
Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0

International (CC BY 4.0).

Static-dynamic algorithm for managing asynchronous

computations in distributed environments

S A Gorsky1 and A G Feoktistov1

1Matrosov Institute for System Dynamics and Control Theory of SB RAS,

Lermontov St. 134, Irkutsk, Russia, 664033

gorsky@icc.ru

Abstract. The paper addresses a relevant problem of computation scheduling in scientific

applications (distributed applied software packages) executed in distributed environments.

Forming an optimal schedule of jobs for executing of applied software (modules) is an NP-hard

problem. Therefore, in practice, heuristic methods of scheduling are often used. In this regard,

we propose a new static-dynamic algorithm for managing computations in heterogeneous

distributed environments. The results of operating the proposed algorithm are simulated in

comparison with other scenarios for computing management. They show that applying the

algorithm makes it possible to achieve a rational balance between the scheduling time and the

computations makespan.

1. Introduction

Applications developed for supporting scientific workflows include a variety of software that

implements data processing and analysis, different computational methods, and processes for modeling

the systems under study. Typically, such software is based on a modular approach and oriented to high-

performance computing [1]. Inputs and outputs of modules determine relations between them. In this

case, the computational job describes executed module, its inputs and outputs, features of launching the

module, and requirements to a computing environment. Thus, a workflow consists of a set of

interconnected jobs. Additional job specification includes information about relations between parent

and child jobs.

When a workflow is executed in a parallel or distributed computing environment of the public access,

non-trivial problems arise in determining the order of workflow job executions on limited resources of

the environment. In general, the formation of the optimal schedule of jobs is NP-hard [2].

We focus on asynchronous computations. Within the framework of such computations, workflow

modules are launched when their input data is ready.

In the paper, we consider execution workflows under uncertainties in distributed applied software

packages that relate to a special class of scalable scientific applications [3]. The presence of uncertainties

determines the use of heuristic approaches to scheduling computations.

Such heuristics should rely on known relations between modules. In addition, considering data

placement when executing workflow modules is also essential.

2. Related work

Developers of scientific applications distinguish between two types of workflows: abstract and concrete

[4]. Jobs for executing workflows of both types consist of sets of interrelated sub-jobs describing

executable programs (modules) and requirements (number of processors or cores, sizes of RAM and

disk memory, etc.) to resources of a computing environment.

In the paper, we consider abstract workflows, jobs and data of which are not related to specific

resources of computational environments. In general, such environments can integrate public access

resources with additional resources from various grid and cloud platforms.

Well-known Workflow Management Systems (WMSs) implement both the resource allocation and

jobs execution of abstract workflows on dedicated resources [5-7]. Often, an abstract workflow is

presented in the form of a Directed Acyclic Graph (DAG), which reflects relations between modules or

jobs of a workflow [8]. Therefore, many WMSs (for example, Pegasus [9]) use popular tools such as

Condor DAGMan [10] or Gridway [11] that support managing similar relation description structures of

computing tasks. Often, Condor DAGMan is independently applied for managing workflows.

Within the framework of our study, we assume the presence of uncertainties in the job execution

time and the amount of transferred data. In this case, when selecting resources, such tools apply simple

heuristics, such, for example, as the allocation of the first available node with suitable characteristics or

the node with the least number of jobs [12].

Another popular approach is to split the workflow into a set of micro-workflows, each of which runs

on a separate resource [13]. However, such a decomposition may not always be implementable for an

arbitrary workflow owing to the possible lack of the necessary structural relations between workflow

jobs [14].

In this regard, we propose a new heuristic, which in some cases allows us to improve the allocation

of resources by taking into account the relations between jobs in comparison with the Condor DAGMan

scheduler. When using this heuristic, the computation planning time is close to the time spent by the

compared tool.

3. Static-dynamic algorithm

We have developed an algorithm that includes static and dynamic stages of operation. In the static stage,

we assign priorities to workflow jobs according to our proposed heuristic. These priorities can then

change dynamically in accordance with the data readiness for the execution of modules.

