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Abstract. Monitoring the distribution of vehicle exhaust emissions within the city is a very
challenging problem since it is affected by many complex factors, such as spatial-temporal
correlation and the other environment conditions. In addition, the technology of using sensors
to directly monitor vehicle exhaust emissions is still in the initial stage, and it is hard to
implement direct monitoring in a large area. Thus, we use the existing environmental theory to
measure the distribution of vehicle exhaust emissions in cities by traffic volume. In this paper,
the problem we need to solve is how to use the data of sparse monitoring stations and inherent
traffic network to infer the spatial-temporal distribution of traffic volume. In order to solve
this problem, we propose a graph convolutional network model to extract the characteristics of
traffic data and other features. We have done a lot of experiments on real traffic data sets. The
experimental results show that the proposed method performs better than the existing methods.

1. Introduction
With the rapid growth of vehicle ownership in China, a mass of NOx, CO, HC, PMx and
other harmful gases emitted by vehicles have aggravated urban air pollution, resulting in the
deterioration of air quality and increasingly frequent haze weather. The precondition of vehicle
exhaust pollution control is effective monitoring of them, so we need some monitoring means
to quantify vehicle exhaust emissions. However, it is difficult for us to measure the emission
of vehicles directly in a large area, so we calculate those emissions by the COPERT model [1],
which only needs to provide the urban context data and traffic status of each road section to
calculate the vehicle emissions. Urban context data can be obtained through statistics, while
traffic information must be obtained through real-time monitoring of stations which cannot be
deployed in all road segments.

To determine the optimal location of new monitoring stations it is required to maximize
the inference performance of the traffic volume distribution model on the resulting monitoring

Copyright© 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).



network. This seems to be a reasonable and practical idea. After all, the layout of monitoring
stations is very sparse. It is very important for us to accurately infer the traffic volume
distribution on the unobserved road segments using the data monitored by the existing stations.
However, without the monitoring data on the unobserved road segments, it is difficult for us to
know on which road segments the stations can be placed to maximize the inference accuracy.
To approximately achieve this, Hsieh et al propose a two-stage framework on deployment of
air quality monitoring stations, which uses the inference model to estimate the distribution of
air quality index (AQI), and then obtains the location of K new stations through the location
selection model to minimize the assessment uncertainty [2]. However, this novel approach can’t
be directly applied to our problem, since dividing the traffic network into several grids causes
the overlook of spatial correlation.

In order to achieve the above purpose, we use graph convolutional neural network to deal
with this problem. It makes the training model of higher prediction accuracy and at the same
time of smaller uncertainty.

The contributions of this paper are summarized as follows:

(i) The proposed approach is not only able to forecast the spatial-temporal distribution of
traffic volume but also to provide a basis for selecting the location of new stations and
maximizing the reliability of traffic inference.

(ii) We entirely use the graph convolution to learn spatial-temporal correlation of structured
time series.

(iii) We conduct extensive experiments on two real-world data sets. The MAE (mean absolute
error) and RMSE (Root Mean Square Error) of the inference model are 49.82 and 71.74
respectively, which outperforms the baseline methods.

The other parts of this paper are as follows: the second section is the introduction of data and
features, the theory of graph convolutional neural network and the problem description of this
paper. The third section introduces the structure of spatial-temporal graph convolutional neural
network in detail. The fourth section presents the experimental results. Finally, the full text is
summarized and the future work is prospected.

