
GLukG logic and its application for
Non-Monotonic Reasoning

Mauricio Osorio Galindo,
Universidad de las Américas - Puebla,

Email: osoriomauri@ gmail. com

Abstract. We present GLukG, a paraconsistent logic recently intro-
duced. We discuss our motivation as well as interesting properties of this
logic. We introduce a non-monotonic semantics based on GLukG.

1 Introduction

It is well known that monotonic logics can be used to define nonmonotonic
semantics [8,7,5] and more recently in [4,17,15,16]. It is also well known that
nonmonotonic reasoning (NMR) is useful to model intelligent agents. It has
recently been shown that GLukG logic can be used to express interesting non-
monotonic semantics [16]. More generally, two major classes of logics that can be
successfully used to model nonmonotonic reasoning are (constructive) interme-
diate logics and paraconsistent logics [17,15,16]. The most well known semantics
for NMR is the stable semantics [6]. This semantics provides a fairly general
framework for representing and reasoning with incomplete information. There
are programs such as P1:
a← ¬b.
a← b.
b← a:

that do not have stable models. This is not exactly a problem of the stable
semantics but sometimes we have applications where we need a behavior closer
to classical logic such as in argumentation [11]. The stable semantics has been
extended to include default negation in the head of the programs (see for instance
[19]) and in this case one can construct inconsistent programs such as P2:
¬a.
a.
b← a.

In this case the stable semantics gives no stable models. The sceptical version of
the stable semantics infers every formula in this example. This is also the case
for most of the traditional logic programming semantics in which inconsistency
might spoil the whole program. Most logics (at least classical logic and all con-
structive intermediate logics) share the theorem (a ∧ ¬a)→ b, meaning that in
the presence of an inconsistency (a ∧ ¬a) then one prove anything (such as the

osoriomauri@gmail.com

unrelated formula b in this example). Paraconsistent logics reject this principle,
the do no not like to be destructive in the presence of inconsistent information.
To avoid this problem the stable semantics was generalized by [18] to deal with
inconsistent programs. However this approach only allows disjunctive programs.
In the approach by [18] it is also not clear what is the proof theory that supports
their proposal.

We propose an approach that can be used by any paraconsistent logic stronger
or equal to Cω, the weakest paraconsistent logic introduced by da Costa himself.
We select however the paraconsistent logic GLukG because it is 3-valued and is
very expressive. GLukG can define the same class of functions as Lukasiewicz 3-
valued logic. In GLukG we can express very directly the strongest intermediate
logic (also known as the Gödel’s 3-valued logic G3). This is important because
G3 is adequate to express the stable model semantics. However if we use the
original Cω we obtain similar interesting results. Moreover, GLukG can directly
express the GNM-S5 semantics [16] for the class of disjunctive programs. Our
approach is not restricted to a particular fragment of propositional logics, it is
defined for any type of propositional theory.

The structure of our paper is as follows. Section 2 describes the general
background of the paper including the definition of GLukG logic. In Section 3
we present our motivation of GLukG logic. This a contribution of this paper,
because is the first time that it is explained how and why we came out with
GLukG logic. In Section 4 we present an axiomatization of GLukG logic.

In Section 5 we discuss two main properties of GLukG logic that makes it
interesting. In Section 6 we present our main contribution, namely the relation
of GLukG logic and nonmonotonic reasoning. We also introduce a nonmonotonic
semantics that can deal with inconsistent programs, that is our final contribution
to this paper. Finally, in Section 7 we present the conclusions of the paper.

We assume that the reader has some familiarity with basic logic such as
chapter one in [9].

2 Background

We first introduce the syntax of logic formulas considered in this paper. Then
we present a few basic definitions of how logics can be built to interpret the
meaning of such formulas in order to, finally, give a brief introduction to several
of the logics that are relevant for the results of our later sections.

2.1 Syntax of formulas

We consider a formal (propositional) language built from: an enumerable set L
of elements called atoms (denoted a, b, c, . . .); the binary connectives ∧ (con-
junction), ∨ (disjunction) and → (implication); and the unary connective ¬
(negation). Formulas (denoted A, B, C, . . .) are constructed as usual by com-
bining these basic connectives together with help of parentheses. We also use
A↔ B to abbreviate (A→ B) ∧ (B → A) and α ← β to abbreviate β → α. It

is useful to agree on some conventions to avoid the use of so many parenthe-
sis in writing formulas. This will make the reading of complicated expressions
easier. First, we may omit the outer pair of parenthesis of a formula. Second,
the connectives are ordered as follows: ¬,∧,∨,→, and ↔, and parentheses are
eliminated according to the rule that, first, ¬ applies to the smallest formula
following it, then ∧ is to connect the smallest formulas surrounding it, and so
on.

