
Affinity multiprocessor scheduling considering

communications and synchronizations using a

Multiobjective Iterated Local Search algorithm

S. Nesmachnow1 and A. Tchernykh2

1 Universidad de la República, Uruguay
2 CICESE, Ensenada, Baja Callifornia, México

E-mail: sergion@fing.edu.uy, chernykh@cicese.mx

Abstract. This article studies the affinity scheduling problem in multicore computing systems,
considering the minimization of communications and synchronizations. The problem consists
in assigning a set of tasks to resources to minimize the overall execution time of the set of tasks
and the execution time required to compute the schedule. A Multiobjective Iterated Local
Search method is proposed to solve the studied affinity scheduling problem, which considers the
different times required for communication and synchronization of tasks executing on different
cores of a multicore computer. The experimental evaluation of the proposed scheduling method
is performed over realistic instances of the scheduling problem, considering a set of common
benchmark applications from the parallel scientific computing field, and a modern multicore
platform from National Supercomputing Center, Uruguay. The main results indicate that
the proposed multiobjective Iterated Local Search method improves up to 21.6% over the
traditional scheduling techniques (a standard Round Robin and a Greedy scheduler)

1. Introduction
Scheduling is a key problem on Heterogeneous Computing (HC) systems [1]. Modern multi-
core processors are a special case of HC platforms. Even though they are built using identical
processing units with the same computing power, major processor manufacturers adopted the
Non-Uniform Memory Architecture (NUMA) design (AMD from 2003 and Intel from 2007). In a
NUMA design, the main memory is organized in a set of separate chips, to reduce the bottleneck
impact of simultaneous memory accesses. However, the time required for memory access varies
for different cores in the system, and different communication and synchronization speeds exist
for parallel tasks that cooperate to solve a problem.

Affinity scheduling [2] are specific planning methods for multipocessor systems that propose
assigning tasks to cores, taking advantage of the capabilities of tasks to execute faster in certain
cores due to data locality, cache utilization, or communications with other tasks. The main goal
of an affinity scheduling technique is reducing the negative impact of common overheads that
appear in parallel scientific computing, e.g., due to task communication and synchronization,
dynamic resource management, or load balancing [3].

Copyright© 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).



Traditional scheduling problems are NP-hard, thus exact resolution techniques are only useful
to solve small problem instances (i.e., few tasks, few resources). Metaheuristics [4] are efficient
search methods to compute accurate solutions in reasonable execution times. This is relevant
when considering that schedulers must operate in real time.

In this line of work, this article proposes a multiobjective metaheuristic approach to
solve the assignment problem related to affinity scheduling in multicore NUMA systems.
A Multiobjective Iterated Local Search (MILS) scheduler is introduced to improve tasks
efficiency by minimizing communication/synchronization times and the effective time required
to compute the schedule. The experimental evaluation of the proposed method is presented for
real parallel scientific computing benchmark applications, considering different topologies and
communication patterns, and also real multicore computing platforms. Results indicate that the
proposed multiobjective Iterated Local Search method improves up to 21.6% over traditional
scheduling techniques used as baseline for the comparison.

2. The multiobjective affinity scheduling problem in multicore systems
The mathematical model of the affinity scheduling problem to minimize communications and
synchronizations in multicore computing systems (ASP-CS) considers the following elements:

• A multicore system with a set of cores N = {n1, . . . , na}.
• A set of tasks T = {t1, . . . , tb} to be executed on the system.

• A communication function C : T × T → N+, where C(ti, tj) indicates the number of
communications between two tasks ti and tj , 1 6 i 6 b, 1 6 j 6 b.

• A synchronization function S :T ×T →N+, where S(ti, tj) indicates the number of
synchronizations between two tasks ti and tj , 1 6 i 6 b, 1 6 j 6 b.

• A communication cost function CC : N ×N → R+, where CC(nh, nk) is the time required
to communicate tasks executing in cores nh and nk, 1 6 h 6 a, 1 6 k 6 a.

• A synchronization cost function SC : N ×N → R+, where SC(nh, nk) is the time required
to synchronize tasks executing in cores nh and nk, 1 6 h 6 a, 1 6 k 6 a.

The ASP-CS problem proposes finding a scheduling function f : T → N to assign tasks to
cores in the multicore system (f(ti) = nh indicates that task ti is assigned to execute on core
nh, 1 6 i 6 b and 1 6 h 6 a), to minimize the total time demanded for communication and
synchronizations between tasks (Eq. 1) and minimize the overall execution time to compute
the schedule, in order to provide an accurate method to be applied in real time. The ASP-CS
problem follows a non-preemptive model: each task is considered as an atomic processing unit,
which cannot be divided nor interrupted.∑

ti∈T

∑
tj∈T

C(ti, tj)× CC(f(ti), f(tj)) + S(ti, tj)× SC(f(ti), f(tj)) (1)

ASP-CS is a NP-hard combinatorial optimization problem [5] and traditional exact methods
are not useful to solve large instances of the problem in reduced execution times. Thus, more
efficentoptimization methods, such as metaheuristics, must be applied to solve problen instances
as close as possible to real time.

