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Abstract We introduce some differences in the style defeasible informa-
tion is represented and inferences are made in nonmonotonic reasoning.
These, at first sight harmless, changes, in fact, helped us to discover a
very important principle guiding how inferences should be drawn in non-
monotonic reasoning, we name it the exception-first principle or EFP.
DLEF is our own variant for default logic complying with EFP. We also
show alternative definitions for Reiter’s default logics and its justified
and constrained variants within our framework. DLEF does not produce
anomalous extensions where the other default logics do. Restricted to the
language of general logic programs, DLEF, Reiter’s default logic and an-
swer set programming all coincide. This explains why ASP is appointed
as a solution to the anomalous extensions problem, ASP complies with
EFP.

1 Introduction

We introduce some differences in the style defeasible information is represented
and inferences are made in nonmonotonic reasoning, hereafter NMR, for short.
These at first sight harmless changes, in fact, helped us to discover a very impor-
tant principle guiding how inferences are (or should be) drawn in nonmonotonic
reasoning, we name it the exceptions-first principle or EFP.

As it is usual in nonmonotonic reasoning in artificial intelligence (AI), we
assume a knowledge basis comprehending certain and defeasible information,
by defeasible information we mean information that may be withdrawn in the
light of new information. However, we see that what is normally called a default
1 in NMR literature, not as an inference rule, but as a proposition subject to
exceptions. We regard an exception, then, as a precondition to the use of a
proposition as a valid premise in a reasoning course. It is expected in NMR that
defeasible propositions clash with each other: they might be jointly inconsistent
or even one proposition may prove an exception to the other. The exceptions-
first principle simply states that the exception - being a precondition to the
proposition - must be verified prior to the use of the respective proposition. Thus,
in our viewpoint it is inconceivable that a proposition in a course of reasoning
1 The default logic was proposed by Raymond Reiter in [21].



may interfere with the derivation of its own exception, either supporting or ruling
it out. Hence, in case of conflict between a proposition and its exception, it is
the exception, not the proposition, that is applied.

This might seem natural but none of the seminal nonmonotonic logics 2

comply with this principle. This issue is in the core of the so-called anoma-
lous extensions problem, which challenged the nonmonotonic logics to correctly
represent the frame problem in the late 80’s [9,2].

Accordingly to this view, we regard a defeasible proposition as a pair of for-
mulae (P,Q), where P is a proposition and Q is an exception to it. To represent
a defeasible proposition we use the notation P–( Q, read as “generally P , un-
less Q is the case”, and call it a generalization. P is called the conjecture and
Q the exception or restriction. The reader familiar with Reiter’s default logic
[21] may consider generalization P–( Q as corresponding to the prerequisite-
free multiple semi-normal default :P,¬Q

P . For instance, the defeasible proposition
“normally, birds fly unless they are penguins”, which in default logic is repre-
sented as the default bird:fly,¬penguin

fly , in our approach it is represented by the
generalization bird → fly–( penguin, which corresponds to the prerequisite-free
default :bird→fly,¬penguin

bird→fly , as we shall show in the sequel.
Now, given a knowledge basis comprehending certain and defeasible propo-

sitions - we shall call it a defeasible axiomatic basis - what are the inferences
supported by this basis? The intuitive normative is “to extract as much infor-
mation as possible without getting into inconsistency or violating exceptions”.
Different approaches to how to do that give rise to different consistency based
formalisms such as default logic and its variants. A key issue is how to accommo-
date conflicting evidence among the defeasible propositions. One and the same
formula may appear as a conjecture in a generalization and as an exception in
another. The interplay between defeasible propositions and exceptions plays a
central role in NMR. The EFP regulates how this interaction must be done, lest
unsupported inferences are drawn.

Thus, in our approach sets of generalizations are picked up as candidates
to generate the theorems of a defeasible axiomatic basis3. Candidates actually
generate the theorems of a defeasible axiomatic basis when they satisfy some
properties that specify what we call an expansion.

These properties defining expansion specify which information is inferred
from a defeasible axiomatic basis. Different properties give rise to different non-
monotonic logics as we shall show in the sequel for Reiter’s default logic and two
of its variants: Lukaszewicz’s justified [12] and Delgrande’s constrained default
logics [3].

The normative of extracting as much defeasible information as possible pre-
serving consistency and observing exceptions is pursued for all nonmonotonic

2 By seminal nonmonotonic logics we refer to Reiter’s Default Logic, McCarhty’s Cir-
cumscription and Doyle-McDermott’s Modal Nonmonotonic Logic. These logics were
published in the special issue of the Journal of Artificial Intelligence which launched
the NMR area in 1980 (vol. 13, numbers 1 and 2).

