

351

Methodological Support of Game Modeling in the Educational
Process

Sergey Sherbakov a, Maria Lapina b, Vitalii Lapin c and Joze Rugelj d

a Rostov State Economic University, Rostov, 344002, Russia
b North-Caucasus Federal University, Stavropol, 355017, Russia
c Stavropol Regional Clinical Consulting and Diagnostic Center, 355000, Stavropol, Russia
d University of Ljubljana, Ljubljana, 1000, Slovenia

Abstract
The paper examines the use of the tournament approach in the educational process on the example

of the economic model "repeated prisoner's dilemma". Students study the model design using the

UML and implement the solution to the "Tournament of Strategies" problem using an object-

oriented language. The advantages of the proposed themes are "junction" of the economy and

important for programming in Computer Sciences Economic Institutions; the development of a

diverse set of skills (economics, game theory, design, UML, modeling, object-oriented design and

programming, Java, Eclipse); introduction of a creative, competitive moment into the educational

process, as well as an element of intrigue.

Keywords 1
Educational and methodological support, economics, prisoner's dilemma, programming,

integration

1. Introduction

1.1. Relevance of the task

IT courses at an university of economics include the preparation of a "two-headed" graduate. To

master with equal ease the methods and tools of informatics and programming on the one hand, and

methods of economics and management on the other [10].

The economic components are provided by such disciplines as economic theory, mathematical and

simulation modeling, etc. However, there is a certain gap between these disciplines and the profile

disciplines of the educational program. Knowledge of economic science is in most cases not used to

solve specific programming problems. Therefore, it is often the case that these two areas do not

overlap in training.

Game modeling makes it possible to bridge this gap to a large extent. Designing and programming

of a game model allows on the one hand to increase competence in the design and implementation of

software on the other hand to immerse oneself in the subject area, i.e. economics and management.

And experiments with a game simulation model give students the opportunity to analyze in detail the

work of the economic mechanisms in detail. The study of the methodological support of game

modeling will be carried out using a similar problem as an example.

In order to achieve the goal of integration of education in economics and IT, it was decided to

implement the "Strategy Tournament" task. Its importance lieas in the repetition of the famous

SLET-2020: International Scientific Conference on Innovative Approaches to the Application of Digital Technologies in Education,
November 12-13, 2020, Stavropol, Russia

EMAIL: sergwood@mail.ru (Sergey Sherbakov); mlapina@ncfu.ru (Maria Lapina); vitlx@yandex.ru (Vitalii Lapin);

joze.rugelj@pef.uni-lj.si (Joze Rugelj).
ORCID: 0000-0002-9124-0178 (Sergey Sherbakov); 0000-0001-8117-9142 (Maria Lapina); 0000-0002-0611-7002 (Vitalii Lapin);

0000-0003-1056-0055 (Joze Rugelj).

©️ 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

352

experiment of R. Axelrod to evaluate the effectiveness of different strategies in "Prisoner's Dilemma"

[30].

 As the task is quite simple from a technical point of view, it allows you to cover a wide range of

areas of economics and programming, ranging from different market models to problems from

cooperation in nature and society [1, 8] to UML-modeling, of object-oriented software and

programming in the Java language [3, 7]. Another feature of the task is to increase the level of student

participation, as the lesson includes a game with a previously unknown outcome [33, 35].

1.2. Lesson planning

For the study of the proposed topic 4, 6 or 8 hours of study time can be allocated, depending on the

available options. Table 1 shows an indicative lesson plan with an approximate estimate of time for

each element.

Table 1
The sequence of mastering the material

№ Activity element Minutes Comments

1. Economic model 20 conclusion about the advantage of refusing to
cooperate with any choice of the opponent [15];

2. Areas of use in economics
and other areas

10 - advertising decision (advertise/not advertise [16]);
- decision to cut prices;
- cartel agreement and withdrawal from it
(examples, OPEC [15]);
- arms race;
etc.