A. Model Workflow

As an example, let us consider the workflow represented in Figure 1 by a bipartite DAG, which includes

two disjoint sets of vertices (a set of the parameters d1, d2, …, d11 and a set of the modules

m1, m2, …, m10). Arcs reflect the data transfer between modules. Each ith module has a one-to-one

correspondence with the ith job.

m5

d10d9

d8

d7

d6

d4

d3

d2d1

d11

d5

m9

m10

m1

m2

m3

m6

m4

m7

m8

Figure 1. Workflow.

The initial data are represented by the parameter d1. d6, d10, and d11 are target parameters, whose

values are to be calculated. We can see that the workflow is weakly structured in terms of the

decomposition into a set of micro-workflows.

B. Heuristic

The proposed heuristic is based on the analysis of causal relations between modules in the static stage

of the algorithm operation. The execution of each module causes the further execution of a certain

number of modules and the implementation of a certain number of parameter transfers. The analysis is

carried out in order to determine the priorities of jobs for the execution of modules.

Assignment of jobs priorities begins with modules that no other module depends on. We apply a

lexicographical rule for multi-criteria assigning the job priorities using the following four characteristics

with their optimality conditions [15]:

 Number na max of modules launch in the future caused by the module execution,

 Number ntd max of parameters, whose transfers in the future are caused by the module

execution,

 Sum np max of priorities of modules, whose launches in the future are caused by the module

execution,

 Number nrd min of parameters that are received by a module.

In comparison with the lexicographical method mentioned in [15], we use estimates for values of

characteristics instead of the values themselves. To obtain such estimates, we apply the original

algorithm [16].

The results of assigning priorities to the jobs of the workflow shown in Figure 1 are represented in

Table I. The lexicographical rule applied three times to the following groups of modules: {m5, m9, m10},

{m6, m7}, and {m2, m3}.

Table 1. Priorities of jobs.

Module na ntd np nrd Job Job priority

m1 9 12 45 1 j1 10

m2 4 4 14 1 j2 9

m3 4 4 12 1 j3 8

m4 3 3 8 1 j4 7

m5 0 0 0 2 j5 3

m6 2 2 5 1 j6 6

m7 2 2 3 2 j7 5

m8 1 1 1 2 j8 4

m9 0 0 0 7 j9 1

m10 0 0 0 4 j10 2

C. Algorithms for Dynamic Stage

The general scheme for job scheduling is represented by the main algorithm, which is realized using the

function JobScheduling(). This scheme includes the following operations:

 Finding available resources that can be allocated,

 Determining jobs ready to be run, whose inputs have already been calculated,

 Resources allocation for the ready jobs,

 Preparing data transfer for allocated resources.

These operations are correspondingly implemented by the functions ResourceMonitoring(),

JobMonitoring(), ResourceAllocation(), and DataTransferPreparation(). In addition, we use auxiliary

functions GetDedicatedResources(), ResourseAvailable(), JobReady(), CheckPriority(),

PrioritiesChanging(), ReadyJobAllocation(), and JobAllocationPrediction() which are not discussed in

detail in the paper.

The simplified algorithms 1-5 for the key functions for monitoring resources and jobs, data transfer

preparation, resource allocation, and job scheduling are given bellow. A monitoring system is

represented in [16]. Data transferring preparation for modules is carried out only when they are

guaranteed to be launched on the allocated resources in accordance with the priorities of their jobs.

Variables used in the aforementioned algorithms have the following interpretation:

 DAG wf,

 Integer vector r = (r1, r2, …, rk) of dedicated resources, where k is a number of resources,

 Boolean vector v = (v1, v2, …, vk) of resource states, where vi = 1 (vi = 0) shows that the ith

resource is available (not available),

 Boolean vector w = (w1, w2, …, wl) of job states, where wi = 1 (wi = 0) shows that the ith job is

ready (not ready),

 Real vector p = (p1, p2, …, pl) of job priorities,

 Boolean matrix A of the dimensions lk shows the result of resource allocation for the ready

jobs, where aij = 1 (aij = 0) means that the jth resource is allocated (not allocated) to the ith

resource.