3 Candidates correspond to set of defaults in Reiter’s default logic.



logics studied here. A property of soundness (the observance of exceptions and
consistency) and one of maximality (including as much defeasible propositions
as possible while observing soundness) is common to all of these logics. Yet, each
logic presents a different specification for them. Compliance with the EFP is ex-
clusive to the Defeasible Logic with Exceptions-First (DLEF, for short), our own
logic presented in this paper. That’s why, we argue, all of these default logics,
but DLEF, generate unsupported inferences. The handling of exceptions is what
differentiates these logics since all of them coincide for normal theories, the ones
where exceptions for defeasible propositions are not represented.

It has been argued that the answer set semantics (ASP, for short) in logic
programming solves the problem of anomalous extensions, which are derived in
default logic [22]. We show, in Section 6 that ASP is, in fact, the restriction
of Reiter’s default logic for the language of logic programs. Only because logic
programs are less expressive than default logic, the anomalous extensions do
not manifest in ASP. Moreover, restricted to stratified logic programs, DLEF
also coincides with ASP. Compliance with EFP is the reason why there are no
anomalous extensions in ASP.

This paper is organized as follows. In Sect. 2 technical definitions concerning
the logical framework are given. Properties that characterize expansions are
defined in Sect. 3. In Sect. 4 we present our own logic DLEF. Section 5 presents
different versions of expansions showing how they correspond to default logic
and its variants. In section 6, we relate our work with ASP. In section 7 we
outline future work to be done.

2 Technical Preliminaries

We adopt a propositional language L4 augmented by a new operator “–( ” to
represent defeasible propositions in the form of generalizations, as defined below.

Definition 2.1. A generalization in L is an expression of the form P–( Q such
that P , Q are formulas of L. 5.

A generalization g of the form P–( Q is read as “generally P , unless Q is the
case”. ‘P ’ is called the conjecture of g, and ‘Q’ the exception or restriction of g.
We write P –( , when the restriction is a contradiction.

Definition 2.2. Let g be a generalization of the form P–( Q then it is specified:

1. Conj(g) ≡ P.
2. Rest(g) ≡ Q.

A defeasible axiomatic basis is a pair of sets of formulas and generalizations
representing certain and defeasible information, respectively.
4 For simplicity’s sake, we adopt a propositional language, although the formalism is

readily lifted to the predicate case.
5 So P and Q do not contain the connective –(.



Definition 2.3. A defeasible axiomatic basis τ in L is a pair τ = (W,G),
whereon W is a collection of formulas of L, and G is a finite6 collection of
generalizations.

The reader familiar with Reiter’s default logic [21] may recognize a gener-
alization as a prerequisite-free semi-normal multiple default, this is exactly our
intention as shown by the translation scheme from defeasible axiomatic basis
into default theories below.

Definition 2.4. Let τ = (W,G) be a defeasible axiomatic basis, ∆ = (W,D) is
the corresponding default theory where:7

D =
{

: P,¬Q

P
∈ D | P–( Q ∈ G

}
In this manner, our defeasible axiomatic basis have all advantages that prerequisite-

free semi-normal default theories have. The main feature is that semi-normal
defaults possess the same expression power of general defaults [10]. Besides,
prerequisite-free defaults enjoy the same properties as classical formulae. As, for
example, contraposition, reasoning by cases etc. In designing DLEF, we adopt
the methodological principal to keep it as close to classical logic as possible. We
consider this linear notation more convenient and elegant.

Hereafter, we assume that all definitions refer to a defeasible axiomatic basis
τ = (W,G), unless otherwise stated.

Our approach for determining the theorems supported by a defeasible ax-
iomatic basis is to determine maximal collections of compatible generalizations,
so collections of generalizations play an important role in our formalism. We
call then as candidates in τ . The motivation for this name is that collections of
generalizations are candidates to be expansions in τ .

Definition 2.5. A candidate γ in a defeasible axiomatic basis τ = (W,G) is a
collection of generalizations in τ , that is, γ ⊆ G.

Example 2.1. Let τ = (∅, {P–( Q, Q–( R,¬P–( }) Some candidates to be ex-
pansions are: γ1 = {Q–( R,¬P–( }; γ2 = {P–( Q,Q–( R}; γ3 = {P–( Q,¬P–( }.

The following definitions set technical details used in the remaining of the
paper.

Definition 2.6. Let γ be a candidate in τ , it is specified:

1. Conj(γ) ≡ {Conj(g) | g ∈ γ }. “Conj(γ)” is read “conjectures of γ”.
2. Rest(γ) ≡ {Rest(g) | g ∈ γ }.“Rest(γ)” is read “restrictions of γ”.

6 Again we use a finite collection of generalizations just for simplicity. All definitions
can be adapted to infinite collections.

7 In fact, given a default theory ∆ = (W, D) whereon all defaults are prerequisite-
free normal or semi-normal defaults, the same schema of translation can be used to
obtain the corresponding axiomatic defeasible basis τ = (W, G).