3. Dynamic variant of the
problem

5 - the importance of reputation [24];
- rejection of the strategy of betrayal [36];
- held tournaments [30];

4. Dynamic task examples 5 examples from economics, business, politics,
sociology, biology [39];

5. Formulation of the problem
of holding a strategy
tournament

10

6. UML Modeling 20 - class diagrams, interactions;
- "Strategy" (or "Player") as an abstract class [2];

7. Designing strategies
(discussing with students).

10 students offer their own strategies;

8. Programming 40 if it is necessary to save classroom hours, students
can program only players.

9. Tournament run 30
10. The discussion of the results 10

After the end of the lesson, students may be offered such directions for self-study, such as:

– formation of new strategies and analysis of their effectiveness;

– analysis of the results of the experiment depending on the number of players of different classes;

– an evolutionary version of the game [12], when the player's survival in each generation depends on

the success of his game in the tournament;

– biological, economic, social examples of the implementation of the model "Prisoner's Dilemma"

and "Repeating Prisoner's Dilemma" [21].

353

1.3. Evaluation tools for monitoring the effectiveness of the lesson

In order to control the assimilation of the teaching material, questions (closed form) were

developed, divided into five categories: economic issues; elements of game theory; repetitive games;

design and UML; object-oriented programming. Table 2 shows examples of developed questions. The

test was implemented in LMS Moodle.

Table 2
Tests to control the mastery of the material (fragment)

Category Question Answer variant

economic issues What type of market is
the "Prisoner's Dilemma"

Monopoly
Oligopoly
Monopolistic competition
Pure competition

elements of game
theory

The Prisoner's Dilemma
refers to

zero-sum games
non-zero-sum games
playing with nature

design and UML The advantage of
polymorphism

the client class may not know anything about
the derived classes. It works with their instances
in the same way as with the parent class
instance.
It is possible to create new inheritance classes
without modifying the client classes and the
parent class
Inheritance is excluded
It becomes possible to allocate on the stack
instead of the heap (heap)

object oriented
programming

What does this mean in a
Java program?

reference to the current object instance
constant

recursive call

recurring games Within the framework of
the strategy tournament,
"good" strategies (like an

eye for an eye)

always lose the tournament "Angry"
always lose individual matches to "evil"
benefit from cooperation with each other

2. Development of teaching materials for the "tournament of strategies" task

2.1 Statement of the problem of the repetitive prisoner's dilemma

The well-known Prisoner's Dilemma is a popular model that illustrates various economic

situations, for example, price competition in the oligopoly market. The “prisoner's dilemma” is also

used in more complex cases, when two participants in economic relations make the decision to

cooperate or refuse to cooperate.

The “prisoner's dilemma” can be formulated as follows: two accomplices were arrested for theft

and placed in different cells. Each of them can confess to a crime or refuse to confess. The prisoner is

not aware of the decision of his accomplice.

354

The punishment assigned to each of the prisoners, depending on the testimony, can be represented
by the matrix shown in Table 3.

Table 3
 Prisoner's Dilemma Matrix

 Prisoner A

Did not confess Confessed

Prisoner B

Did not confess
A – 2 years
B – 2 years

A – 1 year
B – 10 years

Confessed
A – 10 years
B – 1 year

A – 5 years
B – 5 years

Thus, the prisoner who has betrayed his comrade receives a bonus in the form of a small prison

sentence. In case of loyalty among the prisoners, both receive rather soft conditions.

Depending on the condition of the task, it is beneficial for the prisoner to testify, thereby betraying

his comrade. Suppose prisoner A assumes that prisoner B will break loyalty. In this case, it is also

beneficial to violate loyalty by reducing his sentence from 10 to 5 years. If prisoner A assumes on the

part of prisoner B the preservation of loyalty, then A is still beneficial to break loyalty by reducing his

sentence from 2 years to 1.

A mutually beneficial solution can be achieved through mutual preservation of loyalty, but under

the conditions described, such a possibility is difficult to reckon with.

The dynamic (repeating) version of the prisoner's dilemma (which corresponds more closely to

economic realities), proposed by R. Axelrod, presupposes not a single decision-making about loyalty

or betrayal, but a series of such decisions, continuing an unknown number of times. Both prisoners

now remember the decisions of their comrade in the previous steps. Under such conditions, the benefit

of betrayal in a particular step may be less than the benefit of cooperation in the following steps.

The question of the best behavioral strategy in a dynamic model is controversial.

The task is to organize a tournament of strategies (also proposed by R. Axelrod) to determine the

best strategy. The following strategies participate in the tournament:

Random – random choice (the decision to betray / keep is chosen randomly, with equal

probability).

Evil – renegade (betray at every step).