2. Data and methodology
2.1. Data description
The data utilized in this paper comes from a competition about urban computing. In the data
set there are 35 roads with traffic flow records. Of them 27 roads are used to train the prediction
model and other 8 roads are utilized to test its performance. The data consists of the following
data sets:

(i) Road network features

(ii) Point of interests (POI) features

(iii) Speed pattern features

(iv) Weather features

(v) Time features

(vi) Volume Records

2.2. Graph convolution
Given an undirected graph G = (V, E , A) with N vertices νi ∈ V, where E is the edge set and
A ∈ RN×N denotes the binary adjacency matrix. Defferrard et al built a graph convolution
defined as:

gθ ∗G x ≈
K∑
k=0

θkTk(L̃)x (1)



where x ∈ RN is the signal on the graph, ∗G is the convolution operator, gθ denotes the spectral

filter, L̃ = 2
λmax

L−IN , L = IN −D−
1
2AD−

1
2 , Dii =

∑
j Aij , λmax denotes the largest eigenvalue

of L and θk is the Chebyshev coefficient [3]. The Chebyshev polynomials Tk(x) are recursively
defined as Tk(x) = 2xTk−1(x)− Tk−2(x) with T1(x) = x and T0(x) = 1.

Kipf et al proposed a first-order approximate graph convolution operation [4], which simplified
this model by limiting K to 1 and approximating λmax by 2, which allows us to rewrite the
convolution the following way:

gθ ∗G x ≈ θ0x+ θ1(
2

λmax
L− IN )x ≈ θ0x− θ1(D−

1
2AD−

1
2 )x (2)

Then we constrain the number of parameters: let θ = θ0 = −θ1 and further apply a
normalization trick to the convolution matrix:

gθ ∗G x ≈ θ(IN +D−
1
2AD−

1
2 )x = θ(D̃−

1
2 ÃD̃−

1
2 )x (3)

which gives the following form of the matrix of the convolution operation:

Z = D̃−
1
2 ÃD̃−

1
2 (4)

where Ã = A+ IN and D̃ii =
∑

j Ãij .
The above definition of graph convolution is extended to data with Cin input channels, i.e.,

X ∈ RN×Cin (each vertex is a Cin-dimensional feature vector), and the propagation rule of this
simplified model is given by:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (5)

where H(l) is the output and W (l) is the trainable weight matrix of the lth layer, H(0) = X and
σ(·) is an activation function.

2.3. Methodology
Our real purpose is to monitor the spatial-temporal distribution of vehicle exhaust emissions
in urban traffic network. However, the existing measurement technology is difficult to monitor
emissions directly in a large scale. Fortunately, given the spatial-temporal distribution of traffic
conditions and traffic network data, the distribution of emissions can be calculated by the
existing COPERT model, so that our goal turned to volume monitoring. Since the traffic
monitoring stations can’t cover the whole city, we can only obtain traffic data of partial road
segments. Therefore, according to the urban context data, traffic speed and volume acquired by
established monitoring stations, we will infer the traffic volume of any road in the city at any
time stamp. Thereafter, spatial-temporal distribution of traffic volume can be further employed
to estimate the distribution of vehicle exhaust emissions according to the COPERT model.

3. Inference of the model
In this section, we describe the structure of proposed model (called STGC-LD) in detail, which
includes spatial-temporal learning block, two attributes extraction block and a label distribution
learning block, as shown in Figure 1. The spatial-temporal learning block is employed to learn
the spatial correlations and temporal dependencies from traffic travel speed. First attribute
block is responsible for processing external factors (e.g. time of the day and weather), while
second attribute block is used to extract structural features of traffic network. These blocks are
all connected by residuals, which makes it easier for them to be added and deleted. Finally,
the label distribution learning block estimates the spatial-temporal distribution of traffic volume
within the city, but also reveal the confidence of its inference.



Figure 1: The general structure of
the proposed model STGC-LD.

3.1. Spatial-temporal learning block
There is a certain correlation between traffic volume and travel speed, and nearby roads with
similar travel speed follow the same volume patterns in all probability. Accordingly, we design a
spatial-temporal learning block, containing a layer spatial graph convolution (SGC) and a layer
temporal graph convolution (TGC), to extract the spatial-temporal properties of travel speed,
which is a 3-dimensional structured time series.