We use the operator which gives the theorems of a theory Γ in classical logic,
Th(Γ ), to define the theorems induced by a candidate γ in τ .

Definition 2.7. Given a candidate γ in τ , Thτ (γ) ≡ Th(W ∪Conj(γ)). Thτ (γ)
is called the theory associated with γ in τ .

Definition 2.8. A candidate γ is consistent in τ iff Thτ (γ) is consistent.

In Example 2.1 the theory associated with the candidates are: Thτ (γ1) =
Th({Q, ¬P}); Thτ (γ2) = Th({P, Q}); Thτ (γ3) = Th({P, ¬P}). In such case, γ1

and γ2 are consistent candidates while γ3 is not.
Our proceeding to determine the theorems of a defeasible axiomatic basis is,

then, to impose some conditions upon candidates to be considered an expansion.
The theory associated with an expansion is what we call an admissible set of the-
orems of a defeasible axiomatic basis, this is our equivalent notion for extension
in default logic.

If we regard the formulas in W and the generalizations in G, as premises
of a defeasible axiomatic basis τ = (W,G), there is an important difference
between monotonic and nonmonotonic logics. In monotonic logic, all premises
are theorems of the theory, in nonmotononic logic, otherwise. Note that not
all generalizations of a defeasible axiomatic basis can be in an expansion, for
a generalization to be in an expansion, the expansion must be consistent and
cannot prove exceptions of its own constituents.

Thus, finding expansions is a pre-processing phase yielding which generaliza-
tions will contribute to form an admissible set of theorems. Once this is done,
theorems are determined by classical logic. In this manner, we separate the
monotonic and nonmonotonic process for deriving theorems from a defeasible
axiomatic basis.

In Example 2.1, γ2 = {P–( Q,Q–( R} is not an expansion because the
exception of P–( Q is violated since Thτ (γ2) = {P,Q} proves the exception of
P–( Q. γ3 = {P–( Q,¬P–( } is not an expansion either, because Thτ (γ3) =
{P,¬P} is not consistent. On the other hand, γ1 = {Q–( R,¬P–( } is a DLEF
expansion as shown in Sect. 5

In order to present the properties which characterizes expansions we intro-
duce the binary relations of rejection and exclusion on candidates.

Roughly, a candidate γ1rejects a candidate γ2 if the restrictions of γ2 are
proved in γ1. Exclusion implies that the theories of the candidates are incon-
sistent. Rejection and exclusion involving generalizations are just specials cases
when the candidate is a singleton.

Definition 2.9. If Γ = {P1, .., Pn} is a collection of formulas in L:∨
Γ ≡ {P1 ∨ ... ∨ Pn} and ¬Γ ≡ {¬P1, ...,¬Pn}.

Definition 2.10. (Rejection and Exclusion)

1. γ rejects γ′ in τ iff Thτ (γ) `
∨

Rest(γ′);
2. γ0 ⊆ γ′ is a minimal part of γ′ rejected by γ in τ iff γ rejects γ0 in τ and

for all γ1 ( γ0, γ does not reject γ1 in τ .



3. γ excludes γ′ in τ iff γ ∪ γ′ is inconsistent in τ .

In particular, we say that:

1. g rejects γ in τ , if {g} rejects γ in τ , that is, Thτ ({g}) `
∨

Rest(γ);
2. γ rejects g in τ , if γ rejects {g} in τ , that is, Thτ (γ) ` Rest(g).
3. γ excludes g in τ , if γ excludes {g} in τ , that is, γ ∪ {g} is inconsistente.

In example 2.1, γ1 = {Q–( R,¬P–( } rejects γ3 = {P–( Q,¬P–( } for
Thτ (γ1) = Th({Q , ¬ P}) `

∨
Rest(γ3) = Q ∨ ⊥ ≡ Q. Moreover, {P–( Q} is

the minimal part of γ3 rejected by γ1.
Now, we are in a position to present the properties which will characterize

expansions.

3 Properties

In this section we shall define some properties on candidates. Expansions are
candidates satisfying some properties to be specified: soundness, completeness
and exceptions-first. In fact, four properties because we define pointwise and
global soundness. The flexibility of our approach allows us to define different
logics just changing the properties imposed upon the expansions. This will be
done in section 4. Our own logic DLEF is the only nonmonotonic logic - we claim
that - to actually comply with the exceptions-first principle.

Soundness guarantees that a generalization does not belong to an expansion
if its exception is proved in the associated theory. Global soundness, for instance,
implies that, for finite candidates γ, the disjunction of the restrictions of the
generalizations in γ is not proved in τ . Soundness, in any form, implies the
consistency of the associated theory in τ .

Definition 3.1. (Soundness)

1. A candidate γ is pointwise sound in τ iff for all g ∈ γ, Thτ (γ) 0 Rest(g).
2. A candidate γ is globally sound in τ iff Thτ (γ) 0

∨
Rest(γ).