A theory is just a set of formulas and, in this paper, we only consider finite
theories. Moreover, if T is a theory, we use the notation LT to stand for the set
of atoms that occur in the theory T . A literal l is either an atom or the negation
of an atom. A normal program is a set of formulas of the form α→x, where x is
an atom and α is a conjunction of literals. When α is empty then formula α→x
reduces to the atomic formula x. Normal programs are of particular interest in
Logic Programming.

2.2 Logic systems

We consider a logic simply as a set of formulas that, moreover, satisfies the
following two properties: (i) is closed under modus ponens (i.e. if A and A→B
are in the logic, then so is B) and (ii) is closed under substitution (i.e. if a formula
A is in the logic, then any other formula obtained by replacing all occurrences
of an atom b in A with another formula B is still in the logic). The elements
of a logic are called theorems and the notation `X A is used to state that the
formula A is a theorem of X (i.e. A ∈ X). We say that a logic X is weaker than
or equal to a logic Y if X ⊆ Y , similarly we say that X is stronger than or equal
to Y if Y ⊆ X.

Hilbert style proof systems There are many different approaches that have been
used to specify the meaning of logic formulas or, in other words, to define log-
ics. In Hilbert style proof systems, also known as axiomatic systems, a logic is
specified by giving a set of axioms (which is usually assumed to be closed by
substitution). This set of axioms specifies, so to speak, the ‘kernel’ of the logic.
The actual logic is obtained when this ‘kernel’ is closed with respect to the in-
ference rule of modus ponens. Our presentation of our proof system of GLukG
logic follows the Hilbert style, see [9]. The notation `X F for provability of a
logic formula F in the logic X is usually extended within Hilbert style systems;
given a theory T , we use T `X F to denote the fact that the formula F can be
derived from the axioms of the logic and the formulas contained in T by a se-
quence of applications of modus ponens. Recall that, in all these definitions, the
logic connectives are parameterized by some underlying logic, e.g. the expression
`X (F1 ∧ · · · ∧ Fn)→ F actually stands for `X (F1 ∧X · · · ∧X Fn)→X F .

Cω logic [3] is defined by the following set of axioms:

Pos1 a→ (b→ a)
Pos2 (a→ (b→ c))→ ((a→ b)→ (a→ c))
Pos3 a ∧ b→ a

Pos4 a ∧ b→ b
Pos5 a→ (b→ (a ∧ b))
Pos6 a→ (a ∨ b)
Pos7 b→ (a ∨ b)
Pos8 (a→ c)→ ((b→ c)→ (a ∨ b→ c))
Cω1 a ∨ ¬a
Cω2 ¬¬a→ a

Note that the first 8 axioms somewhat constraint the meaning of the →, ∧ and
∨ connectives to match our usual intuition. It is a well known result that in any
logic satisfying axioms Pos1 and Pos2, and with modus ponens as its unique
inference rule, the deduction theorem holds [9].

Multivalued logics An alternative way to define the semantics for a logic is by the
use of truth values and interpretations. Multivalued logics generalize the idea of
using truth tables that are used to determine the validity of formulas in classical
logic. The core of a multivalued logic is its domain of values D, where some of
such values are special and identified as designated. Logic connectives (e.g. ∧,
∨, →, ¬) are then introduced as operators over D according to the particular
definition of the logic.

An interpretation is a function I : L → D that maps atoms to elements in the
domain. The application of I is then extended to arbitrary formulas by mapping
first the atoms to values in D, and then evaluating the resulting expression in
terms of the connectives of the logic (which are defined over D). A formula is
said to be a tautology if, for every possible interpretation, the formula evaluates
to a designated value. The most simple example of a multivalued logic is classical
logic where: D = {0, 1}, 1 is the unique designated value, and connectives are
defined through the usual basic truth tables. If X is any logic, we write |=X α to
denote that α is a tautology in the logic X. We say that α is a logical consequence
of a set of formulas Γ (denoted by Γ |=X α) if

∧
Γ → α is a tautology.

Note that in a multivalued logic, so that it can truly be a logic, the implication
connective has to satisfy the following property: for every value x ∈ D, if there
is a designated value y ∈ D such that y→ x is designated, then x must also be
a designated value. This restriction enforces the validity of modus ponens in the
logic. The inference rule of substitution holds without further conditions because
of the functional nature of interpretations and how they are evaluated.

