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Abstract

Several recent PCGML methods have focused on generating
game levels and content that blend the properties of multi-
ple games. However, these works ignore the fact that blended
levels must in some way have blended physics models that
enable playable levels. In this work, we present an approach
for extracting jump physics models for such blended game
domains. We make use of variational autoencoders (VAEs)
trained on level data from six platformers, encoded using a
previously introduced path and affordance vocabulary. Our
results show that the extraction model is able to reasonably
recreate the original physics models when given ground truth
paths, and is able to produce physics models that can reliably
allow an agent to play the generated levels. We also find that
there are promising results for blended physics models behav-
ing intuitively between physics models of the original games
being blended.

Introduction
While methods for procedural content generation via ma-
chine learning (PCGML) (Summerville et al. 2018) were
initially motivated by wanting to generate novel content
in the style of existing games such as Super Mario Bros.
(Summerville and Mateas 2016; Guzdial and Riedl 2016a;
Snodgrass and Ontañón 2017) and The Legend of Zelda
(Summerville and Mateas 2015), a new body of work has
emerged that focuses on PCGML techniques that seek to
leverage trained models to blend existing game domains
and/or generate new domains altogether. This has produced
works that leverage more creative PCGML approaches such
as domain transfer (Snodgrass and Ontanon 2016; Snod-
grass 2019), model blending (Guzdial and Riedl 2016b;
Sarkar and Cooper 2018), computational creativity (Guz-
dial and Riedl 2018), training on multiple domains to learn
blended domains (Sarkar, Yang, and Cooper 2019) or a com-
bination of the above (Snodgrass and Sarkar 2020).

While some works have included path information, there
has been no notion of completing the circle i.e., do the
physics latent within generated paths encode a physics
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model that would allow for playing the level? And if so, how
does one extract these latent physics models? Further, while
working within the domain of a single game might make
this unnecessary e.g., just use the original Mario physics
when generating Mario levels – in blended domains, there
is no ground truth physics model to fall back upon. Re-
cently, Sarkar et al. (2020) trained generative models for
such blended domains by leveraging a new path and affor-
dance vocabulary that enabled generation of blended lev-
els with paths and jumps. In this work, we directly extend
this work by leveraging the jumps found in these gener-
ated blended levels to extract physics models for different
blended domains. We do this by first generating levels tar-
geting specific games and game blends, with special atten-
tion to generating paths that encode the directionality of the
path. We then extract physics models that could reasonably
have created the generated paths. We test this procedure by
comparing the extracted physics to the ground truth physics,
and examine the physics of blended domains, seeing how the
physics alter with respect to the level geometry.

Related Work
Most prior techniques for procedural content generation via
machine learning (PCGML) (Summerville et al. 2018) have
focused on learning models for a single game. Such meth-
ods have involved using autoencoders (Jain et al. 2016),
LSTMs (Summerville and Mateas 2016), GANs (Volz et
al. 2018), Bayes Nets (Guzdial and Riedl 2016a), n-grams
(Dahlskog, Togelius, and Nelson 2014) and Markov mod-
els (Snodgrass and Ontañón 2017) for learning generative
models for games such as Super Mario Bros., The Legend
of Zelda and Kid Icarus. In an effort to address generaliza-
tion and lack of data as well as wanting to discover and cre-
ate new game domains (similar to e.g. the game blending
framework of Gow and Corneli (2015)), more recent works
have built models that work with multiple games and do-
mains at the same time. This has included domain trans-
fer (Snodgrass and Ontanon 2016; Snodgrass 2019), game
generation (Guzdial and Riedl 2018) and game blending
(Sarkar and Cooper 2018; Sarkar, Yang, and Cooper 2019;
Snodgrass and Sarkar 2020). Recent work (Sarkar et al.
2020) built on these latter game blending approaches by ex-



Figure 1: An example of the level representation used (note:
color is added only for presentation purposes here). Player
path is represented using + with special handling of start ( 9̀ ),
end (¯), and places where the path overlaps non-empty tiles
(ě for a moving hazard and ‹ for a collectable).

tending their domain from two to six games, introducing a
path and affordance vocabulary and training on levels an-
notated with A* paths derived from the jump arcs of the
respective games. This enabled generation of blended lev-
els spanning all the games while also containing traversable
paths and jumps. In this paper, we utilize the paths and jumps
in the blended levels generated by this latter approach to ex-
tract physics models for the blended domains.