3. The proposed multiobjective Iterated Local Search scheduler
MILS is a metaheuristic method that extends the traditional local search by including a
perturbation operator to escape from local optima and a multiobjective evaluation considering
Pareto dominance.



Algorithm 1 presents a pseudocode of the proposed scheduler. The search starts from a
randomly generated initial solution. MILS is an iterative method; in each iteration, the current
candidate solution is perturbed and improved using a local search that involves different tasks
movements, proved to be useful for HC scheduling [6]: random move, move to the least loaded
resource, move from the most loaded resource and swap. The perturbation is a diversification
operator, whose main goal is to provide MILS the capability of escaping from local optima. The
acceptance criterion applies Pareto dominance to determine if the current solution is replaced
by the best solution found in the neighborhood of the perturbed solution. The iterative process
repeats until a given stopping criteria (e.g., a predefined effort stopping criterion or a stagnation
detection) is met.

Algorithm 1 Schema of the proposed MILS sceduler.

1: s0 ← GenerateInitialSolution()
2: s∗ ← LocalSearch(s0)
3: repeat
4: s′ ← Perturbation(s∗)
5: s′′ ← LocalSearch(s′)
6: s∗ ← ParetoBased-AcceptanceCriterion(s∗,s′′)
7: until stop criterion is met
8: return s∗

The proposed MILS aims at providing an efficient real-time scheduler for modern
multiprocessors, which dynamically incorporates information about the processor architecture
and also topological information about the application, provided by the user. The main features
of the processor architecture (number of cores, topology, and organization) are obtained at
runtime using the hwloc tool [7]. hwloc provides qualitative and quantitative information
about the computing elements and the underlying architecture via an Application Programming
Interface developed in the C language. Using runtime information allows the proposed
scheduler to be integrated in modern Resource Management Systems for cluster and other High
Performance Computing infrastructures.

4. Experimental evaluation
The evaluation of the proposed scheduler was performed considering problem instances of three
real scientific computing applications with different communication patterns:

• Heat : A numerical analysis application describing the evolution of temperature in a bar.
The application solves the differential equation governing the heat transfer process applying
a master/slave parallel model and domain decomposition. The communication pattern
follows a flat topology, where a master process sends data to a set of slaves processes for
computation; slaves compute and send back the results to the master, which reduces the
results. Slaves communicate with each other to deal with computations in the borders of
the domain decomposition. The topology is described in Figure 1, where M is the master,
Si are the slave processes, and communications costs are the labels of each edge.

• Workflow : Describes a generic workflow application, where data are distributed and
processed by several independent tasks, dependencies between them, according to a specific
flow. No distinguished process controls the flow, but critical path determines the efficiency
of the application. Communications and synchronizations are defined according a level-
based synchronization pattern, as described in Figure 2. Blue rectangles represents
synchronizations and the corresponding synchronization costs are marked in blue.



M

S1 S2 S3 Sn
. . .

100 100 100 100

80

80

80

Figure 1. Flat topology.

4 4 4 4

2

2

3

2 2

3 3

3

3

3 2

4 4

1

2

2

Figure 2. Application-driven topology with level-based synchronizations.

• Quicksort : This sorting algorithm follows a topology with a hierarchical order defined
between tasks. Each task communicates exclusively with tasks in the nearest levels in the
hierarchy. Synchronizations are performed between tasks in the same level. The topology
is that of a tree, where communications are performed between parent and children and
synchronizations are between siblings, as described in Figure 3.

6 4 4

4 2 2 2 2 2

2

2 2 2

Figure 3. Hierarchical topology (tree) with synchronizations between siblings.



Experiments were performed over a Intel Xeon Gold 6138 multicore server from National
Supercomputing Center (Cluster-UY), Uruguay [8]. Cluster-UY is a relevant high performance
computing platform in the Latin-American ecosystem for e-science, executing many large-scale
scientific applications that can take advantage of accurate scheduling to compute better results
in reduced execution times [9]. The hardware architecture of the considered server is presented
in Figure 4, as reported by the hwloc tool.

Figure 4. Hardware specification of the considered multicore computer
from Cluster-UY, Uruguay, obtained using the hwloc tool.