3 Motivation on GLukG Logic

One of the most well known semantics for NMR is the stable semantics. A se-
mantics usually associates a set of two-valued models to a given theory. Consider
the basic program B:

a← ¬b.
B has 3 models, namely M1 = {a},M2 = {b}, and M3 = {a, b}. Model M1 rep-
resents the function that evaluates atom a to true and atom b to false. Model M2

represents the function that evaluates atom b to true and atom a to false. Finally,

model M3 represents the function that evaluates both atoms a, b to true. It turns
out that only M1 is a stable model. Informally such rule reads as ’Normally a
holds unless b is truth’. As we said in the introduction there are (contradictory)
programs as P2 that gives no models. This lack of information is useless in many
cases. Sometimes consistent programs (in classical logic) as program P1 also do
not give models. Now, the stable semantics can be characterized using intuition-
istic logic as follows. We can check each model and if it passes certain test, we
consider it a stable model. Take M1, does it follows that ¬b, B `I a ? (where
`I represents the inference relation using intuitionistic logic) The answer is of
course ’yes’ and so M1 is a stable model of B. Take now M2, does it follows that
¬a,B `I b ? Well, it turns out that ¬a,B `I ¬¬b, but it can not infer b, so M2

is not a stable model. Let us be a little bit more technical.
Given a set of atoms M and when a theory, or logic program, T is clear

by context we use the symbol M̃ to denote the complementary set LT \ M .
Moreover, given a theory T , we define the negation of the theory ¬T as the set
{¬F | F ∈ T} (the negation symbol is parameterized with respect to some given
logic). For any pair of theories T and U , using T `X U to state the fact that
T `X F for every formula F ∈ U . If M is a set of atoms we also write T
X M
when: T `X M and M is a classical 2-valued model of T (i.e. atoms in M are
set to true, and atoms not in M to false; the set of atoms is a classical model of
T if the induced interpretation evaluates T to true).

Definition 1. [16] Let P be any theory and X any logic. Also let M be a set of
atoms. M is a X-stable model of P if P ∪ ¬M̃
X M .

We call weak completion the construction P ∪ ¬M̃
X M just presented. If
we use any constructive intermediate logic, we obtain the same class of X-stable
models, namely the well known stable models. Intuitionistic logic is considered
the weakest constructive intermediate logic, while Gödel’s 3-valued logic G3 is
the strongest constructive intermediate logic.

G3 can be presented as a multivalued logic. In this form it is defined through
a 3-valued logic with truth values in the domain D = {0, 1, 2} where 2 is the
designated value. The evaluation function of the logic connectives is then defined
as follows: x∧y = min(x, y); x∨y = max(x, y); and the ¬ and→ connectives are
defined according to the truth tables given in Table 1. We write |= α to denote
that the formula α is a tautology, namely that α evaluates to 2 (the designated
value) for every valuation. We say that α is a logical consequence of a set of
formulas Γ (denoted by Γ |= α if

∧
Γ → α is a tautology.

x ¬x

0 2
1 0
2 0

→ 0 1 2

0 2 2 2
1 0 2 2
2 0 1 2

Table 1. Truth tables of connectives in G3 .

Hence, We came up with a basic mathematical question. Can we use any
other type of monotonic logic different to the constructive intermediate logics
such that the following properties hold?

1. The logic should have the following desirable properties. It should satisfy
the replacement and deduction theorems. It should be expressive enough.
If possible it should be finitely axiomatizable and somehow close to some
constructive logic. If possible the logic should be many-valued.

2. Definition 1 should give the same result to our basic program B as the stable
semantics. More generally, it is convenient that for every stratified program
our intended semantics should agree with the stable semantics.

3. Every stable model of a normal program should be an intended model of
our semantics. Every intended model of a normal program in our semantics
should be a classical minimal model.

4. The semantics should be expressive enough.
5. The semantics should be close to classical logic, namely if a normal program
P infers a given atom x in classical logic then P and P ∪ x should have the
same intended models.

We considered the above points only for pragmatical reasons. We did not
considered at first to be able to handled contradictory programs. The first partial
answer was that we could use modal logic S5 but representing as long as we use
¬�a for the definition of such negation operator, see [14,15]. That is, Z logic [2]
is an interesting solution. However, we discover Z logic only recently. The use of
several logics as well as a four-valued logic to answer our question was originally
suggested in [14] and further studied in [15]. By studying the four valued logic
introduced in [14] and its relation to S5 we observe that it was interesting to
use modal Lukasiewicz 3 valued logic but again using ¬�a for the definition of
such negation operator. We also noticed that our logics have a paraconsistent
flavor and we decided to explore the use of some paraconsistent logics as Pac
obtaining interesting results, see [16]. We also made the simple observation that
we could use G3 with a basic change, the negation of 1 was changed from 0 to
2 originating in this way what we called G′

3 logic. Since it was created using
some ideas based on Gödel, Lukasiewicz, and Gelfond, we are currently calling
it GLukG logic. Using GLukG, we obtain a positive answer to all our questions
risen before. GLukG has the following interesting properties.