Such physics models have not been the subject of much
prior PCGML work with a majority of prior PCGML re-
search focusing on learning models of game levels and only
a few attempting to learn models of game physics and game
rules. Guzdial, Li, and Riedl (2017) presented an approach
termed game engine search for learning the rules of Super
Mario Bros. using video gameplay data. Summerville, Os-
born, and Mateas (2017) learned a hybrid automaton de-
scribing the jump physics in Mario. Similarly, Summerville
et al. (2017) used data from a Nintendo Entertainment Sys-
tem (NES) emulator to learn automata describing the jump
physics of a large number of NES platformer games. To our
knowledge, our work is the first to extract such physics mod-
els for blended game domains.

Level Data and Representation
For our approach, we used six classic NES platformer games
- Super Mario Bros., Super Mario Bros. II: The Lost Lev-
els, Ninja Gaiden, Metroid, Mega Man, and Castlevania - all
represented using the path and affordance vocabulary intro-
duced in (Sarkar et al. 2020), which in turn was derived us-
ing the Video Game Level Corpus (Summerville et al. 2016)
and the Video Game Affordance Corpus (Bentley and Os-
born 2019). Because these games have disparate vocabular-
ies of tiles, we need a common language to describe all of
the levels – solidity, climbability, passable, powerup, haz-
ard, moving, portal, collectable, and breakable. These affor-
dances can be combined – e.g., a breakable brick would be
“breakable+solid” – which leads to 14 unique combinations
(see (Sarkar et al. 2020) for a more detailed description).

A key difference between the level representations found

here and in the earlier work of Sarkar et al. (2020) is the
representation found here includes not just path information
but also the directionality of the path – the starting and end-
ing position found in a segment have a special representa-
tion. This allows the downstream physics extraction process
to extract the correct physics as paths are not necessarily
bi-directional (e.g., very large falls should be represented as
such, and not very high jumps). See Figure 1 for an example.

To account for differences in sizes and dimensions of the
levels in each game, we used a uniform segment size of
15 ˆ 32 for all games, adding vertical padding as required.
We focused on horizontal sections of levels, thereby ignor-
ing the vertical sections found in Ninja Gaiden, Metroid and
Mega Man. After a filtering process to discard duplicate seg-
ments and segments mixing discrete rooms, we ended up
with 1907 segments for Mario (SMB) (referring to both ver-
sion of Mario mentioned above), 504 segments for Ninja
Gaiden, 1833 segments for Metroid, 924 segments for Mega
Man and 775 segments for Castlevania.

Generative Model
For generating levels from which to extract physics, we used
a Gated Recurrent Unit-Variational Autoencoder (GRU-
VAE), implemented using PyTorch (Paszke et al. 2017). The
encoder consisted of 3 hidden layers of size 1024 while
the decoder had 2 hidden layers of size 256—both using a
dropout rate of 50%. To help with convergence, the varia-
tional loss was annealed linearly from 0 to 0.05 times the
variational loss over the first 5 epochs before the rest of the
training continued at that rate—for a total of 50 epochs using
the Adam optimizer and a learning rate of 10´5. At decoding
time, the decoder is initialized with a latent embedding and
then decodes in an auto-regressive manner with sampling.
For each generation, we sampled 10 segments and kept the
one with the lowest perplexity (highest likelihood).

Physics Extraction
To extract the physics, we must first define the “physics” of
a static level. In part, this seems ridiculous, as a static level
cannot have a conventional physics model, as there is no no-
tion of time. However, while this seems like an intractable
problem, we believe that for several platformer games, there
is an implicit correlation between horizontal position and
time – e.g., a speedrunner of Mario is almost always moving
to the right as quickly as they possibly can. In fact, the A˚
agent that we use to simulate “playing” the levels also oper-
ates under this assumption. Thus, we think it is reasonable to
relax the physics models from a notion of y position versus
time to a relation of y position to x position – with the un-
derstanding that the x position is supposed to be constantly
progressing in the direction of the goal. It is important to
note that the “physics” model we are extracting actually sup-
ports an infinite number of different possible physics mod-
els – changing the maximal x speed will result in different
physics models. Some games have much slower horizontal
speeds (Castlevania has a maximal horizontal speed of„3.7
tiles per second), while others have much faster speeds (Su-
per Mario Bros. has a maximal horizontal speed of 10 tiles