Example 3.1. Let τ = (∅, {P–( Q,R–( ¬Q})
There are three pointwise sound candidates, namely: γ1 = {P–( Q}; γ2 =

{R–( ¬Q}; γ3 = {P–( Q,R–( ¬Q}. Candidates γ1 and γ2 are also globally
sound in τ . On the other hand, γ3 is not globally sound because Thτ (γ3) `∨

Rest(γ3) = Q ∨ ¬Q.

The following lemmas can be easily proved.

Lemma 3.1. Globally soundness implies pointwise soundness.

Lemma 3.2. If γ is pointwise sound in τ then γ is consistent in τ .

Completeness states that a generalization is out of an expansion only if it
is incompatible with the expansion, that is, either it makes the expansion incon-
sistent or its exception is proved in the expansion. In other words, completeness
requires that as many generalizations as possible belong to an expansion.



Definition 3.2. (Completeness) A candidate γ is complete in τ iff if g /∈ γ
then γ rejects or excludes g in τ .

Example 3.2. Let τ = (∅, {g1 = P–( Q, g2 = R–( ¬Q, g3 = Q–( , g4 = ¬Q–( }).
There are two complete candidates, namely: γ1 = {P–( Q,¬Q–( }; γ2 =

{R–( ¬Q,Q–( }.
Note that γ1 is complete because g2 is rejected and g3 is excluded by γ1. γ2

is complete because g1 is rejected and g4 is excluded by γ2.

The Exceptions-First Principle8 captures a very important feature of
reasoning with propositions subject to exceptions. Exceptions stipulate meta
conditions to the applicability of a generalization. In order to apply a general-
ization, first it must be decided whether the exception is present. Only in case
of its absence the generalization comes into play. By no means a proposition
may intervene in the (non-)derivation of its own exception. This means that in
case of a conflict between a generalization leading to an exception and the cor-
responding generalization, this guiding principle to defeasible reasoning asserts
that the former must be derived. To illustrate the principle let us see a very
simple defeasible axiomatic basis with only two generalizations (Ex. 3.3).

Example 3.3. Let τ = (∅, {g1 = P–( Q, g2 = Q–( }):

Notice that g2 leads to an exception to g1, hence these two generalizations are
incompatible. There is no consensus in the AI community about the outcoming
of this very simple defeasible axiomatic basis. Some argue that only g2 should be
derived and others argue for splitting the expansions: one applying g1 and other
applying g2. Translating the example in Reiter’s default logic (according with
Def. 2.4), it applies only the second rule, and this has motivated some authors
to “correct” default logic proposing variations which split this theory in two
expansions. This is the case of the justified and constrained default logics [12,3]
shown in section 5. We believe the EFP settles this issue out: only the second
generalization should be applied.

The situation is worse than it might seem at first glance. In example 3.3 is
not the case of an isolated artificial example. As a matter of fact, it is in the
core of NMR. By essence, (we could say by definition) to reason is to chain par-
tial conclusions until we reach a final conclusion. In NMR, this means to chain
conclusions coming from defeasible propositions, which, in turn, might act as
an exception to the next defeasible proposition. So, how the course of reasoning
follows? The EFP is definite with no room for hesitation: derive the exception
and preclude the corresponding defeasible proposition. None of the nonmono-
tonic logics that we know is aware of this guiding principle. This includes Re-
iter’s default logic and its variants justified and constrained logics; McCarthy’s
circumscription [16]; Moore’s Autoepistemic Logic [17]. In consequence, all of
them engage in deriving the so called anomalous extensions [18].

Next, we define the Exceptions-First Principle.
8 The exceptions-first principle was first enunciated in [19], its specification, however,

uses a partial ordering on the defeasible propositions.



Definition 3.3. (Exceptions-First) A candidate γ complies with the exceptions-
first principle in τ iff, for all candidates γ’, if γ0 is a minimal part of γ rejected
by γ’ then γ − γ0 rejects or excludes γ’ in τ .

Example 3.4. Let τ = (∅, {P–( Q, (Q→ ¬P )–( , Q–( })
Candidate γ1 = {(Q → ¬P )–( , Q–( } is globally sound and complete, as

no consistent candidate rejects γ1, it also satisfies EFP. On the other hand,
candidate γ2 = {P–( Q, (Q→ ¬P )–( } is globally (hence, also pointwise) sound
and complete, however do not satisfy EFP, for γ′ = {Q–( } rejects P–( Q ∈ γ2,
but γ′ is not rejected or excluded by {(Q→ ¬P )–( }. We shall see in the sequel
that γ1 is a DLEF expansion and γ2 is a default logic expansion. γ2 is considered
anomalous because the generalization P–( Q interfere to derive ¬Q, blocking
the derivation of its exception in γ2.

