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Abstract. This article presents a multiobjective evolutionary approach for computing flight
plans for a fleet of unmanned aerial vehicles to perform exploration and surveillance missions.
The static off-line planning subproblem is addressed, which is useful to determine initial flight
routes to maximize the explored area and the surveillance of points of interest in the zone. A
specific flight planning solution is developed, to be applied in low-cost commercial Bebop 2. The
experimental analysis is performed in realistic instances of the surveillance problem. Results
indicate that the proposed multiobjective evolutionary algorithm is able to compute accurate
flight plans, significantly outperforming a previous evolutionary method applying the linear
aggregation approach.

1. Introduction
In the last years, Unmanned Aerial Vehicles (UAVs) have developed as useful vehicles to
perform different important activities and provide diverse services in smart cities [1]. A wide
range of applications have been addressed in logistics and infrastructure inspection, agriculture,
photography, rescue and disaster management, and also security and surveillance [2]. Since
UAVs can be controlled remotely or programmed to follow specific flight routes, they can be
used in situations where manned flight is dangerous. Furthermore, for routine missions, an
autonomous flight system an be implemented, without involving human control or a centralized
control infrastructure [3]. This paradigm is commonly applied for controlling a fleet of UAVs,
by implementing a cooperative approach for surveillance, which provides several benefits:
robustness, since multiple agents perform the task at the same time, improvement on the flight
time and battery utilization, and improvement of the quality of service of the system (providing
an expanded coverage and better surveillance).
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Developing an effective cooperative model for exploration and surveillance heavily relies on
successfully computing accurate flight plans that account for the problem objectives. The flight
route planning problem for UAVs is NP-hard, as it is a variant of the classic Orienteering
Problem [4]. Computational intelligence methods have been proposed to generate reliable and
fast flight routes for UAV fleets, to fulfill specific missions autonomously [5]. In this context,
heuristics and metaheuristics [6] are applied to find accurate routes in reasonable execution
times, especially to be implemented in real time missions.

In this line of work, this article presents a Multiobjective Evolutionary Algorithm (MOEA)
to solve the off-line problem of route planning for a fleet of UAVs to maximize exploration and
surveillance. The problem formulation considers an area to explore and specific points of interest
(PoI) to be surveyed periodically. PoI can be static or move across the area, following a pre-
determined pattern. The main goal of the proposed MOEA is to compute accurate plans with
good compromise between the explored area and the monitoring of PoI. Computed solutions are
useful for practical surveillance and can also be extended to address more dynamic situations,
e.g. by applying agent oriented programming to perform slight modifications to the route of
each UAV to deal with unexpected events.

2. Multiobjective flight planning for UAVs
The considered optimization problem proposes finding a set of routes for UAVs in the fleet to
simultaneously maximize the explored area and maximize the surveillance of PoI.

The problem formulation considers the following elements:

• A set of UAVs, U = {u1, . . . u|U |}, able to flight at a maximum speed vD.

• A mission time period T , discretized in s uniform time steps; T =< t1, t2, . . . ts >

• A set of PoI to surveil O = {o1, . . . , o|O|}. Two types of PoI are considered: static (do not
move) and mobile (move at maximum speed vO).

• A benefit vector P = (p1, p2, . . . p|O|), where pi is the benefit associated to surveil PoI oi.

• An object position matrix OP (dimension |O| × s). OPij indicates the coordinates of PoI
oi in timestep tj .

• A coverage radius r̄o and a circumscribed coverage square with side ro = 2r̄o/
√

2.

• An area to explore (dimensions H ×W ), which is considered to be discretized in regions,
i.e., squares of length ro to determine the sequence of flight paths.

The goal of the problem is to determine a flight planning for the fleet of UAVs, i.e., a function
fp : U × T → Q that simultaneously maximizes two functions:

• The benefit of monitoring PoIs (as defined by function δ(p), in Eq. 2). This function takes
into account PoIs that are covered, i.e., they are within the coverage radius of each UAV.

• The benefit for exploring (as defined by function φ(p), in Eq. 2), which accounts for the the
explored surface of the fleet, defined as the union of the surfaces explored by each UAV in
its route in the planned time. The area covered by a UAV at a given time is determined
by a circumference of coverage radius that has it as its center, which is directly related to
the field view of the UAV on-board camera. The benefit for exploring is evaluated by the
Spatial Exploration Ratio metric [7].