 Boolean matrix X of the dimensions mk defines the placement of parameters on resources,

where xij = 1 (xij = 0) shows that the ith parameter is placed (not placed) on the jth resource,

where m is a number of parameters.

 Boolean matrix Y of the dimensions mk reflects parameter transfers, where yij = 1 (yij = 0)

shows that the ith parameter will be transferred (will not be transferred) to the jth resource.

The algorithms considered above form the basis of the proposed static-dynamic algorithm. This

algorithm is implemented in the Orlando Tools framework used to develop distributed applied software

packages [17].

Algorithm 1 for resource monitoring Algorithm 2 for job monitoring

1 function ResourceMonitoring()

2 // Getting a list of dedicated resources

3 r ← GetDedicatedResources()

4 // Initializing resource states

5 v ← (0, 0, …, 0)

6 // Determining the current state of a resource

7 for i = 1..k do

8 if ResourseAvailable(ri) = 1 then

9 vi = 1

10 else
11 vi = 0

12 end if

13 end do
14 return v

15 end function

1 function JobMonitoring()

2 // Initializing job states

3 w ← (0, 0, …, 0)

4 // Determining the job states (ready or not

ready)

5 for i = 1..l do

6 if JobReady(i) = 1 then

7 wi = 1

8 end if

9 end do
10 return w

end function

Algorithm 3 for data transferring preparation Algorithm 4 for resource allocation

1 function DataTransferPreparation(A, X)

2 // Initializing data transferring

3 Y ← (0, 0, …, 0; 0, 0, …, 0; …; 0, 0, …, 0)

4 for i = 1..l do

5 for j = 1..k do

6 // Analyzing the jth resource allocation for the

ith module

7 if aij = 1 then

8 // Getting inputs of the ith module

9 b ← GetInputs(i)

10 for q = 1..m do

11 // Checking the qth parameter placement on

the jth resource

12 if bq = 1 xqj = 0 then

13 // Preparing the qth parameter transfer on the

jth resource

14 yqi = 1

15 end if

16 end do

17 end if

18 end do

19 end do
20 return Y

21 end function

1 function ResourceAllocation(wf, v, w, p, X)

2 // Initializing resources allocation

3 A ← (0, 0, …, 0; 0, 0, …, 0; …; 0, 0, …, 0)

4 // If the priority of the ready job is less than

5 // the priorities of the unready jobs,

6 // then changing the priorities

7 for i = 1..l do

8 if CheckPriority(wf, i, p) then

9 p ← PrioritiesChanging(w, p)

10 end if

11 end do
12 // Allocation of the ready jobs

13 A ← ReadyJobAllocation(wf, v, w, p, A)

14 // Predicting the allocation for the unready jobs

15 // taking into account the job priorities and

16 // data placement

17 A ← JobAllocationPrediction(wf, v, w, p, A, X)

18 return (p, A)

19 end function

Algorithm 5 for job scheduling

1 function JobScheduling(wf, p, X)

2 // Getting current states of resources and jobs

3 v ← ResourceMonitoring()

4 w ← JobMonitoring()

5 // Checking available resources and ready jobs

6 if (v1 ˅ v2 ˅…˅ vk = 1) (w1 ˅ w2 ˅…˅ wl = 1)

then
7 // Resources allocation

8 (p, A) ← ResourceAllocation(wf, v, w, p, X)

9 end if
10 // Data preparation

11 Y ← DataTransferPreparation(A, X)

12 for i = 1..m do

13 for j = 1..k do

14 xij = xij ˅ yij

15 end do

16 end do
17 return (p, A, X, Y)

18 end function

D. Experiment

In the first example, let us suppose that we have to execute flow of workflows in a computing

environment consists of a set of Virtual Machines (VMs). Two VM with one core is allocated to running

one workflow. All workflows have the structure shown in Figure 1.

This job flow implements parameters sweep computations [18]. Each job is executed with a unique

variant of the source data. Therefore, the size of the data, their transfer time, and the execution time may

differ for different jobs.