The ideas on this paper were already present in initial form on the PhD thesis
of one of the authors entitled Defeasible Reasoning with Exceptions-First, par-
ticularly the exceptions-first principle (this is unique for us) and the approach
of specifying extensions through properties [19], although there in a different
language and notation. Independently from us, and at the same time, Christine
Froidevaux and Jérôme Mengin adopted a similar approach in [7] for computing
extensions. The properties of regularity and saturation of sets of defaults corre-
sponds to the properties of soundness and maximal soundness (or completeness,
depending on the version defined), respectively. As they work with general de-
faults (default with prerequisites are allowed in their formulation), they also
define the property of grounded sets of defaults. It is worth saying that we do
not work with prerequisites for an epistemological position of us: we see defea-
sible propositions as propositions subject to exceptions, apart from that, they
should be represented in the same way we represent conclusive propositions. We
deliberately avoid adding extra ontological entities. Froidevaux and Mengin also
show how to represent Reiter’s default logic and some variants including justi-
fied and constrained logics, in their framework. Unfortunately only recently we
became acquainted with their work, however we fell vindicated to find out that
some other researchers adopt a similar point of view.

4 Defeasible Logic with Exceptions-First - DLEF

Our modular approach to determine the theorems from a defeasible axiomatic
basis allows us to define an expansion simply listing the properties it must satisfy.
An admissible set of theorems is simply the theory associated to the expansion.
All nonmonotonic logics agree that an expansion must be consistent, do not
violate exceptions (a generalization must not be a constituent of an expansion,
if its exception is a theorem of this expansion) and it must be maximal, in
the sense it contains as much generalizations as possible while preserving these
properties. Apart from being consistent (there is no room for debate here, since
the classical notion of consistency is adopted), there is more than one way to



achieve the other requirements. These features give rise to different logics. We
show some of these logics.

Here, we present the properties that define our own logic DLEF.

Definition 4.1. A candidate γ is a DLEF expansion in τ iff

1. γ is globally sound in τ ;
2. γ complies with the exceptions-first principle in τ ;
3. γ is maximal with relation of both properties in τ , that is, if γ ( γ′ then γ′

is not globally sound or do not comply with the exceptions-first principle in
τ .

γ being globally sound implies that it is consistent and do violate exceptions.
Moreover, it means that it strongly commits to assumptions, a desirable property
as argued by [3]. Further still, the second property is the EFP, and DLEF is the
only nonmonotonic logic to comply with it.

Example 4.1 shows a representation of the emblematical bird problem in our
formalism where A stands for animal, B for birds, P for penguins, F for flies, E
for beaked animal and L for platypus.

Example 4.1. Let τ = ({E, (E → A)}, {(A → ¬F )–( B, (B → F )–( P, (E →
B)–( L})

This basis has only one DLEF expansion: γ1 = {(B → F )–( P, (E → B)–( L}.
Observe that γ2 = {(A → ¬F )–( B, (E → B)–( L} is pointwise sound and
complete. However, γ2 do not complies with EFP for γ1 rejects (A→ ¬F )–( B ∈
γ2, however, γ2−{(A→ ¬F )–( B} do not reject or excludes γ1. Not withstand-
ing that, as we shall see in the next section, γ2 corresponds to an extension
in Reiter’s default logic. In fact, to an anomalous extension. In γ2 we conclude
that the beaked animal is not a bird, simply from knowing that it is an animal.
Clearly, this is not a supported line of reasoning.

A last word about the exceptions-first principle. The best mathematical anal-
ogy we can make is with is Zermelo and Fraenkel set theory [5]. A hierarchy on
sets is postulated, a set can only have members from inferior levels. We claim that
a similar hierarchy is presupposed in nonmonotonic reasoning: exceptions induce
an inferential hierarchy on defeasible propositions [19]. A defeasible proposition,
which participates in a derivation to an exception to another defeasible propo-
sition, appears in an inferior level in the inferential hierarchy. Inference is, then,
performed from the bottom up (the partial order on the hierarchy must be well
founded). The EFP is thus warranted, the derivation of an exception to a de-
feasible proposition is performed in lower levels in relation to it, hence without
its interference. In set theory a set cannot have as a member a set from the
same or above level. In nonmonotonic reasoning a proposition cannot have as
its exception, a fact from the same or above level. This is equivalent to say that
a defeasible proposition cannot be relevant (meaning, it cannot participate in a
derivation) to its own exception, lest the exception would be in a higher level.

This viewpoint provides us with a criterion on the good formation of defea-
sible axiomatic bases. To the induced binary relation to produce an hierarchy



with a bottom level, it must be a strict well-founded order. Thus, a defeasible ax-
iomatic basis is well-formed if the relation induced on the defeasible propositions
by the exceptions is a strict well founded order (transitive and anti-reflexive).
A study on well formed defeasible axiomatic bases is found in [15]. There it is
proved that well-formed defeasible axiomatic bases always possess a DLEF ex-
pansion.