3.1.1. SGC for extracting spatial features. We deal with the adjacency matrix as:

Â = σ(Ã ◦Wembed) (6)

where Wembed is the learnable matrix that can be adjusted to affect the degree of closeness, and
◦ denotes the element-wise matrix product. Then we put Â and D̂ii =

∑
j Âij into the graph

convolutional network, and get the adaptive graph convolutional network as:

H(l+1) = σ(D̂−
1
2 ÂD̂−

1
2H(l)W (l)) (7)

The above formula can adjust the weight of edges adaptively based on the graph structure and
the attributes of each vertex, and learn the influence of different adjacent vertices.

We set the travel speed to Attspeed ∈ Rt×n×Cspeed and adjacency matrix of traffic network
to As ∈ Rn×n, where t, n, Cspeed are the number of time steps, the number of road segments
in the traffic network and dimension of the speed feature, respectively. The graph convolution
described above can only process two-dimensional data, but travel speed is a 3-dimensional
tensor. Hence, we share parameters on the time axis, that is, we do the same convolution on
each time stamp. After a convolution operation, the output Zs ∈ Rt×n×Cout is defined as:

ZiS = D̂S
− 1

2 ÂSD̂S
− 1

2AttispeedWS , i ∈ {1, 2, ..., t} (8)

Where Attispeed ∈ Rn×Cspeed , WS ∈ RCspeed×Cout is a kernel of spatial graph convolution.

3.1.2. TGC for extracting temporal features. Nowadays, although the model based on recurrent
neural network is widely used in time series analysis, its application in traffic forecasting task
still suffers from the complexity of gate mechanisms, time-consuming iterations and low response



to dynamic changes. Such networks cannot simulate very long-range temporal dependencies
(e.g. period and trend), and training becomes harder as depth increases. In this paper,
graph convolution is employed to encode the temporal correlation directly, avoiding the explicit
smoothing regularization in the loss function. Firstly, we need to construct an affinity graph for
the time series. Since the traffic volume does not change abruptly on the time axis and follows
a strong periodicity, we connect neighbor and periodic timestamps on the time series of each
road section to construct the time affinity graph. For a time stamp node Ti of a time series, the
time neighbors of the point can be expressed as

{Ti−p∗Pweek
, ..., Ti−Pweek

, Ti−p∗Pday
, ..., Ti−Pday

, ..., Ti−p, ..., Ti−1,

Ti, Ti+1, ..., Ti+p, Ti+Pday
, ..., Ti+p∗Pday

, Ti+Pweek
, ..., Ti+p∗Pweek

} (9)

where p is a super-parameter, Pday and Pweek represent the period of one day and one week
respectively. Besides, we set the temporal edge weights as 1.

We transpose the output of the SGC to Q = ZTS ∈ Rn×t×Cout , and set the temporal adjacency
matrix as AT ∈ Rt×t. Then, we share parameters in the space, that is, we do the same
convolution on the time series for each vertex. After the convolution operation, the features
are mapped as follows:

ZiT = D̂T
− 1

2 ÂT D̂T
− 1

2QiWT , i ∈ {1, 2, ..., n} (10)

where WT ∈ RCout×Cout is a kernel of the temporal graph convolution.

3.1.3. Spatial-temporal learning. In order to extract the spatial correlations and temporal
dependencies of structured sequences of data simultaneously, we design a spatial-temporal
Learning block which stacks a SGC layer and a TGC layer. Too many convolution layers
could converge the features of interconnected vertices to the same values [5]. Moreover, layer
normalization is equipped with the spatial-temporal Learning block to prevent overfitting. The
output of this block is denoted as XST .

3.2. Attribute block 1
In this block, we preprocess and integrate the weather features and time features. The time
range 6 : 00-23 : 00 is divided into 17 timeslots, each timeslot corresponds to an hour, namely
TimeAtt ∈ {1, 2, ..., 17}. Since the dimension of TimeAtt is large, the one-hot coding would lead
to a high computing cost, so we adopt the embedding method to transform these categorical
features into low-dimensional vectors. Specifically, the embedding method is to multiply each
categorical value ν ∈ R1×C by a learnable parameter matrix W ∈ RC×O. Usually we have
O � C, so that the embedding method can effectively reduce the dimension of input features
and make model calculation more efficient. Furthermore, a significant property of embedding
method is that the categorical values with similar semantic meaning are usually very close in
the embedding space [6]. The output of this block is denoted as XAtt.