Standard Physics Model Extracted Physics Model
Parameters

Impulse ( By
Bt ) Impulse ( By

Bx )
Gravity ( By

Bt2 ) Gravity ( By
Bx2 )

Assumptions
Player has control Player takes the
over height of jump highest possible jump

Player can alter horizontal Player is always moving at
position during jump maximum horizontal speed

Table 1: A comparison between the standard physics mod-
els as found in platformer games and the extracted physics
models produced here.

per second) – the rest of the games we looked at have speeds
of around 5.5 tiles per second. If one wished to take these
extracted physics and use them in a playable game, the dif-
ferent x speeds would result in different feeling games, but
somewhere in the 4 to 10 tiles per second range would result
in games playable by humans.

We also note that a large number of platformer games
allow for the player to control the arc of the jump based
on how long they hold the jump button – in this work, Su-
per Mario Bros., Metroid, and Mega Man all allow for this,
while Castlevania and Ninja Gaiden do not – and this no-
tion of player control is not contained within the static maps.
Again, we make the simplifying assumption that higher
jumps are preferred – we want to determine the frontier of
what space is reachable. Table 1 describes the “physics” in
contrast to the standard physics found in the game.

One final note – many games have different physics mod-
els when the player is falling in their jump versus when
they are in the rising portion of their jump – e.g., in Super
Mario Bros. gravity can more than double when the player
is falling. As such, we learn a separate gravity value for the
rising and falling portions of a jump.

Extraction
Having defined the physics model of a static level, we
now discuss the process for extracting said physics model.
To determine how the path represents the player’s position
through time, a Breadth-First Search is performed, begin-
ning from the start position and progressing until the end
position is found. This provides a coarse notion of the pro-
gression of the path. The path is then followed and the algo-
rithm described in Figure 2 is used to separate the portions of
the path that are (1) grounded, (2) jumping, and (3) falling.

Once segmented, the segments are filtered to remove
noisy jumps:

• Any jump or fall of two or fewer data points is removed –
these are too small to derive any useful physics from

• Any segment that moves more than 2 tiles in a single step
is removed – these represent “broken” paths and are likely
to represent a corruption of the physics

For each x position in a jump, the highest correspond-
ing y value is recorded – e.g. if a jump consists of

function SEGMENT EXTRACTION(path)
Ñ jumps, falls

lÐ path[0]
gp Ð onGround(l)
yp Ð l.y
jumpsÐ rs

jumping Ð not gp
jumping Ð not gp
fallsÐ rs

seg Ð rls
for l in path[1:] do

g Ð onGround(l)
y Ð l.y
seg.appendplq
if g and not gp then Ź Landed

jumping Ð False
falling Ð False
falls.appendpsegq
seg Ð rls

else if not g and y ą yp then Ź In Jump
if not jumping then

jumping Ð True
falling Ð False
seg Ð rsegr´1ss

end if
else if not g and y ă yp then Ź Falling

if jumping then
jumps.appendpsegq

end if
if not falling then

falling Ð True
jumping Ð False
seg Ð rsegr´1ss

end if
end if

end for
end function

Figure 2: Pseudocode describing the segmentation of jump-
ing, falling, and being on the ground from path positions

rr0, 0s, r0, 1s, r1, 1s, r1, 2ss then the highest recorded posi-
tions per x value are rr0, 1s, r1, 2ss. This is done for all jumps
and the statistics for the x positions found across all jumps
are calculated. Jumps are then scored by how many of their
y positions agree with the P´percentile y values across all
jumps. P is then a hyperparameter that can be tuned to de-
termine what one expects to see from the jumps – given that
3 of the games have variable height jumps, our inductive
bias is that jumps higher than the median should be selected
given that we wish to find the upper extents of possible
jumps. We filter jumps that have more than 50% disagree-
ment with the P´percentile jump. In the next section, we
discuss the criterion for the selection of P . Finally, given
the filtered jumps and falls, we perform an Ordinary Least
Squares regression where the dependent variable is y posi-
tion and the independent variables are x (corresponding to
Impulse) and x2 (corresponding to Gravity).