In next section we formulate definitions of expansions corresponding to Re-
iter’s Default Logic, Justified Default Logic [12] and Constrained Default Logic
[3]. In this manner, we will be capable to compare these default logics with DLEF.

5 Expansions for Default Logics

In this section we show that the diverse definitions of expansion in fact cor-
respond to Reiter’s original Default Logic and the Justified and Constrained
variants. The ones acquainted with these works will notice how much simpler
our equivalent formulation is. Unfortunately, for lack of space in this conference,
it is out of the scope of this paper to present their definitions. For instance,
while Lukaszewicz appeals to an awkward fixed-point of a binary operator on
sets of formulas, justified expansion is defined just as a maximal sound set of
generalizations (defaults). This also shows how flexible our modular approach
is: just changing required properties different logics are obtained. The proofs of
theorems are omitted - this can be considered challenge to the reader to try to
prove them - but they appear in [24].

We name the expansions after the variants of default logic: justified, con-
strained or default expansion corresponding to, Justified Default Logic of Lu-
kaszewicz [12]; Constrained Default Logic of Delgrande, Schaub and Jackson [3];
and the original Reiter’s Default Logic [21], respectively.

5.1 Reiter’s Default Logic - DL

This is the seminal approach all others are based into it. It has been introduced
as a formal technique for handling reasoning with incomplete information. Ac-
cording to Reiter, an extension should be the smallest set of formulas containing
the initial set of facts W , being deductively close and including each consequent
of each applicable default. To formalize his notion of applicability, Reiter used
a fixed-point operator while a default expansion is obtained, in our framework,
simply requiring the stronger property of completeness instead of maximality.
While the maximal variants (justified and constrained default logic) always have
an expansion, default expansions may not exist for some axiomatic basis.

Definition 5.1. A candidate γ is a default expansion in τ iff

1. γ is pointwise sound in τ ;
2. γ is complete in τ .

Theorems 5.1 and 5.2 shows the correspondence from default expansions and
original definition of default logic.



Theorem 5.1. If γ is a default expansion in τ = (W,G) then E = Thτ (γ) is a
default extension of ∆ = (W,D), where D is the translation of G.

Theorem 5.2. If E is a default extension of ∆ = (W,D) and GDE
D is the set

of generating defaults of E, then the translation of GDE
D is a default expansion

in τ = (W,G), where G is the translation of D.

Theorem 5.3. If γ is a DLEF expansion in τ = (W,G) then γ is a default
expansion in τ = (W,G).

Thus DLEF have less extension than Reiter’s extension. This is for DLEF ad-
vantage, the “extra” extension are anomalous.

Default logic has been intensively studied and many proposal for modifying
it have been advanced. Next, we show some of them.

5.2 Justified Default Logic - JDL

Justified default logic was introduced by Lukaszewicz [12] with the technical
motivation of obtaining a local, iterative and constructive concept of extension.
In Reiter’s original formalism an extension cannot be construct applying the de-
faults successfully because a new default may dismiss an already applied default.
Technically we say that default logic in general is not semi-monotonic, because
Reiter proves that the special (and limited) case of normal default theories are
semi-monotonic. . 9

Lukaszewicz “fixes” this technical drawback once his logic is semi-monotonic.
However, does he obtain the right inferences from a default theory? For instance,
in the basic pattern of Example 3.3, JDL obtains two extensions. In term of
inference this is just the opposite direction we take to justify the EFP. A justified
expansion is defined as:

Definition 5.2. A candidate γ is a justified expansion in τ iff

1. γ is pointwise sound in τ ;
2. γ is maximal pointwise sound in τ , that is, if γ ( γ′ then γ′ is not pointwise

sound in τ .

The next theorems states that indeed justified expansions correspond to jus-
tified extensions.

Theorem 5.4. If γ is a justified expansion in τ = (W,G) then E = Thτ (γ) is
a justified extension wrt J = {Conj(γ) ∪ ¬Rest(γ)} of ∆ = (W,D), where D is
the translation of G.

Theorem 5.5. If E is a justified extension of ∆ = (W,D) wrt J and GD
(E,J)
D is

the set of generating defaults of E, then the translation of GD
(E,J)
D is a justified

expansion in τ = (W,G), where G is the translation of D.
9 Reiter proves that the special (and limited) case of normal default theories are semi-

monotonic.



5.3 Constrained Default Logic - CDL

Constrained Default Logic [3] has the property of “committing to assumptions”,
no inference is made based on contradictory assumptions (justifications of de-
faults). CDL incorporates a global notion of consistency to default logic. So, in
CDL instead of checking consistency of defaults one by one separately, they are
jointly considered. As a consequence, it is also semi-monotonic allowing a truly
iterative definition of extension. Like JDL, inferentially it takes the opposite di-
rection from EFP, and it also produces unwarranted extensions. A constrained
expansion is defined as

Definition 5.3. A candidate γ is a constrained expansion in τ iff

1. γ is globally sound in τ ;
2. γ is maximal globally sound in τ , that is, if γ ( γ′ then γ′ is not globally

sound in τ .