To demonstrate the result in operating our algorithms, we will consider a simple example with model

time in applying to one workflow. Let there be the following execution times of jobs j1, j2, …, j10: t1 = 2,

t2 = 2, t3 = 3, t4 = 2, t5 = 1, t6 = 2, t7 = 2, t8 = 5, t9 = 2, and t10 = 1. The transferring time for any data (d1,

d2, …, d11) is assumed to be equal to 1. These times are proportional to the average computation results

when solving a real problem in the public access Irkutsk Supercomputer Center [19].

Figure 2 and Figure 3 show the job scheduling by the Condor DAGMan algorithm and proposed

static-dynamic algorithm. Optimal workflow makespan is equalled to 16. The computation time with

Condor DAGMan is 19. The static-dynamic algorithm reduces this time to 17. This is a significant

advantage for such an example.

m8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

m2

m3

Model
time

m4 m5

m6

m1 m7

m9

m10

 Waiting for data

VM1

VM2

19

d1

d2 d4d3 d8

d10

d11

d2 d3

d4

d5

d7

d6

d9 d10

d11d8

 Data transfer

Figure 2. Job scheduling via the Condor DAGMan algorithm.

m8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

m2

m3

Model
time

m4

m5

m6m1

m7

m9

m10

VM1

VM2

 Waiting for data

19

d2 d3 d5

d4

d10

d9 d10

d6 d11

d7

d8

d11

d1

d2 d5 d4 d3 d8

 Data transfer

Figure 3. Job scheduling via the proposed algorithm.

We can see that both algorithms start out the same way. The m1 modules m1, m2, and m4 are

consistently launched on VM1 in accordance with inter-module relations. In parallel, data is being

prepared on VM2 for executing the module m3.

After that, the operation of the algorithms begins to differ. The Condor DAGMan algorithm launches

the m5 module for execution on VM1. At the same time, our algorithm selects the m6 module.

According to the heuristic used by our algorithm, module m6 has a higher priority than module m5.

Really, more number of modules depends on the m6 module in further computing within the workflow

compared to the m5 module.

Owing to launching the module m5, the Condor DAGMan algorithm is forced to delay the execution

of the m6 module because of the need in preparing its input data on VM2.

In the given example, the reduction of the workflow runtime within our algorithm is also due to the

preliminary transfer of the input data for the modules m8 and m9. Figures 4 and 5 show these transfers

at the corresponding times.

The transfers of the parameters d4 and d8 are performed although the modules related to them are not

yet ready to run. The parameter d4 for the module m8 is transmitted while the module m6 is being

executed (Figure 4). This is due to the fact that the module m8 will be launched on the VM where the

module m6 is executing.

1 2 3 4 5 6 7 8 9

m2

m3

Model
time

m4 m6m1

m7

VM1

VM2

d2 d3 d5

d4

d1

d2 d5 d4

 Waiting for data Data transfer

Figure 4. Preliminary data transfer 1.

m8

1 2 3 4 5 6 7 8 9 10 11

m2

m3

Model
time

m4

m5

m6m1

m7

VM1

VM2

 Waiting for data

d2 d3 d5

d4

d7

d8

d1

d2 d5 d4 d3 d8

 Data transfer

Figure 5. Preliminary data transfer 2.

The decision to transfer the parameter d8 (Figure 5) is also obvious since the decision to launch the

m10 module has already been made. In this case, it remains to run the m9 module. The module m8 will

calculate the parameter d9 required for the module m9.

Let us consider the issue of selecting a module for its launch on a resource that is being freed. We

have implemented the JobAllocationPrediction() function, which selects the module to run on the

resource when it becomes free. This check is performed for all resources on which workflow modules

are running. Within the check, a set of modules including modules that are not ready to run can exist

(for example, by time 8 in Figure 5).

The JobAllocationPrediction() function checks how the completion of the module executing and

resource freeing will affect the readiness of the remaining unexecuted modules. Moreover, it allows us

to assign modules to resources that are not yet ready for launch. This assignment of modules to resources

allows us to prepare the necessary input data to the time of their launch.

Within the considered example, there is another background data transfer. The parameter d3 is

transferred to the module m5. However, this transfer does not affect the workflow runtime.