3.3. Attribute block 2
Traffic network attributes mainly include road network structure, road section features, POI
features, etc. We utilize the embedding method to process the number of lanes, road grade
and other categories of road network features, and normalize the road length, POI features and
so on. Then, the preprocessed features are concatenated and fed into SGC to extract spatial
correlation. In our model, we connect blocks by residuals to make them easier to add and
remove. He et al has shown that training the neural networks with residual connections is easier
and more robust [7]. The output of this block is denoted as XNet.



3.4. Label distribution learning block
We adopt label distributed learning [8] on a single model. The input of LDL is set to X ∈ Rt×n×d,
where t, n, d are the number of time steps, the number of road segments and the number of
feature dimensions of each road respectively. The task of LDL is to estimate the traffic volume
distribution vector y(ν, j) = {y0, y1, ..., yqmax} ∈ Rqmax+1 of a road v at a timestamp j, where
qmax is determined by the maximum average traffic volume per lane in the training data. In
this problem, we quantify the real volume value from existing station as a normal distribution
vector, whose expectation is the real value and variance is a super-parameter. Then, the model
is learned by minimizing the symmetric Kullback-Leibler divergence of the estimated and the
observed label distributions:

LossL = min
1

t

t∑
j

1

2 |L|
∑
ν∈L

qmax∑
i=0

KL(ν, j)[i] (11)

KL(ν, j)[i] = y(ν, j)[i] log ŷ(ν, j)[i] + ŷ(ν, j)[i] logy(ν, j)[i] (12)

where L is a set of observed roads, ŷ(·, ·) is the estimated label distribution. If we need to
know the specific value of traffic volume, we can compute the expectation of the probability
distribution vector, namely:

qmax∑
i=0

iŷ(·, ·)[i] (13)

4. Experiments
4.1. Inferring performance comparison
To demonstrate the effectiveness of proposed inference model and deployment model, we further
compare them with several existing approaches using the real traffic data described in the
Section 2.1. The parameters of all the models are fine-tuned through the grid search. In the
following experiments, we repeat each of them 50 times to obtain the average results.

4.1.1. Training data usage. The traffic network contains 793 road segments, in which 35 road
segments are equipped with loop detectors (i.e. have volume values), while the remaining roads
are unknown. The traffic volumes were collected every hour from March 16 to April 1, 2016 (17
days in total) and sampled each day from 6 : 00 to 23 : 00. In the experiment, we randomly
divide the set of 35 road sections into the two subsets of 27 and 8 roads, the former contain
27∗17∗17 instances which are used as the training set and the latter contain 8∗17∗17 instances
to be used as the testing set. All the experiments had been repeated 50 times and the training
and testing sets were randomly shuffled in each repetition.

4.1.2. Model settings. For the inference model each fully connected layer has 64 channels. The
temporal neighbor parameter is set to 3, and the variance of the normal distribution in LDL is
set to 2. Besides, we set the initial learning rate as 10−3 with a decay rate of 0.9 after every 40
epochs.

4.2. Competitors
(i) Gradient Boosting Decision Tree (GBDT). In our problem, we neglect the spatial and

temporal correlation of data, simply treats all historical observed data from all stations as
the training data to build a supervised learning model.

(ii) Support Vector Regression (SVR). SVR is an important application branch of Support
Vector Machine (SVM), and it is used for regression task of traffic volume. The experimental
setup of SVR is consistent with GBDT.



(a) mean absolute errors (b) root mean square errors

Figure 2: Comparison of various traffic volume estimating algorithms.

