
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons 
License Attribution 4.0 International (CC BY 4.0). 

Modeling the survivability of network structures 

© Alexander Dodonov [0000-0001-7569-9360], © Dmytro Lande [0000-0003-3945-1178] 

Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine 
dodonov@ipri.kiev.ua, dwlande@gmail.com 

Abstract. The paper describes the models of systems and investigates their struc-
tural survivability. A threshold estimate of the system survivability is introduced. 
This estimate depends on the size of the largest connected component of the net-
work model after a destructive impact on it. This estimate is more complex than 
the canonical structural survivability index, where only the disruption of network 
connectivity is taken into account. The state of networks with different topology 
is investigated when their elements (links) are removed. The introduced indicator 
depends on the network topology and its size, at the same time, it is well approx-
imated by cubic polynomials. 
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1 Formulation of the Problem 

The most important fundamental properties of systems include survivability - the ability 
of systems to adapt to new operating conditions, to withstand adverse influences in the 
implementation of the main target function. There are several types of system surviva-
bility: structural, functional, informational. 

This work is devoted to modeling the structural survivability of systems. In many 
cases, survivability is described as a qualitative property that does not lend itself to 
precise quantitative description. One of the tasks of this work is to give a clear quanti-
tative assessment of survivability. 

Structural survivability is considered as the property of a system to maintain its func-
tionality while passively resisting damage to individual elements. In a particular case, 
when the process of system elements destruction is specified, structural survivability is 
considered as structural reliability. Structural reliability criterion – the number of failed 
elements that do not violate the system performance in case of failure of any k system 
elements [1]. 

2 Generally accepted models 

The scheme of functioning of a complex system can be specified using a network, a set 
of nodes and connections, which determines the physical structure of this system. 
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In the generally accepted models [2], it is assumed that the removal of all links inci-
dent to a certain node isolates it, interrupting all paths to other nodes - the network 
becomes disconnected, and the survivability of the network is zero. 

In this work, another criterion is adopted, a threshold one, namely, the size of the 
largest connected network component is considered. The connectivity of the entire net-
work may be violated, but the system remains functionally capable if the corresponding 
maximum connected component in terms of volume (number of nodes) is not less than 
a certain predetermined threshold. 

Of course, based on this criterion, a complete graph will always be the most surviv-
ability, however, it is not obvious what kind of networks, for example, the Erdös-Renyi, 
Barabási-Albnetwork, the small world network, quasi-hierarchical networks, etc. will 
be the most survivability. Finding out these facts can be of great importance, for exam-
ple, when building security systems or organizational management systems. 

This paper examines how the probability of failure of the entire system varies from 
the probability of removing individual links in the network corresponding to the system 
for three reference networks with different topologies. The networks can then be ranked 
according to the level of structural survivability. 

In the works [3], [4], a canonical definition of the property of network survivability 
is proposed, in which destruction of individual links (graph edges) does not lead to a 
loss of connectivity. 

The canonical survivability of the network R(G, p) is defined as the probability that 
the graph (network G) remains connected after each link (edge) is removed with the 
same probability p. R(G, p) can be calculated by enumerating the skeletons of G. In 
practice, canonical survivability is closely related to the Tutte-Whitney polynomial GT

, which is a graph invariant describing its combinatorial properties. 
The Tutte-Whitney polynomial [5] depends on two variables, is defined for any un-

directed graph, and contains information about the graph connectivity. The Tutte-Whit-
ney polynomial for an undirected graph  ,G V E

 
is defined as follows: 

( ) ( ) ( ) | | | |( , ) ( 1) ( 1) ,k A k E k A A V
G A E
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where ( )k A  denotes the number of the graph connected components ( , )V A . It can be 

seen from the definition that the polynomial is completely GT
 
defined and polynomial 

in x  and y. 

For any graph it is true: 
1. (1,1)GT  is equal to the number of spanning forests; 

2. (1, 2)GT  is equal to the number of subgraphs G with the same number of con-

nected components as G; 
3. (2,1)GT  equals the number of acyclic subgraphs G. 

Quite simply, the Tutte-Whitney polynomials are calculated for the simplest "regular" 
network structures, here are the known results: 
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The Tutte-Whitney polynomial for a tree G  with n nodes: 
1( , ) .n

GT x y x   

The Tutte-Whitney polynomial for a cycle 
nG Z   with n nodes:   

1( , ) .
n

n
ZT x y y x x     

 

The Tutte-Whitney polynomial for a complete graph: 

1 2 1
1 1

1

( , ) ( ) (1, ) ( , ).
n

n k
n k k n k

k

F x y C x y y y F y F x y 
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
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The relationship between the canonical survivability ( , )R G p  and the Tutte-Whit-

ney polynomial is given by the equality: 

| | ( ) | | | | ( ) 1
( , ) (1 ) 1, .V k G E V k G

GR G p p p T
p

    
   

   

 
The exact calculation of the canonical survivability of a system is an NP-hard prob-

lem, the cost of solving which increases exponentially with the growth of the number 
of nodes and links, since to calculate the survivability of a polynomial of a graph con-
sisting of n edges, it is necessary to walk through all spanning subgraphs of graph G  [6 
]. 