1. It is stronger than Cω logic but weaker than classical logic. For normal
programs it can prove the same set of atoms as classical logic.

2. It can express other logics such Lukasiewicz 3-valued logic, classical logic,
and G3 logic.

3. It can be characterized as a 3-valued logic.
4. It can express a second negation that corresponds exactly to the negation of

G3 logic.

4 Axiomatization of GLukG

We present a Hilbert-style axiomatization of GLukG simpler than a previous one
presented in [12]. Our current axiomatization is essentially the one presented in
[13] with a minor simplification in the one axiom. This logic has 3 primitive log-
ical connectives, namely →, ∧, and ¬. We also have several defined connectives.

1. A ∨B := ((A→B)→B) ∧ ((B→A)→A).
2. ∼ A := (A→ (¬A ∧ ¬¬A)).
3. A↔B := (A→B) ∧ (B→A).

GLukG Logic has all the axioms of Cω logic plus the following:

E1 (¬A→¬B)↔ (¬¬B→¬¬A)
E2 ¬¬(A→B)↔ ((A→B) ∧ (¬¬A→¬¬B))
E3 ¬¬(A ∧B)↔ (¬¬A ∧ ¬¬B)
E4 ((B ∧ ¬B)→ (∼∼ A→A)

Note that Classical logic is obtained by adding any of the following list of
axioms:

CL1 A→¬¬A
CL2 A→ (¬A→B)
CL3 (¬B→¬A)→ (A→B)

It is always useful to see that some strong inference rules hold in a given
logic. In this sense, a simple but useful result is the following.

Theorem 1. Let Γ and ∆ be two set of formulas. Let θ, θ1, θ2, α, and ψ be
arbitrary formulas. Then the following basic properties hold.

1. Γ ` α implies Γ ∪∆ ` α (monotonicity)
2. Γ ` α and ∆,α ` ψ then Γ ∪∆ ` ψ (cut)
3. Γ, θ ` α iff Γ ` θ→ α (deduction theorem)
4. Γ ` θ1 ∧ θ2 iff Γ ` θ1 and Γ ` θ2 (∧-rules)
5. Γ, θ ` α and Γ,¬θ ` α iff Γ ` α (strong proof by cases)

It is very important to note that GLukG can also presented as a multivalued
logic. Such presentation is given in [16], where GLukG is called G′

3. In this form it
is defined through a 3-valued logic with truth values in the domain D = {0, 1, 2}
where 2 is the designated value. The evaluation function of the logic connectives
is then defined as follows: x∧y = min(x, y); x∨y = max(x, y); and the ¬ and→
connectives are defined according to the truth tables given in Table 2. We write
|= α to denote that the formula α is a tautology, namely that α evaluates to 2
(the designated value) for every valuation. We say that α is a logical consequence
of a set of formulas Γ (denoted by Γ |= α if

∧
Γ → α is a tautology.

x ¬x

0 2
1 2
2 0

→ 0 1 2

0 2 2 2
1 0 2 2
2 0 1 2

Table 2. Truth tables of connectives in GLukG.

4.1 Some theorems in GLukG

We present some useful theorems of GLukG logic. We can see for instance that
∼ behaves very much as a constructive negation. In fact it behaves exactly as the
negation operator of G3 logic. Note that of course ∼∼ α→ α is not a theorem.
The reader can consult [13] where the proof is given.

Lemma 1. The following are theorems of GLukG.

ON ` ¬β↔¬¬¬β
EX ` ¬A→ (¬¬A→B)
F1 `∼ α→ (α→ β)
F2 ` (α→ β)→ ((α→ ∼ β)→ ∼ α)
F3 ` (α→ β)→ (∼ β→ ∼ α)
F4 ` (∼∼ β∧ ∼ θ)→ ∼ (β→ θ)
F5 `∼∼ θ→ ∼∼ (β→ θ)
F6 ` β→ (∼ θ→ ∼ (β→ θ))
F7 (∼∼ β∧ ∼∼ θ)→ ∼∼ (β ∧ θ)
G1 ∼ α→¬α
G2 `∼ ¬θ→ ∼∼ θ.
G3 ` ¬¬θ→ ∼ ¬θ.
G4 ` ¬¬θ→ ∼∼ θ.
G5 `∼ θ→¬¬ ∼ θ.
G6 ` ¬ ∼ θ→ ∼∼ θ.
G7 ` (∼∼ β ∧ ¬β)→¬¬¬β.
G8 `∼ β→¬¬¬β.