Table 1 reports the main results of the experimental evaluation of the proposed scheduler.
Results correspond to 30 independent executions of MILS, using different number of tasks (b)
and cores (a). Results of the proposed MILS are compared with a a greedy heuristic (GH)
and a traditional Round Robin (RR) method [10]. Improvements over the baseline solutions,
regarding the total execution time of the set of tasks considered and reported. The (percentage)
improvement over baseline heuristic H is defined as ∆H = (fH − fMILS )/fMILS . The best
improvements found are marked in bold font.

Table 1. MILS improvements over GH and RR baseline schedulers.

b×a Heat transfer Workflow Quicksort

∆GH ∆RR ∆GH ∆RR ∆GH ∆RR

64×6 12.8% 21.6% 9.3% 13.2% 7.7% 16.4%
64×12 8.0% 18.4% 2.0% 9.7% 3.9% 5.9%
64×24 3.6% 8.4% 8.5% 10.0% 3.2% 5.4%

128×8 10.1% 19.5% 1.5% 7.8% 3.9% 7.0%
128×16 6.7% 12.4% 5.3% 10.5% 4.3% 8.3%
128×32 2.3% 5.9% 8.2% 8.9% 3.0% 6.6%

256×16 10.8% 18.9% 9.4% 16.1% 7.3% 11.0%
256×32 7.4% 15.2% 8.3% 13.9% 4.3% 10.5%
256×64 3.2% 6.1% 6.7% 13.2% 3.7% 7.4%



Results on Table 1 demonstrate that the proposed MILS is able to compute accurate
schedules regarding both execution time of the batch of tasks and the scheduler execution time.
Improvements over the traditional RR heuristic were up to 21.6% when considering 64 tasks
to be scheduled in a six-cores server. Improvements over GH were up to 12.8%. The best
improvements were obtained for problem instances with the highest ratio of tasks per available
core. Solutions computed by MILS clearly dominated GH, as reported in the dominance analysis
presented in Figure 5 for a representative case study. MILS is able to better capture the main
features of the underlying architecture and properly explore the search space of the problem.

0 1 2 3 4

0

5

10

15

20

RR

GH
GH GH

MILS

MILS

MILS

Scheduler time (s)

T
ot
al

ti
m
e
im

pr
ov
em

en
t
(%

)

best solutions

dominated by MILS

Figure 5. Dominance analysis for a representative problem instance.

5. Conclusions and future work
This article addressed the affinity scheduling problem of parallel applications in multicore
systems to minimize the execution time of a batch of tasks, considering communications and
synchronizations between processes, and the execution time required to compute the schedule.

A MILS metaheuristic was proposed to solve the scheduling problem, including specific
Pareto-based local search operators and considering Pareto dominance as acceptance criterion for
solutions found in the search. The experimental evaluation of the proposed MILS was performed
over realistic instances of the scheduling problem, considering parallel scientific applications
with different communication/synchronization patterns and a modern multicore platform from
National Supercomputing Center, Uruguay. The main results of the evaluation indicate that
the proposed MILS is an effective method for affinity scheduling, improving up to 21.6% over
traditional scheduling techniques.

The main lines for future work are related to extend the evaluation of the proposed
multiobjective scheduler, by considering other realistic applications and multicore architectures,
and the use of automatic profiling tool to characterize the considered applications.

References
[1] Nesmachnow S, Cancela H and Alba E 2010 Soft Computing 15 685–701
[2] Markatos E and LeBlanc T 1994 IEEE Transactions on Parallel and Distributed Systems 5 379–400
[3] Subramaniam S and Eager D 1994 Affinity scheduling of unbalanced workloads ACM/IEEE Conference on

Supercomputing pp 214–226
[4] Nesmachnow S 2014 International Journal of Metaheuristics 3 320
[5] Ullman J 1975 Journal of Computer and System Sciences 10 384–393



[6] Nesmachnow S, Cancela H and Alba E 2012 Applied Soft Computing 12 626–639
[7] Goglin B 2014 Managing the topology of heterogeneous cluster nodes with hardware locality (hwloc) High

Performance Computing & Simulation pp 74–81
[8] Nesmachnow S and Iturriaga S 2019 Cluster-UY: Collaborative Scientific High Performance Computing in

Uruguay Supercomputing Communications in Computer and Information Science (Springer International
Publishing) pp 188–202

[9] Gitler I, Gomes A and Nesmachnow S 2020 Communications of the ACM 63 66–71
[10] Regueira D, Iturriaga S and Nesmachnow S 2017 Communication-aware affinity scheduling heuristics in

multicore systems High Performance Computing Communications in Computer and Information Science
(Springer International Publishing) pp 33–48