δ(p) =

|U |∑
i=1

|T |∑
j=1

|O|∑
z=1

D(OP (ui, tj), OP (oz, tj))× pz, (1)

with p(qi, tj) = (x, y) / ajx,y = qi and D(c1, c2) =

{
1 if distance(c1, c2) ≤ r̄o
0 otherwise

φ(p) =

d H
ro
e∑

x=1

dW
ro
e∑

y=1

|T |∑
j=1

E(x, y, j)× 1

ro2
, with E(x, y, tj) =

{
1 if ajx,y ∈ U
0 otherwise

(2)

Without loss of generality, the problem model assumes that all UAVs depart and return for
charging to a base B, located at coordinates (xB, yB), within the area to explore.

3. The proposed MOEA for flight planning
This section describes the proposed algorithmic approach for multiobjective UAV flight planning.

3.1. Algorithmic approach
The proposed solution for multiobjective UAV flight planning is based on the NSGA-II algorithm,
a traditional MOEA for solving real-world problem in different application areas [8]. Specific
modifications to the general skeleton of NSGA-II were included to solve the considered problem.
The main implementation details are presented in the following subsections.

3.2. Solution encoding
Solutions to the multiobjective UAV flight planning problem are represented by a matrix-based
encoding. A graph is built considering the discretization of the area to explore and the zones
visited by each UAV. The graph connects the center of each zone, for each UAV route, in
a Cartesian coordinate system. In the matrix encoding, each row encodes a route, i.e., the
sequence of coordinates of the center of each zone for each route. Each element (i, j) in the
matrix is a pair (xij , yij) that represents the position of UAV i at timestep j. The null value
(-1, -1) is used to fill those unused elements in the matrix, since some routes may be larger than
others. The dimension of the matrix encoding is |U |×s.

Figure 1 presents an example of encoding for a simple solution where two routes are defined
for two UAVs (represented by the green nodes and the blue nodes in the graph in Figure 1(a)).
Both UAVs depart from the base located at (xB, yB) = (1, 0).
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(a) A sample solution with two routes (b) Matrix encoding (first row: green route;

second row: blue route)

Figure 1. Sample solution encoding for a flight planning in an scenario with two UAVs (routes for 
each UAV are marked by green and blue nodes, respectively).



3.3. Fitness assignment and stopping criterion
The traditional dominance rank method applied in NSGA-II is used to define the fitness of
solutions, considering the problem objectives. Then, Pareto ranking is applied over normalized
values of both objectives for solutions in the population. A stagnation stopping criterion is
applied: the search stops when no new non-dominated solutions are computed in a generation.

3.4. Evolutionary operators
Specific evolutionary operators are applied to account for the problem objectives (exploration
and alerts from PoIs) [9]. The proposed evolutionary operators are as follows:

(i) Initialization: Two methods were applied for population initialization: i) random path
initialization and ii) seeded initialization, where the route of each UAV is generating by
starting at (xB, yB) and moving in a direction determined by angle i× 2π × 1/u + j × 2π ×
1/(u×Z), where i ∈ [0, u− 1] is the UAV identifier, j ∈ [0, Z] is the ordinal of the candidate
solution, and Z is the population size of the MOEA.

(ii) Selection: The classic tournament selection operator in NSGA-II was replaced by Stochastic
Universal Sampling with sigma escalation (SUS+σ) in the proposed MOEA. This decision
was motivated by three useful properties of SUS+σ: i) it is less biased to high quality
solutions; ii) helps avoiding premature convergence caused by dominance of a group of
solutions; and iii) helps amplifying small differences in advanced stages of the search.

(iii) Recombination: The Single Point Crossover operator was applied for recombination, as it
provided an appropriate search pattern in preliminary configuration experiments. The
operator is directly applied over the proposed solution encoding, but it can generate
infeasible solutions (e.g., long jumps in UAV routes). In this case, the correction operator
described in item (v) is applied.

(iv) Mutation: A specific mutation operator, based on modifying information on the encoded
routes, was designed for the problem. The number of positions to be modified is selected
with a uniform distribution in the interval ([1, u× t

s ]). After that, a new direction is defined
for the movement of the corresponding UAV, according to a uniform distribution in the seven
different possible directions (excluding the one already traveled in the original solution). The
speed of the UAV in this new direction is also selected according to a uniform distribution
between (0, vD). The proposed mutation operator may generate infeasible solutions. In this
case, the correction operator described in item (v) is applied.

