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Abstract. Forecasting of air pollutant concentration, which is influenced by air pollution
accumulation, traffic flow and industrial emissions, has attracted extensive attention for decades.
In this paper, we propose a spatio-temporal attention convolutional long short term memory
neural networks (Attention-CNN-LSTM) for air pollutant concentration forecasting. Firstly,
we analyze the Granger causalities between different stations and establish a hyperparametric
Gaussian vector weight function to determine spatial autocorrelation variables, which is used as
part of the input feature. Secondly, convolutional neural networks (CNN) is employed to extract
the temporal dependence and spatial correlation of the input, while feature maps and channels
are weighted by attention mechanism, so as to improve the effectiveness of the features. Finally,
a depth long short term memory (LSTM) based time series predictor is established for learning
the long-term and short-term dependence of pollutant concentration. In order to reduce the
effect of diverse complex factors on LSTM, inherent features are extracted from historical air
pollutant concentration data meteorological data and timestamp information are incorporated
into the proposed model. Extensive experiments were performed using the Attention-CNN-
LSTM, autoregressive integrated moving average (ARIMA), support vector regression (SVR),
traditional LSTM and CNN, respectively. The results demonstrated that the feasibility and
practicability of Attention-CNN-LSTM on estimating CO and NO concentration.

1. Introduction
In recent years, air pollution, especially the large-scale haze caused by ultrafine particles
and volatile organic compounds (VOCs) of mobile pollution sources, has attracted worldwide
attention [1],[2]. Ultrafine particles and VOCs not only harm to human health directly, but
also is the important precursor of fine particulate matter (PM2.5) and major component of
photochemical smog. Therefore, monitoring the emission of ultrafine particles and VOCs from

Copyright© 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).



mobile pollution sources is one of the effective means to reduce smog weather and can improve
the quality of regional urban atmospheric environment. Knowing the source and concentration
of these pollutants is essential to reduce the adverse effects of air pollution on health [3]. Thus, in
the spatial dimension, the characteristics of pollutant changes in different regions are considered,
and the differences and causes of pollutant concentration in time and space are analyzed, so as to
improve the efficiency and reliability of pollutant concentration prediction, and provide decision-
making basis for the government to control air pollution, traffic control and life travel.

The approaches for forecasting air pollutant concentrations mainly include deterministic and
statistical models. Deterministic models simulate the atmospheric physic and chemistry in
the processes of emission, diffusion and transformation of air pollutions, cannot explain the
non-linearity and heterogeneity of some factors on the formation of pollutants [4],[5],[6],[7].
Statistical models are based on a data-driven manner ranther than sophisticated theoretical
models to estimate air quality, has shown a virtue of obvious advantages [8],[9].

Recently, deep neural networks (DNNs) can automatically learn salient feature mappings
from high-dimensional input data, and avoid the complicated process of artificial design and
extraction of features to solve a wide variety prediction of complex problems, such as further
perfect the prediction performance of air pollutant concentrations. Inherently considering spatio-
temporal correlations of historical air pollutant data, meteorological data and timestamp data Li
et al. proposed a novel LSTM model to forecast air pollutant concentration [10]. Qi embedded
feature selection and spatial-temporal semi-supervised learning (ST-SSL) in the deep network
to infer the PM2.5 concentration for the next few hours at all locations [11]. However, since the
input of the model is a fixed-length sequence, the model’s representation of the context is also
a sequence of the same length, which limits the performance of the model. So it is difficult to
get a suitable vector representation as the output.

In general, the air polluting process usually involves a variety of interacting pollutants, which
are affected by local reactions, spatio-temporal evolution properties of air pollutant concentration
and confounding factors, such as the direction of wind and humidity. Therefore, the research on
the prediction of air pollutant concentration still faces the following two challenges:

(i) LSTM is hard to deal with the time series with long-term dependency and complex task,

(ii) air pollution causal pathways are complex among different locations in nature, since they
may be influenced by geography, atmospheric phenomena and other complex factors.