4.2 Completeness in GLukG

The strategy of the proof for completeness is to follow the proof of completeness
for propositional classical logic given by Kalmar, see [9]. We only sketch the
proof but a complete one can be found in [13].

Definition 2. Given a 3-valuation v of GLukG, we define for each formula A
an associated formula Av as follows:

1. Av := ¬¬A, if v(A) = 2.
2. Av :=∼∼ A ∧ ¬A, if v(A) = 1.
3. Av :=∼ A, if v(A) = 0.

For a set Γ of formulas, we write Γv to denote the set of formulas {αv : α ∈ Γ}.

Lemma 2. Given a formula α, whose set of atomic formulas is ∆, the following
holds: ∆v ` αv.

Proof. The proof is by induction on the size of α.
Base Case: α is an atomic formula, say p. Hence we need to show that pv ` pv,
but this is immediately true.
Inductive step: Suppose that α is a non atomic formula. Then, we have 3 cases:

(Case ¬) Suppose that α is of the form ¬β. By inductive hypothesis we know
that ∆v ` βv. We need to consider 3 subcases:

v(β) = 2. Hence ∆v ` ¬¬β. Since v(α) = 0, we need to show that ∆v `∼ α,
that is ∆v `∼ ¬β. It suffices to show that ` ¬¬β→ ∼ ¬β. But this can be
verified with the help of Theorem 1 and Lemma 1.

v(β) = 1. Hence ∆v ` (∼∼ β ∧ ¬β). Since v(α) = 2, we need to show that
∆v ` ¬¬α, that is ∆v ` ¬¬¬β. It suffices to show that ` (∼∼ β ∧¬β)→¬¬¬β.
But this can be verified with the help of Theorem 1 and Lemma 1.

v(β) = 0. Hence ∆v `∼ β. Since v(α) = 2, we need to show that ∆v ` ¬¬α,
that is ∆v ` ¬¬¬β. It suffices to show that `∼ β → ¬¬¬β. But this can be
verified with the help of Theorem 1 and Lemma 1.

(Case →) Suppose that α is of the form β→ θ. By inductive hypothesis we
know that ∆v ` βv, and ∆v ` θv. We need to consider 6 subcases:

v(β) = 0. Hence ∆v `∼ β. Since v(α) = 2, we need to show that ∆v ` ¬¬α,
that is ∆v ` ¬¬(β→ θ). It suffices to show that `∼ β→¬¬(β→ θ). But this
can be verified with the help of Theorem 1 and Lemma 1.

v(θ) = 2. Hence ∆v ` ¬¬θ. Since v(α) = 2, we need to show that ∆v ` ¬¬α,
that is ∆v ` ¬¬(β→ θ) It suffices to show that ` ¬¬θ→¬¬(β→ θ). But this
can be verified with the help of Theorem 1 and Lemma 1.

v(β) = 1, v(θ) = 0. Hence ∆v `∼∼ β ∧ ¬β and ∆v `∼ θ. Since v(α) = 0,
we need to show that ∆v `∼ α, that is ∆v `∼ (β→ θ). It suffices to show that
` ((∼∼ β ∧ ¬β)∧ ∼ θ)→ ∼ (β → θ). But this can be verified with the help of
Theorem 1 and Lemma 1.

(Rest of cases of → and ∧) They carry out similarly and since each case is
rather tedious we shall not include it here, however is straightforward, so its
details are left to the reader.

Lemma 3. The following are simple results of GLukG, see [13].

1. ` ¬(A→¬¬A)→¬ ∼ A.

2. ` ¬(A→¬¬A)→ ∼∼ A.
3. ` ¬(A→¬¬A)→¬A.
4. ` (¬A ∧ (A→¬¬A))→ ∼ A.

Lemma 4. Γ,¬¬α ` θ and Γ, (∼∼ α ∧ ¬α) ` θ and Γ,∼ α ` θ implies Γ ` θ.

Proof. Suppose
(a) Γ,¬¬α ` θ
(b) Γ, (∼∼ α ∧ ¬α) ` θ
(c) Γ,∼ α ` θ.

By α→¬¬α, α ` ¬¬α and (a) we get Γ, (α→¬¬α), α ` θ.
By ¬(α→¬¬α) ` (∼∼ α∧¬α) (Lemma 3) and (b) we obtain Γ,¬(α→¬¬α) ` θ.
By ((α→¬¬α),¬α) `∼ α (Lemma 3) and (c) we conclude Γ, (α→¬¬α),¬α ` θ.
From Γ, (α→¬¬α), α ` θ and Γ, (α→¬¬α),¬α ` θ and basic logical manipu-
lation, we get Γ, (α→¬¬α) ` θ.
By Γ, (α→¬¬α) ` θ and Γ,¬(α→¬¬α) ` θ and basic logical manipulation, we
get Γ ` θ, as desired.