Talion – eye-for-eye (keep loyalty at the first step; repeat the previous move vis-a-vis at

subsequent steps). This option was proposed by A. Rapport.

The game features three players implementing each strategy. The tournament is organized in a

round robin system - each player plays one match with everyone else. The match consists of N steps.

The players do not know the number N, while remaining the same for all matches of the tournament.

At each step, the distribution of points is set by the matrix in Table 4. The result of the tournament

is determined by the total number of points scored by each player in all matches.

Table 4
Prisoner's Dilemma Matrix (digitized)

 Player A

Cooperate Betray

Player B

Cooperate A – 5
B – 5

A – 10
B – 0

Betray A – 0
B – 10

A – 1
B – 1

355

2.2. UML Modeling and Design

For programming a task, an object-oriented approach is most effective, allowing to separate the

parts of the system that are responsible for decision making and for game play. At the same time, a

flexible system can be created that allows new players with new strategies to be added.

For the visual representation of design decisions during their discussion, we use the UML

language, which is now the de facto standard in the field of analysis, design and software

development.

The language diagrams allow students to propose and discuss design solutions for the implementation

of the tournament [4].

In this case, two diagrams are sufficient: a class diagram (Figure 1) describes the structure of the

system, and a sequence diagram - the order of interaction of objects of different classes during the

tournament. [11].

Figure 1: UML class diagram for the "Tournament of strategies" problem

The key role is played by the abstract class Player, which is responsible for the player (strategy).

This class stores the player's name (_name), calculates and stores the player's total win since the start

of the tournament (_totalScore). Class method yourAnswer () - the player returns the answer on the

next turn. The answer is an integer YES = 1 (cooperate) or NO = 0 (betray).

The player classes RandomPlayer, EvilPlayer, TalionPlayer, as inheritors of the Player class,

override the yourAnswer () method and other methods as appropriate. In this way, they each

implement their own game strategy.

The Tourney class is fully responsible for running the tournament: creating the schedule, running

the games, calculating the results. The Player class and its heirs know nothing about the tournament,

and the Torney class depends only on the Player class, without knowing its specific heirs and without

depending on their implementation of one strategy or another. When extending the task by adding a

new player, it is sufficient to create a new class that inherits from Player [6].

The simple structure of the task and the very simple implementation allow to touch, if necessary,

some aspects of object-oriented programming (inheritance, abstract classes, abstract methods, method

players

EvilPlayer

+

+

<<Constructor>>

<<Override>>

EvilPlayer (String _name)

yourAnswer () : int

Player

{abstract}

+

+

-

-

YES

NO

_name

_totalScore

: int

: int

: String

: int

 = 1

 = 0

+

+

+

+

+

+

+

<<Constructor>> Player (String _name)

getName ()

getTotalScore ()

startGame ()

yourAnswer ()

enemyAnswer (int answer)

finishGame (int score)

: String

: int

: void

: int

: void

: void

RandomPlayer

+

+

<<Constructor>>

<<Override>>

RandomPlayer (String _name)

yourAnswer () : int

TalionPlayer

- _lastAnswer : int

+

+

+

+

<<Constructor>>

<<Override>>

<<Override>>

<<Override>>

TalionPlayer (String _name)

yourAnswer ()

startGame ()

enemyAnswer (int answer)

: int

: void

: void

Tourney

-

-

N

_matrix

: int

: int[][]

 = 25

 = {{1,10},...

+

+

-

+

+

-

<<Constructor>> Tourney ()

addPlayer (Player player)

game (Player a, Player b)

runGames ()

showResults ()

showPlayerResult (int i)

: void

: void

: void

: void

: void

356

overrides, composition, scopes, constructors, static class fields). Moreover, a simple example clearly

demonstrates the usefulness of polymorphism [20].

2.3. Implementation in Java and Eclipse

To program the task, one can use, for example, the Java programming language [23] and one of the

modern development tools, such as the free Eclipse environment [10].