Therefore, in many works, alternative approximate approaches are proposed for as-
sessing the survivability of systems, in particular, models based on an artificial neural 
network [7]. Neural networks have high performance due to the use of massive paral-
lelism of information processing. 

3 Reference networks 

For modeling, three artifact networks are investigated as an example, namely, the Bara-
bási-Albert, Erdös-Renyi and Watts-Strogatz networks. These networks can be consid-
ered as prototypes of many real networks. 

3.1 Barabási-Albert  network: model of preferential connection 

Most real artifact networks have a power-law distribution. It turned out that this distri-
bution is due to an effect called the cumulative advantage or preferential attachment. 
Power-law networks include Barabási-Albert networks. 

To build these networks, a special procedure is used, which consists in the fact that 
new nodes are gradually added to the initially small number of nodes, links from which 
are more likely to connect to those nodes that have more links. That is, in the process 
of network growth, new nodes are more likely to form connections with those nodes 
that are already characterized by a large number of connections. 
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It has been proven that it is the “rich getting richer” phenomenon that leads to the 
emergence of power laws in networks [8]). Obviously, when a new node joins the net-
work, only one link is used, i.e. the number of edges in the network is comparable to 
the number of nodes, and the network is quasi-hierarchical (the hierarchy can be vio-
lated only in the initial composition of nodes). The Barabási-Albert preferred join 
model is implemented, in particular, in the R language in the igraph package using the 
barabasi.game()  function [9] (Fig. 1). 

 

 
 

Fig. 1. Barabási-Albert network  

3.2 Erdös-Renyi network 

The Erdős-Renyi network [10] can be constructed by randomly distributing M connec-
tions between N nodes. It is sometimes called the Poisson random graph model because 
of the Poisson degree distribution for N  , or sometimes just the random graph 
model. 

This model is equivalent to a model in which the value of the number of edges M is 
replaced by the corresponding probability p of a new edge appearing in the graph. The 
random graph model is implemented in the R language in the igraph package using the 
erdos.reny.game() function (Fig. 2). 

3.3 Small World Network  

D.J. Watts and S. Strogatz discovered a phenomenon common to many real-world net-
works called the Small Worlds effect [11]. They proposed a procedure for constructing 
a visual network model, which is inherent in this phenomenon. 

This model is a one-dimensional regular lattice consisting of N nodes, where each 
node is connected only to its 4 nearest neighbors and periodic boundary conditions are 
imposed – the lattice is folded into a ring. 
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Fig. 2. Erdös-Renyi network  

Then the following procedure is performed: with a probability p , a rewiring of a small 

number of links (edges) occurs, during which they are removed and replaced by other 
links connecting two randomly selected nodes. 

In the initial state of this network – it is regular – each node of which is connected 
to four neighboring ones. Then, in this network, some "near" connections are randomly 
replaced by "distant" ones – it is in this state that the phenomenon of "small worlds" 
arises (it is clearly expressed at (0.01, 0.1)p ). 

With a further increase p , a network is formed that is close in properties to the 

Erdős-Renyi random network. To build a small world network in the R programming 
language, the watts.strogatz.game() function of the igraph library is called (Fig. 3). 

 

 

Fig. 3. Small World network  
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4 Suggested method 

In contrast to the methods presented above, which certainly deserve attention, this work 
proposes an approach based on simulation modeling. The advantages of this approach 
are obvious: the proposed procedural model is universal and applicable to any graph. 

The following approach to modeling the system survivability is implemented: 
1.  System model - a graph consisting of nodes and links (undirected)

 
( , )S V E . 

Nodes - homogeneous functional components. 
2.  "Power" of the system - the number of nodes in the largest connected component 

sV .  

3.  The system is in the “live” state, functionally capable, if the specific “power” of 
the system is not less than a certain threshold  , ie. s oV V 

, where oV  is the initial 

size of the network. 
4. A destructive effect is made on the links (edges) of the network. Each link can be 

removed with probability p .   

For each specific system, you can determine the measure of system survivability at 
a given threshold  , i.e. the probability of removing individual elements (links) *p , 

at which the system leaves the "alive" state, i.e. s oV V 
. 

5 Model analysis 

The model is implemented as a discrete process, at each step one link is removed from 
the selected network. At the same time, the number of nodes in the largest connected 
component was recalculated each time. Those. at a step s , this value will be sV , which 

is equivalent to the state of the system with the simultaneous removal of edges with 
probability /p s M . 

