( ) 0............mod..., 321231232221 =+++− −−−− zzzz ppppppppppppba . (12) 

Expressions (11) and (12) define the conditions to find any number of MPF RNS moduli, two of 
which are unknown. 

3.2. The method of exhaustive search 

For exhaustive search application it is advisable to choose formula (8). For four moduli we will 
have following expression: 

1432431421321 ±=+++ pppppppppppp .    (13) 
Figure 1 shows the graphical dependence of the modulo р4 on the values of the moduli р2 and р3. 

As we can see the absolute value р4 increases with increasing of р2 and р3 at р1=-131. Integer values 
of parameters р2, р3 and р4 create a moduli system that satisfies the conditions of MPF RNS. 

 
Figure 1: Graphical dependence of the modulo р4 on values of the moduli р2 and р3 

3.3 Replacement method 

For four-moduli MPF RNS after replacement of p2, p3, p4=a, b, c-p1, and corresponding 
mathematical transformations, formula (13) is converted to the following expression: 

p4 
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Reverse replacement allows returning to the original parameters: 
( )( )( ) ( ) 11432

2
1141312 ±=+++−+++ ppppppppppp .  (15) 

Dividing the left and right parts by 2
1p , we get the conditions that must be satisfied to create MPF 

RNS: 
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The first expression (16) indicates that ( )( )( ) 12
1141312 ±⋅=+++ pkpppppp , where k=1, 2, … .  

It means that 12
1 ±⋅ pk  must be decomposed into at least two factors (then the third will be 1). The 

calculations show that in the vast majority of cases, following equality must be used to satisfy 
conditions (16): 

( )( )( ) 12
1141312 +−=+++ ppppppp .    (17) 

4. Results and discussion 

4.1. Factorization method 

For example, let`s consider MPF RNS, which consists of four moduli. In this case conditions (10) - 
(12) will be:  
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Suppose that the moduli bit size is 4 bits and р1=8, р2=-9. Then from (18) we get:  

( )72,4,3 +−= bap  and  
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All possible options for systems with four moduli for MPF RNS with р1=8, р2=-9 and calculation 
range are presented in table 1 (ab=5185) and table 2 (ab=5183). 
Table 1 
Possible options for systems with four moduli for MPF RNS with р1=8, р2=-9, ab=5185 and calculation 
range 
№ a b p3 p4 P 
1 1 5185 -73  -5257 27630792 
2 -1 5185 -71  5113 26137656 
3 5 1037 -77  -1109 6148296 
4 -5 -1037 -67 965 4655160 
5 17 305 -89 -377 2415816 
6 -17 -305 -55 233 922680 
7 61 85 -133  -157 1503432 
8 -61 -85 -11 13 10296 
Table 2 
Possible options for systems with four moduli for MPF RNS with р1=8, р2=-9, ab=5183 and calculation 
range 
№ a b p3 p4 P 
1 1 5183 -73 -5255 27620280 
2 -1 -5183 -71 5111 26127432 
3 71 73 -143 -145 1492920 
4 -71 -73 -1 1 72 



It is important to note that this table requires clarification of the moduli signs according to 
expression (4). Therefore, a system of four 4-bit moduli with the same bit size, which satisfies the 
MPF RNS conditions, will have following values: -8, 9, 11, -13. 

4.2. The method of exhaustive search 

Table 3 presents possible options for sets of four 8-bit moduli for building MPF RNS. 
 

Table 3 
Possible options for sets of four 8-bit moduli for building MPF RNS 

№ р1 р2 р3 р4 
1 -131 134 151 -155 
2 -134 141 143 -151 
3 -151 178 203 -255 
4 -169 177 179 -188 
5 -197 199 241 -244 
6 -208 217 219 -229 

 

Obviously, this method is not suitable for finding a large number of high-bit size moduli, because 
it is time consuming. 

4.3 Replacement method 

Table 4 presents the procedure for finding moduli with the same bit size (5-7 bits) to form the 
MPF RNS. 

 

Table 4 
 Procedure for finding moduli with the same bit size (5-7 bits) to form the MPF RNS. 
n, bit р1 12

1 +− p  Factorization p2+p1 p3+p1 p4+p1 p2 p3 p4 
5 -19 -360 -23⋅32⋅5 2 4 -45 21 23 -26 
6 -34 -1155 -3⋅5⋅7⋅11 3 5 -77 37 39 -43 
7 
7 

-76 -5775 -3⋅52⋅7⋅11 5 7 -165 81 83 -89 
-103 -10608 -24⋅3⋅13⋅17 6 8 -221 109 111 -118 

 
Based on results in tables 1-3 while creating the four-moduli MPF RNS, which are convenient for 

application in asymmetric cryptosystems and noise-tolerant coding problems, for all moduli of the 
same bit size the following relations are fulfilled: р1, р4 <0, р2, р3 >0. 

5. Conclusions 

In this research the methods for the four-moduli sets of the same bit size creation in a modified 
perfect form of residue number system are developed. This allows using bit grid registers more 
efficiently. This problem is relevant for usage in asymmetric cryptography and noise-protected coding 
algorithms. The theoretical bases of residue number system, its perfect and modified perfect forms are 
considered, their advantages and disadvantages are defined. It is shown that the most commonly used 
moduli are the power of two, Mersenne numbers and Fermat numbers require the finding the inverse 
element and multiplying by it, which makes it difficult to recover a decimal number from its residuals 
using the Chinese remainder theorem. A modified perfect form of residue number system simplifies 
this procedure. Three methods of moduli system formation have been developed: factorization, 
exhaustive search and replacement. The graphical dependence of the fourth modulo on two previous 
ones with one known modulo is presented. Different bit sizes of moduli sets are considered. It is 



shown that in four-moduli sets of the same bit size in a modified perfect form of residue number 
system, the first and fourth moduli are negative, the second and third - positive. 
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