To handle both challenges outlined above, we propose a deep spatio-temporal hybrid model to
estimate air pollutant concentrations. The main contributions of the paper are given as follows:

(i) Granger causality is used to model the spatial correlation between different stations in
adjacent regions, and consider the spatial dependence of air pollutant concentrations
between the propagation of air pollution under different wind directions in each sub-region
by constructing a hyperparametric Gauss vector weight function.

(ii) By constructing the Attention-CNN hybrid model, we can effectively extract the intrinsic
features from historical air pollutant concentrations, meteorological and timestamp data by
learning over a long time span, and then use LSTM layer to extract temporal information
from these feature mappings.

(iii) We use air pollutant concentration data and meteorological monitoring data from northern
Taiwan in 2015 for research and analysis to evaluate our methods. Abundant experiments
prove that the model is superior to traditional machine learning methods.

The rest of the paper is organized as follows: Section 2 mainly introduce the data description,
Attention-CNN-LSTM model, spatio-temporal correlation using Granger causality analysis,
extraction of spatial and temporal features, attention mechanism in feature map and channel
and prediction for air pollution concentration of multiple monitoring stations. Section 3 shows



Figure 1. Topographic map and the location of monitoring sites in Northern Taiwan.

the experimental results. Finally, some concluding remarks and suggestions for future work are
in Section 4.

2. Materials and methods
2.1. Data Preprocessing
The experimental data in this paper is from the Environmental Protection Administration,
Executive Yuan, R.O.C. In the current experiments, air pollutant concentration data and
meteorological monitoring data is collected every hour for 25 monitoring sites (shown in
Figure 1) from Jan/01/2015 to Dec/31/2016. The meteorological data and air quality data
used for CO and NO concentration prediction are shown in Table 1.To mitigate the negative
impact of missing values on data analysis performance, we delete the timestamp to eliminate
missing values, because filling in missing values requires accurate prediction of spatial and
temporal correlation between different time series. If filling in missing time series data is not
representative, temporal autocorrelation and spatial correlation may not be strong. In all the
experiments, the data is divided into the training set (80%) and testing set (20%).

2.2. Attention-CNN-LSTM
The framework of the proposed spatial-temporal prediction model for multi-scale pollutant
concentrations is shown in Figure 2. The main inputs (historical CO/NO concentration
data) are included in brown box, and auxiliary inputs (meteorological data, related pollutant
concentration and the time of day) are included in light blue box; r represents the number of
time steps used, and the numbers in the parentheses represent the dimensions of each type of
feature.

Considering the spatio-temporal correlation between 25 stations and their historical
information using GC (Granger causality) analysis, as an index to measure the interaction



Table 1. Atmospheric pollutants and meteorological data applied in model studies.

Input parameters Unit Input parameters Unit

NO ppb O3 ppb
CO ppm Average temperature ◦C
PM10 µg/m3 Relative humidity %
PM2.5 µg/m3 Wind direction degree
THC ppm Wind speed m/sec
NMHC ppm Rainfall mm
SO2 ppb

Figure 2. Attention-CNN-LSTM Architecture.

between time series, has been favored in recent decades. For complex spatial factors, we use GC
to analyze the correlation between the air concentration time series. We define the time series
of air pollutants at two monitoring sites as Yi and Xi respectively. The formula of GC and the
null hypothesis are given as follows:

Yi(t) =
n∑

j=1

Φi(j)Yi(t− j) +
n∑

j=1

µi(j)Xi(t− j) + εt, if i ∈ Nd (1)

Yi(t) =
n∑

j=1

Φi(j)Yi(t− j) + εt, if i /∈ Nd (2)

where Nd is the neighborhood set of the spatial clustering (The K-Means algorithm is adopted
to gather them); εt is a white noise Gaussian random vector; n is the number of time stamps;
vector Φi is the correspondent weights for Yi; vector µi represents the spatial weight between
spatial locations Yi and Xi.

In the section of Spatial-temporal feature extraction, two or more CNN layers are selected
to extract the intrinsic features from historical air pollutant data for long-term span learning,
and then the one-hot encoding is used. The method encodes the hourly data and combines the



extracted features with current meteorological data and related pollutant data to improve the
predictive performance. In addition, we add batch normalization (BN) after the second and
third convolutional layers of the model. Considering that the scaled exponential linear units
(SELU) function has better convergence performance and can effectively avoid the gradient
disappearance problem, it is taken as activation function in this paper [12].