Game Original Generated
Castlevania 1.03 4.98
Super Mario Bros 0.71 0.25
Metroid 0.93 0.94
Mega Man 0.22 2.94
Ninja Gaiden 0.80 1.03
Total 3.69 10.14

Table 2: Root Mean Squared Error (RMSE) for y values per
x value for the physics models extracted for the original lev-
els and the generated levels when compared to the actual
game physics. We also see Castlevania is difficult to extract,
in part because its arc does not actually follow a parabola.

Evaluation/Discussion
To evaluate the extracted physics, there are a number of con-
cerns.

1. Faithfulness of the Generated Physics – Do the paths
contained in segments generated targeting a specific game
domain faithfully recreate the physics found in the origi-
nal segments?

2. Validity of the Extraction Process – Is the extraction
process capable of reconstructing the original jump pa-
rameters from the training data (where the paths were gen-
erated from an agent using the original parameters)?

3. Interpretability of Blended Physics – Do the segments
found in interpolations between the original games result
in physics that are interpolated between the games?

Faithfulness to Original Physics
To assess whether the original physics can be extracted, we
first use the extraction process on the training segments –
these should have the physics flawlessly encoded within
them. We ran a hyperparameter grid search over the P -
percentile to ascertain what percentile leads to the most ac-
curate physics model. We assess the accuracy of the physics
model by calculating the Sum of Squared Error (SSE) for
y values per x value for the jump models produced by the
physics models extracted for the original segments. P “

75% led to the lowest total SSE summed over all of the
games, although different games had differing values (From
Castlevania at 60% to Super Mario Bros. at 80%). How-
ever, the mean value of the percentiles was 72.6%, so we
feel comfortable with using the 75th percentile jumps for
the physics model (which confirms our inductive bias that
we wanted jumps higher than the median).

Of course, in some sense, the aesthetics of the recon-
structed jump arcs are more important than the error – most
importantly, do the extracted jumps result in the same ma-
neuvering and reachability as the true physics? Figure 3
shows the true jump arcs in comparison with the jump arcs
extracted from the original segments. We see that the ex-
tracted jump for Metroid (orange) reaches the same heights,
but does not reach quite as far horizontally, due to a higher
falling gravity. We see that the extracted jump for Mario
(red) is a bit short in height (reaching only „3.5 tiles high
instead of 4 tiles in height) but has the same horizontal space

covered. Mega Man (light blue) has a slightly different arc,
but reaches the exact same height and has the same horizon-
tal space. Ninja Gaiden’s (dark blue) extracted jump falls
short of the true jump both in height (reaching a maximum
of 3.8 tiles instead of 4) and in distance (9 tiles instead of
10). Finally, Castlevania’s extracted jump has the same hor-
izontal reach, but reaches higher (2.8 tiles instead of 2 tiles).

Generally, these jumps would support much of the same
gameplay, although the height differences for Super Mario
Bros. and Ninja Gaiden would need to be bumped up to
the nearest whole number of tiles to have the same game-
play. With this, we feel satisfied that the physics extraction
process works well enough to faithfully extract physics that
would support playing the game, and we turn our attention
to the generated levels, to see how faithfully they are able to
represent the physics.

Latent Reconstructions
To evaluate the generated physics, we sampled the gener-
ative model to produce level segments that were from the
latent space of the encoding corresponding to each game.
To do this, we first obtained the latent encoding for every
level segment from a given game. We then calculated the
mean and standard deviation for these encodings. Finally,
we sampled 2000 encodings from a normal distribution with
the calculated parameters – these encodings were then de-
coded into level segments. As a note, the level segments
were sometimes lacking in a beginning and ending (due to
the stochastic nature of the generation process) – these seg-
ments were excluded from the physics extraction process as
it is impossible to determine the progression of the gener-
ated path – in all, this led to the dropping of 326 segments in
total (3.26% of the generated segments) with Metroid hav-
ing the highest proportion of corrupted segments (8.1%).
The physics models were extracted using the same 75th per-
centile criterion as computed in the original levels (no hy-
perparameter search). Table 2 shows the RMSEs between
the physics models extracted from the original and gener-
ated segments when compared with the actual game physics.
Both errors are broadly comparable (and is in fact lower for
generated segments in the case of Super Mario Bros.).