In the theory, the preparation of the input data for the modules could be performed through

overabundant sending the calculated parameters to all available computing resources. However, this

solution has significant drawbacks. In practice, data transfers can degrade compute performance and

slow down other transfers of the current data. Typically, the negative impact of data over-sending

increases with the number of resources used and the number of modules executed. Thus, the

overabundant data sending is highly undesirable for scalable workflows focused on a large number of

resources.

For the job flow in the whole, the proposed algorithm reduces the total computation time by more

than 11%, taking into account the change in the module execution times in different jobs. At the same

time, the time spent on job scheduling by the proposed algorithm does not exceed the time of the Condor

DAGMan operating.

The next example addresses a workflow with the parallel list of data (Figure 6). This is an important

feature of the workflow.

Let there be the following execution times of jobs j1, j2, and j3 for executing the modules m1, m2, and

m3: t1 = 1, t2 = 2, and t3 = 1. The transferring time for any data (d1, d2, d3, d4) in Figure 6 is assumed to

be equal to 1.

d2 and d3 are the parallel lists of data. Each element d2i of the parallel list d2 is processed by the ith

instance of the module m2 (Figure 70. The result of the execution of m2i is saved in the element d3i of

the parallel data list d3.

Figure 6. Initial workflow. Figure 7. Workflow with parallel list of data.

Figures 8 and 9 show the simulation of the considered algorithms for this example. As in the first

example, the presence of tools for assigning preliminary data transfer allows us to reduce the overheads

associated with sending input data for modules. In this example, the proposed algorithm provides the

reduction by 13% in the workflow makespan.

d4d1

m1 m3

d2 d3

m2

d4

d3, 0d2, 0

d1

m1

m2, 0

m3m2, 1

m2, 9

d2, 1

d2, 9

d3, 1

d3, 9

...

m3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Model
time

m1

 Waiting for data

VM1

VM2

d1 d4

d2

 Data transfer

m2,1 m2,4 m2,6 m2,9

m2,8m2,2 m2,3 m2,5 m2,7m2,0

d3

d3,1 d3,4 d3,6 d3,9

d3,0 d3,2 d3,3 d3,5 d3,7 d3,8

d2,1 d2,4 d2,6 d2,9

Figure 8. Job scheduling via the Condor DAGMan algorithm for workflow with parallel list of data.

d2,1

m3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Model
time

m1

 Waiting for data

VM1

VM2

d1

d4

 Data transfer

m2,1

m2,4 m2,6

m2,9

m2,8m2,2

m2,3 m2,5 m2,7

m2,0

d2,5 d2,9 d3

d3,0 d3,2 d3,4 d3,6 d3,8d2

d2,3 d2,7

d3,1 d3,5 d3,9d3,3 d3,7

Figure 9. Job scheduling via the proposed algorithm for workflow with parallel list of data.

4. Conclusions

In the paper, we present a new algorithm that implements static-dynamic scheduling asynchronous

computations in distributed applied software packages. The algorithm operation is oriented to

heterogeneous distributed environments.

Through the experimental results, we demonstrated that the advantages of the proposed algorithm

for different workflow types. In conditions of uncertainty over the modules execution time, the algorithm

makes it possible to rationally determine the order of modules’ launches in comparison with other ways

of scheduling.

The advantages of the proposed algorithm for managing asynchronous computations in distributed

environments have been demonstrated in specific examples. In the future, we hope to find theoretical

estimates supporting such advantages for a larger number of cases.

As additional future work, we plan to use additional heuristics based on analyzing the modules

execution time with test data in environment nodes within the framework of continuous integration,

delivery, and deployment of package software.

Acknowledgments

The study was supported by the Ministry of Science and Higher Education of the Russian Federation,

project no. 121032400051-9 «Technologies for the development and analysis of subject-oriented

intelligent group control systems in non-deterministic distributed environments».