In the section of Feature map attention, We adopted an attention mechanism to weigh the
hidden features to enhance their validity. In the attention mechanism, F = {f(1), f(2), ..., f(j)}
is the output hidden feature maps of the convolutional layer, where j ∈ R is the number of the
convolution kernel. The weighted feature maps F ′ are computed by softmax :

F ′ = W · F (3)

f ′(i) = ωi ∗ f(i)

ωi = softmax(F ) =
exp(f(i))∑i
t=1 exp(f(t))

(4)

here W = {ω1, ω2, ..., ωj} is a weight matrix and its size is the same as that of the feature maps.
To generate W , the attention mechanism consists of 3 convolution layers with the stride 1. The
first convolution layer has k × s filters with convolution kernel size 5× 5, the second and third
layers have k filters with convolution kernel size 3× 3, and the number of filters is 100 for each
convolutional layer.

By stacking several layers of LSTM, the features in spatially correlated contaminant data with
long-term dependence can be automatically extracted layer by layer, and the fused features can
be used to compute multiscale time series prediction of air pollutants. For the LSTM layer, one
input is the temporal information of X = (x1, x2, ..., xt), and another input is the hidden unit
ht−1 from the last time step. The forward training process of Attention-CNN-LSTM can be
expressed by the following equations:

ft = σ(Wf · [ht−1, xt] + bf ) (5)

it = σ(Wi · [ht−1, xt] + bi) (6)

Ct = ft ∗ Ct−1 + it ∗ tanh(WC · [ht−1, xt] + bC) (7)

ot = σ(Wo · [ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

where it, ot, and ft denote the activation of the input gate, output gate and forget gate,
respectively; Ct and ht denote the activation vector for each cell and memory block, respectively;
and W and b denote the weight matrix and bias vector. The output from the last step of the
LSTM is then fed to the fully connected layer for spatio-temporal air pollution prediction.

3. Results and discussion
3.1. Performance metric and settings
Each monitoring station collects air quality data once an hour, and the dataset contains more
than 400000 instances, each with concentrations of CO and NO. To prove the effectiveness of the
proposed Attention-CNN-LSTM, several models are used for comparison, including ARIMA [13],
SVR [14], CNN [15], LSTM [16], and CNN-LSTM [17]. In order to prevent inconsistency of data
magnitude differences and gradient explosion, we need to convert all the input data by scaling
the attributes between [0, 1] using the min-max normalization. The performance evaluation
indicators, including the root mean square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE) and correlation coefficient (R), were used to evaluate the
effectiveness of our model in our experiments.



3.2. Performance comparisons
Obviously, the current state has different effects on different time intervals in the future [18].
Therefore, we analyze the input data with the air pollution concentration at multiple time
intervals on the next 1st hour to 24th hour to develop different training sets. Over the next
3h, we train a model for each hour, respectively. With respect to the next 4 − 24h, which are
divided into the three groups (4 − 6h, 7 − 12h, 13 − 24h) and the models are trained for each
time interval.

As it is shown in the Tables 2,3,4,5, the accuracy of all the models decreases as the
prediction time extends. However, for CO concentration, the RMSE standard deviation of
Attention-CNN-LSTM, which varies from 0.4602 to 0.5803, is much lower than that for the
other models, indicating that Attention-CNN-LSTM achieves higher accuracy and stability in
long-term prediction. This is due to the combination of 3D-CNN, attention mechanism and
LSTM, which extract advanced spatio-temporal features while maintaining the transmission
of state information, rather than using LSTM alone or CNN. Prediction results show that
Attention-CNN-LSTM is valid for air pollutant concentration forecasting in total data set.