Simulation modeling of the process of destruction of three networks, namely, Bara-
bási-Albert, Erdös-Renyi, Watts-Strogatz, was carried out. Modeling was carried out in 
the R programming language using the igraph library. 

The source codes of programs in the R language are given in Appendix 1 (network 
mapping) and Appendix 2 (study of the dependence of the "power" of the system de-
pending on the iteration step – the number of removed edges). 

The simulation results are shown in Table 1 and in Fig. 4-6.  

If you set the destruction threshold, for example, as follows, the network is functional, 
if the size of the largest connected component sV

 
is 0.2 of the initial size of the network 

0V , i.e.: 
| | , 0.2s oV V   

 
then, accordingly, we get the values of the threshold 

probability for networks: 

Erdős-Renyi: ≈ 0.8 
Watts- Strogatz: ≈ 0.7 
Barabási-Albert: ≈ 0.5. 
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Table 1. The simulation results 

Model name Parameters Regression formula Precision R2 

Erdős-Renyi N=200, 
M=500 

–3*10-8x3 + 10-5x2 – 
0.0011x + 1.0091 

0.99 

 
Watts-Strogatz 

  
 N=200 

 
10-7x3 – 6*10-5x2 + 
0.0061x + 0.8768 

 
0.99 

    

Barabási-Albert   N=200 –4*10-7x3 + 0.0001 x2 – 
0.0187x + 1.0029 

0.97 

 
 

 
Fig. 4. "Power" of the Erdös-Renyi network (of the network vertical axis) versus the number of 
remote connections (horizontal axis) 

 

 
 

Fig. 5. "Power" of the Watts-Strogatz network (vertical axis) versus the number of remote con-
nections (horizontal axis) 
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Fig. 6. "Power" of the Barabási-Albert network (vertical axis) versus the number of remote con-
nections (horizontal axis) 

As you can see, in each case, the curves are approximated with high accuracy by cubic 
polynomials, i.e. for an exact approximation three degrees of the Tutte-Whitney poly-
nomial are sufficient. Taking into account the network topology and the analytical es-
timates given earlier, we can conclude that the greatest structural survivability among 
the three considered networks is inherent in the Erdős-Renyi random network (in the 
case under consideration, this network has the largest number of edges). 

In second place is the small world network, this network in which the nodes have 
an average power of  2 with a distribution close to Poisson. And the worst survivability 
indicators are for the Barabási-Albert network, which is quasi-hierarchical. It should be 
noted that in the latter case, in contrast to the others, there is a "convex down" function 
of survivability, which indicates that the "power" considered in this work sharply de-
creases even at low values of the probability of destructive influences (removal of 
links). 

6 Conclusions 

In this work, a new indicator of the structural survivability of the network structure was 
introduced, which is based on the specific size of the maximum component of the net-
work connectivity under a destructive effect on it. 

This indicator (the threshold probability of removing individual edges) is more com-
plex than the canonical structural survivability indicator, which takes into account only 
the network connectivity violation. Obviously, the introduced indicator depends on the 
network topology and its size, at the same time, it is well approximated even by cubic 
polynomials. 

The development of the proposed model is possible by taking into account the ine-
quality of the nodes of the network model and / or changing the "power" function of 
the network structure. Also, the considered model can be expanded in the direction of 
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accounting for networks in which links are not completely deleted, but "regenerated", 
or new links can be established. 
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Appendix 1. 

The source code of the program in the R language for displaying the 
Barabási-Albert network 

library("igraph") 
g <- barabasi.game(200, directed = FALSE) 
V(g)$color <- "yellow" 
V(g)[degree(g) > 6] $color <- "red" 
rescale <- function(nchar,low,high) { 

min_d <- min(nchar) 
max_d <- max(nchar) 
rscl <- ((high-low)*(nchar-min_d))/(max_d-min_d)+low 
rscl 

} 
node_size <- rescale(degree(g), 3, 12) 
plot(g, vertex.label = NA, vertex.size = node_size) 

Appendix 2. 

The source code of the program for studying the dependence of the "power" of 
the network depending on the iteration step (Barabási-Albert network) 

library("igraph") 
N=200 
g <- barabasi.game(N, directed = FALSE) 
d=1 
t=components(g)[2] 
r[d]=max(t[[1]])/N 
print("D: ") 
print(d) 
print(r[d]) 
X=N*N 
for (i in 1:X) { 
  u=round((N-1)*runif(1))+1 
  v=round((N-1)*runif(1))+1 
  if (g[u,v]>0) { 
    g[u,v]=0 
    d=d+1 
    t=components(g)[2] 
    r[d]=max(t[[1]])/N 
    print("D: ") 
    print(d) 
    print(r[d])  
  } 
}  
plot(r,type="l") 
 