Part of the program code can be created by students individually, part - together with the teacher as

part of the work with a projector. In the process, the possibilities of the Eclipse environment can be

explored, such as: automatic error detection and suggestions for automatic fixing; automatic creation

of inherited classes with overriding methods; automatic refactoring [16]. The code of the Player class

is shown in Listing 1

Listing 1: The program code of the abstract class Player
public abstract class Player {

public static final int YES=1; //сотрудничать
public static final int NO=0; //предать
private String _name;
private int _totalScore;

public Player(String _name) {

 super();
 this._name = _name;
 this._totalScore=0;
 }

public String getName() {

 return _name;
}
public int getTotalScore() {

 return _totalScore;
}
public void startGame(){}
public abstract int yourAnswer();
public void enemyAnswer(int answer){}
public void finishGame(int score){

 _totalScore+=score;
}

}

Listing 2 shows the code for the rogue player class. The yourAnswer () method always returns a

NO response. This is the only change that was required for the class, all the rest of the code is

automatically generated [27].

Listing 2: EvilPlayer class program code
public class EvilPlayer extends Player {

 public EvilPlayer(String _name) {
 super(_name);
 }

 @Override
 public int yourAnswer() {
 return NO;
 }
}

357

Somewhat more complex is the code for a player who implements the eye-for-eye strategy

(Listing 3).

Listing 3: TalionPlayer class code
public class TalionPlayer extends Player {

private int _lastAnswer;

 public TalionPlayer(String _name) {
 super(_name);
 }

 @Override
 public int yourAnswer() {
 return _lastAnswer;
 }

 @Override
 public void startGame() {
 _lastAnswer=YES;
 super.startGame();
 }

 @Override
 public void enemyAnswer(int answer) {
 _lastAnswer=answer;
 }
}

The private field _lastAnswer stores the last response of the adversary. It is written there by the

overridden method enemyAnswer (). In the next step, the method yourAnswer () simply repeats the

opponent's previous move.

2.4 Tournament holding

Running the model yields the expected results-an overall win for the tit-for-tat strategy, despite

this player's losses in individual matches.

The matrix of results by match and the graph of results and are shown in Table 5 and Figure 2,

respectively.

Table 5
Tournament table

 Random 1 Evil 1 Talion 1 Random 2 Evil 2 Talion 2 Random 3 Evil 3 Talion 3

Random 1 x 13:133 90:80 99:119 16:106 106:96 101:101 12:142 122:112

Evil 1 x 34:24 106:16 25:25 34:24 115:15 25:25 34:24

Talion 1 x 97:97 24:34 125:125 85:85 24:34 125:125

Random 2 x 10:160 97:97 104:74 16:106 85:85

Evil 2 x 34:24 160:10 25:25 34:24

Talion 2 x 97:97 24:34 125:125

Random 3 x 13:133 110:100

Evil 3 x 34:24

Talion 3 x

358

Figure 2: Example of tournament results

Further, the teacher may discuss the results obtained. Explain the reasons for the advantages of

cooperation under certain conditions. Think about further work on the model.

Of interest is the expansion of the number of strategies [14], e.g. a strategy that does not forgive a

partner even after a betrayal; a strategy that punishes a partner for betrayal over two rounds; strategy

of permanent cooperation, etc. Another area is a different relationship of players with certain

strategies.

Finally, it is possible to implement the evolutionary principle - the tournament is repeated several

times (generations), each strategy is considered an "individual" and the number of these strategies in

each next generation depends on the results of the previous step. [12].

3. Evaluation of the effectiveness of using the "Tournament of Strategies"
task

To assess the effectiveness of mastery of the material as a result of the lesson, students were tested

on a pre-developed set of tests.

Table 6 shows the results of the tests for one group of students. The tests were administered during

the next lesson one week after the completion of the "Strategy Tournament".

Table 6
Tests results

student
economic

issues

elements of
game

theory

Recurring
games

UML OOP Total

1 75% 100% 100% 75% 100% 88%

2 50% 67% 67% 100% 100% 76%

3 100% 100% 100% 75% 100% 94%

4 50% 100% 67% 100% 100% 82%

5 25% 33% 0% 75% 67% 41%

6 100% 100% 67% 100% 100% 94%

7 75% 100% 67% 75% 67% 76%

8 100% 100% 100% 100% 67% 94%

9 100% 100% 100% 100% 100% 100%

10 100% 100% 100% 100% 100% 100%

11 50% 100% 100% 100% 100% 88%

12 100% 67% 67% 50% 100% 76%

450 500 550 600 650

Random 3

Evil 1

Evil 3

Random 1

Random 2

Evil 2

Talion 1

Talion 2

Talion 3

359

student
economic

issues

elements of
game

theory

Recurring
games

UML OOP Total

13 100% 67% 100% 75% 100% 88%

14 75% 67% 67% 75% 100% 76%

15 100% 100% 100% 100% 100% 100%

16 100% 100% 33% 100% 100% 88%

17 75% 100% 100% 100% 100% 94%

18 50% 100% 67% 100% 67% 76%

total 79% 89% 78% 89% 93% 85%

The results of the control group (which examined similar sections using traditional methods) are

shown in Table 7.