Theorem 2. (Soundnes and Completeness)
(a)Every theorem is a tautology (in GLukG).
(b) Every tautology i is a theorem (in GLukG).

Proof. Case (a) This a straightforward proof by induction in the length of the
proof. Of course one need to verify that every axiom is a tautology (this can be
done by the help of a computer program) and that the rule of modus ponens
preserves tautologies, which is a simple exercise.
Case (b) It follows by Lemma 4, Lemma 2, and a standard basic logical reasoning
as in [9]. The key points of the proof are the following:
Suppose that α is a tautology whose set of atomic formulas is ∆. By Lemma 2,
∆v ` αv for every 3-valuation v. Hence ∆v ` ¬¬α. Thus, by Cω2 we obtain
∆v ` α. Let a be an atomic formula in ∆, and let Γ := ∆ \ {a}. For every
3-valuation v, based on Γ , we have:

Γv,¬¬a ` α and
Γv, (∼∼ a ∧ ¬a) ` α and
Γv,∼ a ` α

By Lemma 4, Γv ` α. After |∆| steps, we finally obtain ` α.

5 Further Properties of GLukG Logic

In this section we present two main results of GLukG Logic, but first we present
some definitions.

Definition 3. Let T be a (possible infinite)theory. We say that T is contradic-
tory if there exists a formula α such that T ` α and T ` ¬α. Otherwise, we say
that T is noncontradictory. We say that T is complete if for every formula α,
T ` α or T ` ¬α. A theory T ′ is said to be an extension of a theory T if for
every formula α, T ` α then T ′ ` α.

The two main results that help to understand better GLukG are the follow-
ing. First, that GLukG can express Lukasiewicz 3-valued logic that is a well
known expressive logic. Second, one expect that a noncontradictory theory can
be extended to a noncontradictory and complete theory. All well known logics
satisfy this property. We show that GLukG also satisfies it.

Lemma 5. [13] In GLukG we can express Lukasiewicz 3-valued logic.

Proof. To express Lukasiewicz 3-valued logic we need to be able to define the cor-
responding negation and implication connectives. In fact, the original 3-valued
system is based on these 2 connectives which are intended to generalize the
negation and implication connectives of classical logic, see [20]. Negation of
 Lukasiewicz 3-valued logic is defined by ∼ A∨ (∼∼ A∧¬A∧A) and implication
is defined by (A→B)∨ (∼∼ A∧¬A∧A). Note that Lukasiewicz 3-valued logic
is usually defined with 0, 1/2, 1 values but instead we use 0, 1, 2 respectively.

We now move to prove the second property which is a a new result.

Lemma 6. Let T be a (possible infinite) noncontradictory theory. Suppose that
there exists a formula α such that T 6` α and T 6` ¬α. Then T ∪ {α} is noncon-
tradictory or T ∪ {¬α} is noncontradictory.

Proof. Suppose (in order to obtain a proof by contradiction) that T ∪ {α} is
contradictory and T ∪ {¬α} is contradictory. Then exist formulas β and θ such
that T ∪{α} ` β, T ∪{α} ` ¬β, T ∪{¬α} ` θ, T ∪{¬α} ` ¬θ. Hence T ∪{α} `
β ∧ ¬β and T ∪ {¬α} ` θ ∧ ¬θ.
Thus T ` α→ (β∧¬β) and T ` ¬α→ (θ∧¬θ). From this is not hard to see that
T ` (β∧¬β)∨ (θ∧¬θ). But it is easy to verify that ` ¬((β∧¬β)∨ (θ∧¬θ)). So,
T ` ¬((β ∧ ¬β) ∨ (θ ∧ ¬θ)). Hence T is contradictory obtaining a contradiction.

If we have a noncontradictory theory T and a formula α. We define T (α) =
T ∪ {α} if T ∪ {α} is noncontradictory and otherwise T (α) = T ∪ {¬α}. By the
above lemma, T (α) is noncontradictory.

Lemma 7. If T is a noncontradictory theory, then there is a noncontradictory
complete extension of T .