Table 2. Comparisons of MAE using different models for the next 1st to the 24th hour
predictions

1h 2h 3h 4-6h 7-12h 13-24h
NO ARIMA 13.42 13.28 13.64 14.49 14.89 15.28

SVR 11.95 11.94 12.26 12.70 13.02 13.13
CNN 10.67 11.86 11.64 11.76 12.41 12.68
LSTM 9.906 10.08 10.90 11.26 11.87 12.14
CNN-LSTM 9.193 9.727 10.09 10.52 11.19 11.55
Attention-CNN-LSTM 8.568 8.693 9.270 9.830 10.68 10.77

CO ARIMA 0.5131 0.5478 0.5910 0.6253 0.6479 0.6876
SVR 0.4516 0.4632 0.5124 0.5706 0.5880 0.6176
CNN 0.4365 0.4570 0.4565 0.4745 0.5031 0.5466
LSTM 0.4149 0.4323 0.4240 0.4400 0.4586 0.4919
CNN-LSTM 0.4079 0.4078 0.4115 0.4395 0.4439 0.4458
Attention-CNN-LSTM 0.3481 0.3627 0.3770 0.3954 0.4027 0.4360

4. Conclusions
In this paper, an attention-based CNN-LSTM model has been proposed to forecast air pollutant
concentration. Granger causality analysis is utilized to explore the spatial correlation among
different monitoring sites and spatial features are added into the prediction model. The
model combines ordinary convolution units and attention mechanism to extract the spatial
and temporal feature maps. Finally, the air pollutant concentration of multiple monitoring
stations is predicted by LSTM, which can learn temporal dependencies on time series of pollutant
concentrations. Experimental results have demonstrated that the proposed Attention-CNN-
LSTM outperforms the other state-of-the-art algorithms in terms of RMSE, MAE, MAPE and
R values. In order to further improving the performance of the proposed method, several aspects
remain to be investigated in the future work: (1) Exploring the spatio-temporal clustering
method based on weather patterns because the air polluting process may be affected by multiple
weather patterns; (2) Exploring multi-faceted causality analysis and environmental factors.



Table 3. Comparisons of RMSE using different models for the next 1 to 24 hour prediction

1h 2h 3h 4-6h 7-12h 13-24h
NO ARIMA 17.80 18.27 18.75 19.42 19.62 20.04

SVR 16.07 16.07 16.61 17.04 17.66 17.71
CNN 14.05 15.20 15.83 16.05 16.52 16.95
LSTM 13.19 14.49 14.58 15.18 15.59 15.72
CNN-LSTM 13.08 13.82 14.09 14.75 15.04 15.59
Attention-CNN-LSTM 12.27 12.87 13.29 13.69 14.18 14.79

CO ARIMA 0.6125 0.6759 0.6874 0.7372 0.7775 0.7854
SVR 0.5536 0.6191 0.6365 0.6490 0.6703 0.6803
CNN 0.5269 0.5710 0.5865 0.6125 0.6365 0.6423
LSTM 0.5043 0.5597 0.5699 0.5961 0.6027 0.6106
CNN-LSTM 0.4988 0.5784 0.5820 0.6037 0.6121 0.6145
Attention-CNN-LSTM 0.4602 0.4634 0.4969 0.5654 0.5710 0.5803

Table 4. Comparisons of R using different models for the next 1 to 24 hour prediction

1h 2h 3h 4-6h 7-12h 13-24h
NO ARIMA 0.7910 0.7770 0.7672 0.7443 0.7346 0.7290

SVR 0.8307 0.8286 0.8158 0.8056 0.7934 0.7883
CNN 0.8519 0.8464 0.8348 0.8289 0.8183 0.8078
LSTM 0.8867 0.8755 0.8631 0.8534 0.8385 0.8248
CNN-LSTM 0.8980 0.8834 0.8729 0.8616 0.8594 0.8363
Attention-CNN-LSTM 0.9057 0.8933 0.8832 0.8787 0.8648 0.8386

CO ARIMA 0.8146 0.7892 0.7796 0.7379 0.7163 0.7093
SVR 0.8374 0.8274 0.8138 0.8044 0.7908 0.7785
CNN 0.8674 0.8518 0.8434 0.8271 0.8138 0.8090
LSTM 0.8858 0.8742 0.8639 0.8490 0.8319 0.8249
CNN-LSTM 0.8919 0.8805 0.8766 0.8633 0.8304 0.8360
Attention-CNN-LSTM 0.9219 0.9091 0.8970 0.8736 0.8518 0.8508
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