As noted above, the aesthetics of the reconstructed jump
arcs are as, if not more, important than the errors. Figure 4
shows the true jump arcs in comparison with the jump arcs
extracted from the generated segments. We see that the ex-
tracted jump for Metroid (orange) reaches the same height,
but does not reach quite as far horizontally, due to a higher
fall gravity. We also see that the extracted jump for Mario
(red) reaches the same height but extends horizontally.

We note that for the rest of the games, the generated arcs
show a regression towards the physics of Super Mario Bros..
The generated Mega Man and Castlevania arcs are nearly
identical to the Super Mario Bros. arc. Finally, we see that
the generated Ninja Gaiden (dark blue) arc is very similar
to the one extracted from the original segments reaching not
quite as high but having the same horizontal duration.

Again, generally, these physics would support the same
gameplay – in fact Super Mario Bros. would be playable as
is with no intervention with the model extracted from the



Figure 3: The jump arcs for the true physics (solid lines) compared to the extracted training jumps (dotted lines).

Figure 4: The jump arcs for the true physics (solid lines) vs the extracted generated jumps (dash-dotted lines).

generated levels (unlike the model extracted from the orig-
inal segments). Also, while the models for Castlevania and
Mega Man are more lenient for the generated extractions
than the true physics, the levels would be playable with the
extracted models.

Blended Physics

Unlike the above categories, there is no direct comparison
to see how well the extracted physics recreate the original
physics – instead visual inspection is the best way to as-
sess the interpolated physics. Figure 5 shows the physics ex-
tracted from interpolations between different games. To get
the interpolations, we take 10 segments from each game, en-
code them into the latent space, interpolate between all pairs
of encodings at 25%-75%, 50%-50%, 75%-25%, and then
decode 20 times (since the decoding process is stochastic,
the same encoding can produce different segments). We note
that for most pairs, the interpolated physics seems to settle
into a jump that is actually unlike the exemplars, but rela-
tively stable across the blends – a jump that reaches about
3 tiles in height and 8 tiles in width (which is actually quite
similar to the jump of Mega Man). This jump is somewhat

average across the games (although a jump of 3.5 in height
and 9 in width would be closer to average), so it seems that
most blends actually go through a sort of in-between average
space that just encodes generic platformerness as opposed
to any real per-game-pair specific physics. That being said,
Metroid – being the most extreme of the physics – does tend
to have some blends that incorporate its higher and longer
jumps – namely, blends with Castlevania (Figure 5h), Mega
Man (Figure 5j) and Ninja Gaiden (Figure 5b).

Conclusion and Future Work
In this paper, we presented a method for extracting “physics”
from static levels of the kind often used in PCGML level
generation. We compared the extractions from both ground
truth training examples and generations to the ground truth
physics. In addition, we explored the physics found within
blended domains, with some promising examples of blended
physics.

In the future, we would like to expand this work to explore
different level orientations (e.g., vertical levels found in Kid
Icarus). We would also like to explore the inverse process –
given a physics model, generate levels that are playable.



(a) Interpolation between SMB and Ninja Gaiden (b) Interpolation between Ninja Gaiden and Metroid

(c) Interpolation between SMB and Metroid (d) Interpolation between Ninja Gaiden and Castlevania

(e) Interpolation between SMB and Castlevania (f) Interpolation between Ninja Gaiden and Mega Man

(g) Interpolation between SMB and Mega Man (h) Interpolation between Metroid and Castlevania

(i) Interpolation between Mega Man and Castlevania (j) Interpolation between Metroid and Mega Man

Figure 5: The jump arcs for the interpolations between games. We note that many of the blended jumps form a sort of “average”
jump (found in (a), (b), (c), (d), (e),(f), (g), and (i)) where the jump reaches about 3 tiles in height and 8 tiles in length. However,
some blends have more interesting, intuitive blends, such as those between Metroid and both Castlevania and Mega Man.
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