Theorems 5.6 e 5.7 show the correspondence from constrained expansions
and original definition of CDL.

Theorem 5.6. If γ is a constrained expansion in τ = (W,G) then (E = Thτ (γ),
C=Th(W∪Conj(γ)∪¬Rest(γ)) is a constrained extension of ∆ = (W,D), where
D is the translation of G.

Theorem 5.7. If (E,C) is a constrained extension of ∆ = (W,D) and GD
(E,C)
D

is the set of generating defaults of (E,C), then the translation of GD
(E,C)
D is a

constrained expansion in τ = (W,G), where G is the translation of D.

Let see the expansions generated by the different versions in Example 5.1.
The example is similar to one used in [3] to show weak and strong commitment
to assumptions. For that matter, each variant behaves distinctly. JDL, weakly
but not strongly commits to assumptions; CDL, weakly and strongly commits
to assumptions; DL, neither weakly nor strongly commits to assumptions; and
DLEF, strongly but not weakly commits to assumptions.

Example 5.1. τ = (∅, {P–( ¬Q,R–( Q,S–( P ∨R}):
JDL expansions: γJ1 = {P–( ¬Q, R–( Q }; γJ2 = {S–( P ∨ R }.
CDL expansions: γC1 = {P–( ¬Q}; γC2 = { R–( Q }; γC3 = {S–( P ∨ R }.
DL expansion: γD1 = { P–( ¬Q, R–( Q}.
DLEF expansions: γDLEF1 = { P–( ¬Q }; γDLEF2 = {R –( Q }.

The separation of P–(¬Q and R–( Q in two different expansions sample
that the logic strongly commits to assumptions. Moreover, the admission of an
expansion with S–( P ∨ R comes of the fact of the logic weakly commits to
assumptions.



6 Answer Set and Stratified Logic Programs

In this section, we analyse the relations between DLEF and Reiter’s default logic
with Answer Set Logic Programming. Stable models were introduced in [8] and
since then it became the most successful approach for logic programming spe-
cially after 1999 when Marek and Truszczynski stablished the basis for the An-
swer Set Programming (ASP) paradigm [13]. It revitalizes the role of logic in
many areas of AI, as, for instance, in planning and argumentation [25].

We show that Reiter’s default logic and ASP produce the same models when
default logic is restricted to the language of general logic programs. Marek and
Truszczynski [14] proved a theorem to the same effect translating logic programs
into default theories. We use the reverse strategy: we apply the concept of ex-
tensions to logic programs and show this is just another way of defining stable
models.

Definite Logic programs are set of clauses of the form: A ← A1, . . . , An,
where, A, Ai are all atoms An interpretation for a logic program is a set of atoms.
Associated to a definite logic program, Π, there is an operator on interpretations
of Π defined as follows: FΠ(I) = {A|A← A1, . . . , An ∈ Π and A1, . . . , An ∈ I}.

The operator FΠ , being monotonic, has a least fixed point denoted lfp(FΠ).
This is called the minimal model of the program Π [23]. lfp(FΠ) can also be
characterized as the least closed set of FΠ [1].

General logic programs are set of clauses including negation, that is, clauses
of the form: A ← A1, . . . , An, not B1, . . . , not Bk (A, Ai, Bi are atoms, as
before). The ASP semantics associates an operator FΠ on interpretations for a
general program Π. For any interpretation I let ΠI be the program obtained
from Π by deleting:

1. Each clause that has a literal not B in its body with B ∈ I;
2. All negative literals in the remaining clauses.

Now, ΠI is a definite program, define FΠ(I) = lfp(FΠI
). FΠ is not monotonic

and therefore it might have one, none or several fixed points. The stable model
for a general program Π is, then, defined as a minimal fixed point of FΠ , when
there is at least one.

In turn, Reiter’s default logic can be adapted for logic programs. Given a
general logic program Π, define ΓΠ on interpretations as follows: ΓΠ(I) is a
minimal set of atoms such that:

(i) for all A← A1, . . . , An, not B1, . . . , not Bk ∈ Π, if A1, . . . , An ∈ ΓΠ(I)
and B1, . . . , Bk /∈ I, then A ∈ ΓΠ(I). We say that I is an extension for Π iff
I = ΓΠ(I).

This “Reiter’s semantics” for logic programs coincide with ASP.

Theorem 6.1. Let Π be a general logic program, I is a stable model for Π iff
I is an extension for Π.