Proof. Let β1, β2, . . . be an enumeration of all formulas based on the signature
of T . Define a sequence T0, T1, . . . of theories defined as follows. T0 is T . Suppose
that Tn is defined with n ≥ 0. If Tn does not decides βn+1, then let Tn+1 be
Tn(βn+1), otherwise we let Tn+1 = Tn. Let Tω be the union of all Ti (i ≥ 0). One
can prove that every Ti is noncontradictory by induction on i. The base case is
by hypothesis (recall that T = T0 is noncontradictory) and the inductive step
follows by Lemma 6. Then one can easily prove that Tω is noncontradictory. If
Tω were contradictory the some Ti should be contradictory, but this is a contra-
diction. Also by construction Tω is complete. Hence Tω is a noncontradictory
and complete extension of T , as desired.

6 Nonmonotonic reasoning

The research community has long recognized the study of nonmonotonic reason-
ing (NMR) as a promising approach to model features of commonsense reasoning.
On the other hand, monotonic logics have been successfully applied as a basic
building block in the formalization of nonmonotonic reasoning. The original idea
was to use well known modal logics and this idea can be traced back to [8]. Sub-
sequently [7] attempted to define nonmonotonic logics based on the standard T,
S4 and S5 logics. But he observed that, unfortunately, the nonmonotonic version
of S5 collapses to ordinary logic S5. [10] suggested the use of autoepistemic logic
(AEL) as an alternative formalization of nonmonotonic reasoning to avoid the
problems encountered with standard modal logics.

More recently (in [15]) a family of nonmonotonic semantics was constructed
based on modal logics. This approach is based on Gelfond’s original interpre-
tation and the experience on stable model semantics that shows how it suffices
to apply modalities to literals, instead of arbitrary complex formulas, in order
to express interesting problems. These type of semantics are called ground non-
monotonic modal logics. For a restricted class of formulas, it was recently shown
that all ground nonmonotonic modal logics between T and S5 are equivalent
[15]. Furthermore, it is also shown that these logics are equivalent to a non-
monotonic logic that can be constructed using the well known FOUR bilattice
[15]. According to [1] ¬�a is in general a paraconsistent negation. Hence, for
this approach the main ingredient is the use of paraconsistent logics.

[17] presented a characterization of the stable model semantics of disjunc-
tive programs in terms of a collection of logics. He proved that a formula is
“entailed by a disjunctive program in the stable model semantics if and only
if it belongs to every intuitionistically complete and consistent extension of the
program formed by adding only negated atoms. Moreover, he also showed that
in place of intuitionistic logic, any proper intermediate logic can be used. The
strongest intermediate logic is Gödel’s 3-valued logic G3.

Based on all the previous work, [16] suggest a construction of nonmonotonic
semantics based on monotonic logics. This definition assumes some negation
connective. Modal logics can of course be considered as long as we use ¬�a for
the definition of such negation operator.

Let as come back to Definition 1. If we use GLukG instead of G3, we obtain a
different semantics than the the well known stable semantics. Such semantics is
also equivalent to GNM-S5 [16]. Since GLukG is related to paraconsistent logics
it is interesting to study a very large fragment of such logics. Let us consider all
logics stronger or equal to Cω, the weakest paraconsistent logic, and weaker or
equal to GLukG. It turns out that the weak completions of all these logics are
equivalent to each other for disjunctive programs and that, moreover, they are
equivalent to GNM-S5. Actually, a large fragment of logics that include many
well known modal and paraconsistent logics have this invariant property. These
results are presented in detail in [15,16].

Let us consider example P1 from the introduction. Clearly {a, b} is a GLukG-
stable model of P1. This is because {a, b} is a classical 2-valued model of P1 and
P1 proves both a and b in GLukG logic.

Consider now example P2. Since P2 does not have 2-valued models then it
does not have GLukG-stable models.

As a final example consider program P3:
a← ¬b.
This program has three 2-valued models, namely M1 = {a}, M2 = {b} and
M3 = {a, b}. One can see that M1 is the unique GLukG-stable model of this
program as follows. Note that ¬b,¬b → a proves a in GLukG logic. Hence M1

is a GLukG-stable model of P3. M2 is not a GLukG-stable model of P3, since
¬a,¬b→ a does not prove b in GLukG logic. M3 is not a GLukG-stable model
of P3, since ¬b→ a does not prove {a, b} in GLukG logic.

6.1 A nonmonotonic semantics that can deal with inconsistencies

In this subsection we introduce a nonmonotic semantics that can deal with in-
consistent programs. Our semantics is different to the one presented in [13].

Let us consider an example to explain what we have in mind with respect
to a nonmonotic semantics that can deal with inconsistent programs. Consider
again our program example P2: a→b, ¬a, and a. Then P2 does not have X-stable
models, not matter the logic used.

We are interested in the definition of a semantics that can give the following
set of literals as the unique output of P , namely {b,¬a, a}.