To assess the significance of the differences in the two groups, we use the statistical test Mann-

Whitney. This is necessary because they are independent samples and the sample size requires the use

of non-parametric methods.

Table 7
Test results (control group)

student
Economic
questions

elements of
game

theory

Recurring
games

UML OOP Total

1 50% 33% 33% 75% 67% 53%

2 75% 67% 33% 75% 100% 71%

3 50% 67% 67% 50% 67% 59%

4 100% 100% 100% 100% 100% 100%

5 25% 33% 33% 100% 100% 59%

6 0% 33% 0% 75% 100% 41%

7 25% 33% 33% 50% 67% 41%

8 25% 33% 0% 50% 100% 41%

9 50% 0% 0% 75% 100% 47%

10 50% 67% 67% 75% 100% 71%

11 75% 67% 33% 50% 67% 59%

12 75% 100% 0% 0% 100% 53%

13 50% 67% 67% 25% 67% 53%

14 75% 67% 0% 50% 67% 53%

15 50% 67% 0% 25% 67% 41%

Total 52% 56% 31% 58% 84% 56%

The assessment is carried out according to the formula:

where Tx is the largest sum of ranks, nx is the largest of the sample sizes n1 and n2.

Calculation results:

The hypothesis H0 about the insignificance of the differences between the samples is accepted if

Ucr < Uemp. Otherwise, H0 is rejected and the difference is identified as significant, where Ukp is the

critical point, which is found using the Mann-Whitney table.

360

From the table we find Ukp (0.05) = 99. Since Ukp > Uemp, we reject the null hypothesis.

Figure 6 shows an illustration of the results obtained.

As can be seen from the tables and the figure, as a result of introducing an innovative teaching

method, there is a significant increase in the uptake of material on "economic" topics, but also some

increase in topics specific to computer science and programming [37].

This suggests that I program to understand learning is quite effective [13].

At the same time, it is necessary to pay attention to the cost of introducing the described approach

into the educational process, which is associated with the need for deep study of the material for the

implementation of the game "balance". At the same time, the pedagogical and methodological

documentation of the university in the traditional version does not imply a reflection of this level of

methodological materials, which means that the corresponding costs remain hidden. The study of the

economic side of the pedagogical and methodological involvement of game methods and project-

based learning must be further developed.

Figure 6: The effectiveness of training by the tournament method

4. Conclusion

In this paper, the methodological support for the construction of a game simulation model was

analyzed using the example of the "Tournament of strategies" problem.

It was experimentally shown that the use of such models can improve both programming skills and

understanding of the subject area (economics and management).

5. Acknowledgements

The research was carried out with the financial support of the Russian Foundation for Basic

Research (RFBR) within the framework of the scientific project 19-013-00690 "Economics of

educational and methodological activities in higher education".

6. References

[1] Weissfeld M. Object-oriented thinking / M. Weisfeld. - M.: Peter, 2014. - 998 p.

[2] Vasiliev, A. Java. Object Oriented Programming: A Tutorial. - SPb.: Peter, 2013. - 400 p.

[3] Varian Hal R. Microeconomics. Intermediate level. Modern approach. - Textbook for

universities. - M.: UNITI, 1997. - 767 p.

[4] Golovanov, NF Pedagogy: textbook and workshop for academic bachelor's degree / NF

Golovanov. - 2nd ed., Rev. and add. - Moscow: Yurayt Publishing House, 2019. - 377 p.

[5] Gromkova, M.T. Higher School Pedagogy: Textbook. - M.: Unity, 2017 .-- 80 p.

361

[6] Graham Ian. Object oriented methods. Principles and Practice = Object-Oriented Methods:

Principles & Practice. - 3rd ed. - M.: "Williams", 2004. p. 880.

[7] Dawkins R. Selfish gene. - Moscow: AST: CORPUS, 2013. 512 p.