Proof. Just observe that for all interpretations I of Π, ΓΠ(I) = FΠ(I). To show
that ΓΠ(I) ⊆ FΠ(I) it is enough to show that FΠ(I) satisfies condition (i) in



the definition of ΓΠ(I). Suppose A ← A1, . . . , An, not B1, . . . , not Bk ∈ Π.
Assume A1, . . . , An ∈ FΠ(I) and B1, . . . , Bk /∈ I.Hence, A ← A1, . . . , An ∈ ΠI .
As, A1, . . . , An ∈ FΠ(I) then, A ∈ FΠI

(FΠ(I)) , for FΠ(I) is the least fixed point
of FΠI

. For the converse, it is enough to show that FΠI
(ΓΠ(I)) ⊆ ΓΠ(I) ,for

FΠ(I) is the least fixed point of FΠI
. Let A← A1, . . . , An ∈ ΠI and A1, . . . , An ∈

ΓΠ(I).There are two cases:

1. A← A1, . . . , An ∈ Π , then, by the condition (i) in the definition of ΓΠ(I),
A ∈ ΓΠ(I).

2. A ← A1, . . . , An, not B1, . . . , not Bk ∈ Π, whereon, by the construct of
ΠI , B1, . . . , Bk /∈ I.Hence, by the condition (i) in the definition of ΓΠ(I), A
∈ ΓΠ(I).

Hence, ASP produce just the same models as Reiter’s default semantics for
logic programs. Therefore, how can one, in one hand, acknowledge that Re-
iter’s default logic produces anomalous extensions, and, on the other, claim that
ASP solves the anomalous extension problem? In fact, the “solution” is not in
ASP, but in the restricted language, which does not allow the expression of the
anomalous extensions. Indeed, Lifschitz argues along this line in [11]. He states
in section 2.4, pg. 43, that “Paradoxically, limitations of the language of logic
programs play a positive role in this case (the “Yale Shooting Problem”) by
eliminating some of the “bad” representational choices that are available when
properties of actions are described in default logic”. The EFP is a better expla-
nation for the correct representational choice.

On the other hand DLEF semantics for logic programs with negation can also
be defined, then it can be shown that DLEF, Reiter’s and ASP semantics all co-
incide for stratified general programs [20]. The “Yale Shooting Problem”, for in-
stance, is represented by a stratified logic program. Compliance with exceptions-
first principle in stratified programs is the effective reason why ASP semantics
solves the anomalous extensions problem.

In DLEF, as we mention at the end of section 4, a syntactic order on the defea-
sible propositions of a defeasible axiomatic basis can be defined [19]. When this
order is strict (transitive and anti-reflexive) we say that the defeasible axiomatic
basis is well-formed. We have shown in [15] that well-formed basis always have
at least an extension. There is a direct relation between this order and stratified
logic programs. Translating general clauses in logic programs to generalizations
in defeasible axiomatic basis in the natural way, it can be shown that stratified
logic programs are translated inyo well-formed defeasible axiomatic basis [20].
Moreover, the deductive closure of a stable model of the logic program is a DLEF
extension of the respective defeasible axiomatic basis. This is another way of
explaining why stratified logic program have a stable model.

7 Future Work: Inductive Definitions

As future work, we are investigating how to treat logics as formal systems or
inductive definitions [1]. Monotonic logics are related to monotone inductive



definitions and then to monotone operators. Nonmonotonic logics correspond to
nonmonotonic inductive definitions and operators. Monotone operators have a
constructive least fixed point, and this is defined as the set inductively generated.
Nonmonotone operators may have one, none or several fixed points, and there
is no constructive way to determine them. It is usual to define, then, the set
generated by a nonmonotone inductive definition as a fixed point of the respective
nonmonotone operator, when it exists (what other option could be?). This is the
case of Reiter’s default logic and ASP, for instance.

At the moment, we are developing the following line of reasoning. Nonmono-
tone inductive definitions do not have fixed points because they are not pred-
icative as monotone inductive definitions are. Predicativity was very polemic at
the beginning of the XX century and it is in the core of the Russell’s paradox in
set theory, for instance, the set {x|x /∈ x} is not predicative [6]. We reckon the
exceptions-first principle as a way of restoring predicativity in nonmonotone in-
ductive definitions. Well-formed inductive definitions always have a fixed point
in compliance with the exceptions-first principle. It might have others not in
compliance with EFP, these will be the anomalous fixed-points. For instance,
stratified logic programs (a logical program can be regarded as an inductive def-
inition, see [4]) are well-formed in the sense of the EFP. That is why they have
a fixed point or stable model. The EFP states three important things:

1. Not all inductive definitions are well-formed.
2. Not all fixed points of a well-formed nonmonotone inductive definition should

be regarded as an inductively generated set, only the ones that are predica-
tive.

3. EFP and predicativity - not the restriction on the expressivity of language -
solve and explain the anomaly of some fixed points of nonmonotone inductive
definitions.
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