(iii) Spatial-Temporal Semi-Supervised Learning (ST-SSL) [9]. This method constructs the
spatial-temporal affinity graph and determines the spatial and temporal edge weights
respectively. Finally, the change rate of the spatial neighbor and the value of the temporal
neighbor are smoothed.

(iv) Graph Convolutional Recurrent Neural Network (GC-GRU). Referring to literature [10],
we first use one layer graph convolution for feature extraction and put the new feature into
GRU for time correlation analysis.

(v) STGC-Regression (STGC-R). In order to verify the effectiveness of LDL, we set output of
the proposed network structure to a single node, the other structures remain unchanged.
And the corresponding loss function is changed to the loss function of the regression task,
namely

Loss = min
1

t

t∑
j

1

|L|
∑
ν∈L

(y(ν, j)− ŷ(ν, j))2

4.3. The obtained errors for different inference models
The experimental results show that the performance of the proposed algorithm is better than
that of other algorithms as shown in the Figure 2. The supervised learning algorithms GBDT and
SVR perform worse than the other four semi-supervised learning algorithms, since the scarcity
of training samples makes it difficult to train a supervised model with good generalization
performance. In addition, we use the same network structure to regress this problem, and find
that its performance is not as good as LDL, which indicates that LDL can better overcome
the challenge of poor prediction performance of regression method due to insufficient labeled
samples.

4.4. Evaluating inference models with various time spans
We experimented with data of various time spans, ranging from 1 day to 17 days. The estimate
results of all methods are shown in Table 1 and Table 2, which shows that the prediction accuracy
of the proposed algorithm is always better than that of other algorithms. With the increase of
the time spans of input data, the inference performance of each algorithm decreases gradually,
but the performance of the proposed algorithm is more stable. This is because it uses the graph



convolution to extract time features, which is well suited for the periodicity of long time series
data and improves the inference performance of the model for long structure sequence data.

Table 1: MAE of volume inference for all methods under various time spans.

Method 1d 2d 5d 7d 10d 14d 17d

GBDT 54.33 54.22 55.08 55.23 55.45 56.11 56.35
SVR 62.52 63.29 62.41 63.31 63.98 64.50 65.01

ST-SSL 52.47 52.40 53.22 53.36 53.65 54.35 54.55
GC-GRU 51.64 51.55 52.38 52.54 52.82 53.58 53.76
STGC-R 50.40 50.21 51.01 51.35 51.53 51.29 51.41

STGC-LD 48.32 49.53 48.80 49.42 49.64 50.01 49.82

Table 2: RMSE of volume inference for all methods under various time spans.

Method 1d 2d 5d 7d 10d 14d 17d

GBDT 76.21 76.87 77.10 77.62 78.65 79.88 80.79
SVR 80.94 82.86 80.80 82.09 83.52 84.54 85.62

ST-SSL 74.23 74.87 75.09 75.59 76.70 77.97 78.80
GC-GRU 73.25 73.90 74.06 74.57 75.69 77.06 77.89
STGC-R 71.65 72.21 72.34 73.02 74.03 74.44 74.67

STGC-LD 68.24 71.37 69.19 70.38 71.06 71.90 71.74

4.5. The influence of different experimental settings
(i) We use one-hot coding and embedding to process categorical features (TimeAtt, POI

features and so on) respectively. We have found that the embedding method is better
than the one-hot method.

(ii) Effect of Layer Normalization: After introducing layer normalization, the performance has
been improved.

5. Conclusion
In this paper, we propose a spatio-temporal semi-supervised graph convolutional network model.
The model can predict the temporal and spatial distribution of traffic flow on the road section
without monitors by using urban environmental data and observation data from existing sites.
We have carried out experiments on real traffic data, and the results of the suggested model are
better than that of the other comparison methods, indicating that our method is more suitable
for the inference of traffic volume. In our future work we will further optimize the network
structure and parameters to get better results. In addition, the proposed model can also be
used in some practical applications, such as urban population monitoring.
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