[8] Kuboniva M., Tabata M., Tabata S., Hasebe Yu. Mathematical economics on a personal

computer. Per. with jap. / Edited by M. Kuboniva. - M.: Finance and statistics, 1991. - 301 p.

[9] Lychkina, N.N. Simulation modeling of economic processes: Textbook. - M.: INFRA-M, 2012. -

254 p.

[10] McConnell Campell R., Bru Stanley L., Flynn Sean M. Economics: principles, problems and

politics: a textbook. - 19th ed. - M.: INFRA-M, 2013. - 1027 p.

[11] Mankiw N. Gregory Principles of Economics. - SPb.: Peter, 2007. - 624 p.

[12] Nartova Anna PowerDesigner 15. Data Modeling. - M.: Lori, 2012. - 418 p.

[13] General foundations of pedagogy: A textbook for students of pedagogical universities / IA

Solovtsova, NM Borytko; Ed. N.M. Borytko. - Volgograd: Publishing house of VGIPK RO,

2006. - 60 p.

[14] Pedagogy: textbook / ed. P.I. Perky. - 5th ed., Add. and revised - Moscow: Pedagogical Society

of Russia, 2008. - 580 p.

[15] Rambeau J., Blah M. UML 2.0. Object Oriented Modeling and Development. - SPb.: Peter, 2007.

- 544 p.

[16] Ridley Matt The Origin of Altruism and Virtue. From instincts to cooperation. - M.: Eksmo,

2013. - 701 p.

[17] Sybase Power Designer modeling system [Electronic resource]. - dir. available: www.sybase.ru/

[18] Sierra K. Learning Java. Head First series. - M.: Eksmo, 2017. - 728 p.

[19] Topazh A.G. Agent models of evolutionary games // The Ninth All-Russian Scientific and

Practical Conference on Simulation Modeling and Its Application in Science and Industry

“Simulation Modeling. Theory and Practice "(IMMOD-2019). Conference proceedings, October

16-18, 2019, Yekaterinburg: Ural. state ped. un-t., 2019.- 678 p. - ISBN 978-5-91450-172-0. S.

227-234.

[20] Fowler M. UML. The basics. A quick guide to the standard object modeling language. - SPb.:

Symbol-plus, 2011. - 192 p.

[21] Shannon R. Systems Simulation - Art and Science. - M.: Mir, 1978. - 420 p.

[22] Schildt Herbert Java. The Complete Guide, 8th Edition. –M.: Vilyams, 2012. - 1014 p.

[23] Eckel, Bruce The Java Philosophy / Bruce Eckel. - M.: Peter, 2016. - 809 p.

[24] Araujo R.F., Durelli V.H.S., Teixeira R.M. Getting Started with Eclipse Juno: A fast paced

tutorial to get you up and running with Eclipse Ju-no IDE. - Packt Publishing, 2013. - 256 p.

[25] Axelrod, Robert Evolution of Cooperation: Revised Edition. -New York: Basic Books, 2009. -

265 p.

[26] Heineke, J. & Meile, L. Classroom service games. Presentation at the Decision Sciences Institute

Annual Meeting, Nov. 18.

[27] http://simulation.su/ – Society for Simulation

[28] Klassen Kenneth J., Willoughby Keith A. In-Class Simulation Games: Assessing Student

Learning // Journal of Information Technology Education, 2003, Volume 2, p. 1-13.

[29] Markov A. V., Markov M. A. Runaway brain-culture coevolution as a reason for larger brains:

Exploring the «cultural drive» hypothesis by computer modeling // Ecology and Evolution.

2020.

[30] Shellman, S. M., Turan, K. Do Simulations Enhance Student Learning? An Empirical Evaluation

of an IR Simulation // Journal of Political Science Education, 2006, 2, p. 19-32.

[31] Sigmund, Karl & Fehr, Ernst & Nowak, Martin. (2002). The Economics of Fair Play. Scientific

American. 286. 82-7.

[32] Silvia Chris The impact of simulations on higher-level learning // Journal of Public Affairs

Education, 2012, 18(2), p. 397-422.

[33] stepik.org

[34] Super Cooperators: Altruism, Evolution, and Why We Need Each Other to Succeed. Martin А.

Nowak, with Roger Highfield. Free Press, 2012.

[35] www.eclipse.org

http://www.sybase.ru/