Let Pos(T) denote the set of positive formulas of a given theory T . Let
Neg(T) denote the set of negative formulas of a given theory T .

Definition 4. Let P any finite propositional theory. Let M be a set of literals.
Then M is a paraconsistent-GLukG stable model of P if
(A) there exists a GLukG-stable model N of P such that Pos(M) = N and
Neg(M) = LP \N .
(B) Otherwise, if P does not have GLukG-stable models then P has only one
paraconsistent-GLukG stable model, namely the set of all literals than be proved
from P using GLukG logic.

Following this approach, it turns out that {b, a,¬a} is the unique paraconsistent-
GLukG stable model of our example P2. Consider again the basic program B:

a← ¬b.
Then B has one paraconsistent-GLukG stable model, namely M1 = {a,¬b}.

7 Conclusions and Future work

We have given an axiomatization of GLukG based on Cω plus only 4 new axioms.
For future work we consider two problems. The first one consists on determining
wether or not GLukG is a maximal paraconsistent logic. It would be maximal
if after adding any new axiom to GLukG that is not already a theorem we can

prove (A ∧ ¬A)→ B. The second problem consists on understanding in more
detail how to take advantage of the paraconsistency flavor of GLukG in order
to define a non-monotonic semantics that could deal properly with inconsistent
programs. We provided already an initial idea in Definition 4 but future work
must be done on this line of research.

References

1. J. Béziau. Paraconsistent logic from a modal viewpoint. Journal of Applied Logic,
3:7–14, 2005.

2. J. Béziau. The paraconsistent logic z. Journal of Logical Philosophy, 15:99–111,
2006.

3. N. C. A. daCosta. On the theory of inconsistent formal systems (in Portuguese).
PhD thesis, Curitiva:Editora UFPR, Brazil, 1963.

4. F. M. Donini, D. Nardi, and R. Rosati. Ground nonmonotonic modal logics. Logic
and Computation, 7(4), 1997.

5. M. Gelfond. On stratified auto-epistemic theories. In Proceedings of AAAI, pages
207–211. Morgan Kaufman, 1987.

6. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming, pages
1070–1080. MIT Press, 1988.

7. D. McDermott. Nonmonotonic logic II: Nonmonotonic modal theories. ACM
Transactions on Computer Systems, 29:33–57, 1982.

8. D. McDermott and J. Doyle. Non-monotonic logic I. Artificial Intelligence, 13:41–
72, 1980.

9. E. Mendelson. Introduction to Mathematical Logic. Wadsworth, Belmont, CA,
third edition, 1987.

10. R. C. Moore. Autoepistemic logic. In P. Smets, E. H. Mamdani, D. Dubois, and
H. Prade, editors, Non-Standard Logics for Automated Reasoning. Academic Press,
1988.

11. J. C. Nieves, M. Osorio, U. Cortés, I. Olmos, and J. A. Gonzalez. Defining new
argumentation-based semantics by minimal models. In Seventh Mexican Interna-
tional Conference on Computer Science (ENC 2006), pages 210–220. IEEE Com-
puter Science Press, September 2006.

12. M. Osorio, J. Arrazola, J. L. Carballido, and O. Estrada. An axiomatization of G′
3.

In In proceedings of the WS of Logic, Language and Computation, 2006, CEUR
Vol-220, 2006.

13. M. Osorio and J. L. Carballido. Brief study of G′
3 logic. In Submitted for publication,

2007.
14. M. Osorio and J. A. Navarro. Modal logic S52 and FOUR (abstract). In 2003

Annual Meeting of the Association for Symbolic Logic, Chicago, June 2003.
15. M. Osorio, J. A. Navarro, J. Arrazola, and V. Borja. Ground nonmonotonic modal

logic S5: New results. Journal of Logic and Computation, 15(5):787–813, 2005.
16. M. Osorio, J. A. Navarro, J. Arrazola, and V. Borja. Logics with common weak

completions. Journal of Logic and Computation, 16(6):867–890, 2006.
17. D. Pearce. Stable inference as intuitionistic validity. Logic Programming, 38:79–91,

1999.
18. C. Sakama and K. Inoue. Paraconsistent stable semantics for extended disjunctive

programs. Journal of Logic and Computation, 5:265–285, 1995.

19. C. Sakama and K. Inoue. Negation as failure in the head. Journal of Logic Pro-
gramming, 35(1):39–78, 1998.

20. A. Urquhart. Many-valued logic. In D. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic, Vol III, volume 3. D. Reidel Publishing Co., 1986.

	[3] logic and its application for Non-Monotonic Reasoning