(v) Correction of infeasible solutions: Infeasible solutions can be generated by the evolutionary
operators in two cases. In the case of the path of a UAV has two consecutive positions
that are more distant than it can travel in a time interval, the correction operator modifies
the position from which it is not possible to reach the nearest one when the UAV flies at
maximum speed. A second type of infeasible solutions are those that do not allow the UAV
to return to the base for recharging after finishing a route. In this situation, the correction
operator truncates the route in the last movement where it is still possible to return to the
base with the available battery charge.

4. Experimental evaluation
This section reports the experimental evaluation of the proposed MOEA for UAV fight planning.

4.1. Scenarios and instances.
The proposed MOEA was evaluated in real and synthetic scenarios that include features of real
facilities to perform surveillance. Five scenarios were considered: one small-sized scenario (#0)
used for parameter calibration, one real scenario (#1) studied with low-cost Parrot Bebop 2
UAVs, two medium-size and one large-size scenario, whose details are presented in Table 1.



scenario H×W (xB ,yB) |U | vD |T | s |O| vO P ro

#0 50×50 (0, 0) 3 5 500 10 3 3 <1,2,3> 5
#1 100×100 (30, 30) 3 5 500 10 3 3 <1,2,3> 5
#2 1000×1000 (300, 300) 5 10 1000 10 4 5 <1,2,3,4> 5
#3 1000×1000 (700, 700) 10 10 1000 10 4 5 <2,2,8,8> 5
#4 10000×10000 (5000, 5000) 5 10 2000 20 5 0.1 <1,1,1,1,10> 5

Table 1. Details of the problem instances used for evaluation of the proposed MOEA.

For each synthetic scenario, ten problem instances were created varying the locations of 
PoI and obstacles. Overall, 50 problem instances were used for the evaluation of the proposed 
MOEA. Figure 2 presents two sample scenarios and their discretizations. The base is marked 
with a blue square and obstacles are marked with gray squares. PoIs are located at random loca-
tion and motion is generated by applying Rapidly-exploring Random Tree, an efficient strategy 
for multi-dimensional space searching, biased towards unexplored sections of the search space.

(a) Scenario #0 (dimension 50×50) (b) Scenario #1 (dimension 100×100)

Figure 2. Two sample scenarios for the experimental evaluation.

Scenarios #2 to #4 were studied using a distributed simulation approach, implemented over 
Sphinx, the official simulator for Parrot UAVs. Experiments were executed on Xeon Gold 6138 
processors with 128 GB of RAM memory from National Supercomputing Center, Uruguay [10]. 
Parametric configuration experiments were performed over scenario #0.

4.2. Numerical results
Table 2 reports the results computed by the best compromise solution (i.e., the nearest solution 
to the ideal vector) of the proposed MOEA. Results are compared with the single-objective 
Evolutionary Algorithm (EA) for the problem using a linear aggregation of objectives [11]. The 
best improvements over the reference EA are marked in bold: up to 26.7% for the exploration 
objective and up to 22.3% for the surveillance objective. The best results were computed for the 
largest problem instance, suggesting that the proposed MOEA scales properly to large scenarios.

Table 2. Results of the proposed MOEA and improvement over linear aggregation approach [11].

#I
MOEA Linear aggregation EA [11] Improvements

PoI monitoring (δ) exploration (φ) PoI monitoring (δ) exploration (φ) ∆δ ∆φ

0 1338 1996 1106 1755 17.3% 18.0%
1 1754 2907 1377 2495 21.5% 14.2%
2 2101 4221 1583 3669 24.7% 13.1%
3 14549 18921 12021 15021 17.4% 20.6%
4 12175 17416 8921 13533 26.7% 22.3%



Figure 3 presents a Pareto analysis for instances #2 and #4, which are representative of the
results obtained in the other instances. Values of the baseline EA are computed by assigning
different weights to the problem objectives in the linear aggregation. Results indicate that
solutions computed by the MOEA clearly dominate the baseline EA solutions.
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Figure 3. Pareto analysis for representative instances (left, instance #2; right, instance #4).

5. Conclusions and future work
This article presented a multiobjective evolutionary approach for UAV flight planning to
optimize exploration and surveillance of a predefined set of PoI. A custom NSGA-II including
specific routing-based evolutionary operators was proposed for the problem.

The experimental evaluation was performed on real and synthetic scenarios, modeling the
surveillance of real facilities. Results demonstrate that the proposed MOEA improved over a
previous EA approach in up to up to 26.7% (exploration) and up to 22.3% (surveillance).

The main lines for future work are related to extending the experimental evaluation and
integrating more sophisticated control methods in the UAV hardware.
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