References

[1] Hilman M H, Rodriguez M A and Buyya R 2020 Multiple workflows scheduling in multi-tenant

distributed systems: A taxonomy and future directions ACM Comput. Surv. 53(1) 1–39

[2] Garey M and Johnson D 1979 Computers and Intractability (San Francisco: W. H. Freeman)

p 338

[3] Feoktistov A, Kostromin R, Sidorov I and Gorsky S 2018 Development of distributed subject-

oriented applications for cloud computing through the integration of conceptual and modular

programming Proc. of the 41st International Convention on information and communication

technology, electronics and microelectronics (MIPRO-2018) (Riejka: IEEE) pp 256–261

[4] Atkinson M, Gesing S, Montagnat J and Taylor I 2017 Scientific workflows: Past, present and

future Future. Gener. Comp. Sy.75 216–227

[5] Cao J, Jarvis S A, Saini S and Nudd G R 2003 Gridflow: Workflow management for grid

computing Proc. of the 3rd IEEE/ACM International Symposium on Cluster Computing and

the Grid (CCGrid 2003) (IEEE Press) pp 198–205

[6] Guler A T and Waaijer C J F, Palmblad M 2016 Scientific workflows for bibliometrics

Scientometrics 107(2) 385–398

[7] Monge D and Garino C G 2010 Improving Workflows Execution on DAGMan by a Performance-

driven Scheduling Tool Proc.of the 3rd Symposium on High-Performance Computing in Latin

America 39 pp 3271–3285

[8] Tchernykh A, Feoktistov A, Gorsky S, Sidorov I, Kostromin R, Bychkov I, Basharina O,

Alexandrov A and Rivera-Rodriguez R 2019 Orlando Tools: Development, Training, and Use

of Scalable Applications in Heterogeneous Distributed Computing Environments Comm.

Com. Inf. Sc. 979 265–279

[9] Deelman E, Vahi K, Rynge M, Juve G, Mayani R and Silva R F 2016 Pegasus in the cloud:

Science automation through workflow technologies IEEE Internet Computing 20(1) 70–76

[10] Directed Acyclic Graph Manager. Available at:

https://research.cs.wisc.edu/htcondor/dagman/dagman.html (accessed: 20.11.2020)

[11] Carrión I M, Huedo E and Llorente I M 2015 Interoperating grid infrastructures with the

GridWay metascheduler Concurr. Comp.-Pract. E. 27(9) 2278–2290

[12] Kalayci S, Dasgupta G, Fong I, Ezenwoye O and Sadjadi S M 2010 Distributed and adaptive

execution of Condor DAGMan workflows Proc. of the 22nd International Conference on

Software Engineering and Knowledge Engineering pp 587–590

[13] Radchenko G, Alaasam A and Tchernykh A 2018 Micro-workflows: Kafka and kepler fusion to

support digital twins of industrial processes Proc. of the 2018 IEEE/ACM International

Conference on Utility and Cloud Computing Companion (UCC Companion) (IEEE Press) pp

83–88

[14] Bharathi S, Chervenak A, Deelman E, Mehta G, Su M-H and Vahi K 2008 Characterization of

scientific workflows Proc. of the 3rd IEEE Workshop on Workflows in Support of Large-Scale

Science (IEEE Press) pp 1–10

[15] Ho W, Xu X and Dey P K 2010 Multi-criteria decision making approaches for supplier evaluation

and selection: A literature review Eur. J. Oper. Res. 202(1) 16–24

[16] Bychkov I V, Oparin G A, Feoktistov A G, Sidorov I A, Bogdanova V G and Gorsky S A 2016

Multiagent control of computational systems on the basis of meta-monitoring and imitational

simulation Optoelectron. Instrum. Data Proces. 52(2) 107–112

[17] Feoktistov A, Gorsky S, Sidorov I, Bychkov I, Tchernykh A and Edelev A 2020 Collaborative

development and use of scientific applications in Orlando Tools: Integration, delivery, and

deployment Comm. Com. Inf. Sc.1087 18–32

[18] Buyya R, Murshed M, Abramson D and Venugopal S 2005 Scheduling parameter sweep

applications on global Grids: a deadline and budget constrained cost-time optimization

algorithm Software Pract. Exper. 35(5) 491–512

[19] Irkutsk Supercomputer Center. Available at: http://hpc.icc.ru (accessed: 10.05.2020)

