
Towards Managing Epistemic Complexity in Narrative Games

Jennifer Wellnitz Chris Martens
mawellni@ncsu.edu martens@csc.ncsu.edu

POEM Lab
North Carolina State University
Raleigh, North Carolina, USA

Abstract

Interactive narrative experiences can get complex: authors
create combinatorial, generative play spaces that can grow
to involve a number of states exponential in the number of
story-world variables. When character beliefs are a key as-
pect of game state, authoring and debugging are especially
onerous, leading to game bugs in production. We explore this
problem in the context of the interactive narrative game Elsi-
nore. We present an application of Dynamic Epistemic Logic
to model character belief update in Elsinore with the goal of
controlling epistemic complexity. In principle, an epistemic
logic engine should offload some of the manual effort in man-
aging the knowledge effects of information sharing between
characters. In practice, we find that our encoding fails to sig-
nificantly reduce authoring complexity and bug-prone com-
plexity from character belief management. We discuss why
this turns out to be the case and potential future directions.

INTRODUCTION
Interactive narratives are a growing genre of published
games and an interesting area for games and AI research.
Many interactive narratives, as they become more complex,
feature a vast number of possible result states for any action,
based on a number of factors and decisions from elsewhere
in the story. These states can become difficult to manage, re-
quiring long chains of complicated preconditions and many
versions of similar states that reflect the current state of the
game in all of its detail. Manually authoring these states,
their associated actions and transitions, and their precondi-
tions can be onerous, and can create bugs in the code. These
problems can be exacerbated in games where not all charac-
ters share the same information, vastly increasing the num-
ber of factors to keep track of.

In the long term, we want to minimize errors related
to manual authoring of complex character belief changes.
Specifically, we are interested in mitigating narrative logic
bugs, in which the presence of behavior or the advance-
ment to a game state is not permitted by the (often implicit)
rules of the story world defined by the author, e.g. disabling
a player action that should be possible, performing an ac-
tion that should be impossible, or learning information from

Copyright c© 2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

Figure 1: Screenshot of Elsinore’s primary interface for
moving through the environments and observing conversa-
tions.

nothing. Because some surprising behaviors are desirable
when creating emergent narrative experiences, we differen-
tiate this kind of bug from unplanned event sequences that
do not violate the rules of the world.

In this paper, we present our first steps towards this goal,
a case study of the game Elsinore. Elsinore (Golden Glitch
Studios 2019) is an interactive narrative game in which the
player takes the role of Ophelia in the Shakespearean play
Hamlet. The story begins with the plot of Hamlet as writ-
ten, but then Ophelia is murdered instead of her canonical
death by suicide. She then wakes up in her bed, realizing
that she is in a time loop that resets on her death. The player
is then tasked with manipulating the events of Hamlet to
create a more favorable outcome for Ophelia and break the
time loop. Ophelia’s means of changing the story is an infor-
mation exchange mechanic: as Ophelia moves through the
world, she can observe conversations and events (see fig-
ure 1), which are logged in a record the player can access
(see Figure 2). She can then participate in conversations and
share certain elements of knowledge she has learned, called
Hearsay, with other characters—who in turn may change
their actions in response to new information (see Figure 3).
A positive feedback loop is created by the fact that the
more information the player learns, the more ways they can
change the story, generating new events that reveal new in-
formation.

Figure 2: Screenshot of Elsinore showing how the game reports knowledge updates for the player and NPC characters.

Figure 3: Screenshot of the hearsay mechanic in Elsinore,
where topics in white can be shared with the NPC, and
greyed out topics are unavailable

This game meets our criteria as a large and intricate in-
teractive narrative with a number of bugs arising from that
complexity. Issues relating to the management of character
beliefs are particularly prevalent within Elsinore. Searching
Twitter for player bug reports reveals several, such as this
tweet by Amanda Gentzel:

@elsinoregame Loving the game so far, but I think I
found a bug. It is Saturday night (11pm), and when I
selected to ask Horatio about my father’s murder, I told
him I feared Hamlet ’may’ kill my father, and Horatio
said it was impossible. But my father is definitely dead

This bug deals with characters having inconsistent beliefs.
Whether it was in the writing of the dialogue or a bug in what
conditions were being checked for that scene to play out, the
actions of the player’s character do not reflect the player’s

mental model of that character’s knowledge. This is not an
isolated instance; another tweet by Connor Fallon reads:

So, @elsinoregame bug of the day: Polonius would pre-
emptively arrest himself under certain conditions, go-
ing to sulk in his jail cell before anyone actually locks
him up. He’d still leave his cell to do errands, though.

This bug also exemplifies problems in character beliefs —
Polonius updates his behavior due to the beliefs and actions
of other characters, but before the event that would logically
change his character’s beliefs. Finally, in a tweet by one of
the developers of Elsinore, Katie Chironis, says

it would be a slight exaggeration to say that elsinore is
9 billion if/else statements duct taped together, but only
slightly. so... we’ll just keep adding more.

We refer to the complexity that creates character belief
update bugs such as these as epistemic complexity. Because
of Elsinore’s epistemic complexity, we decided to try con-
structing a model of the game in which the belief update me-
chanics are managed with Dynamic Epistemic Logic (DEL),
a formalism for reasoning about how agent beliefs change
over time in the presence of imperfect information and com-
municative actions. DEL seems like a good fit for reason-
ing about Elsinore, not only because of the game’s reliance
on belief update, but also because of how it conceptualizes
time in terms of possible worlds, computing which events
are possible or not in the current timeline. As such, the aim
for this project is to investigate DEL as a tool for manag-
ing epistemic complexity in Elsinore, testing the hypothesis
that common bugs in the Elsinore game could be avoided by
using Dynamic Epistemic Logic to handle character beliefs.

RELATED WORK
Little work has been done to determine the efficacy of Dy-
namic Epistemic Logic as basis or component for computa-
tional and interactive narratives. However, other techniques
have been employed to model narrative games, manage large
sets of characters in interactive narrative, and to reduce au-
thorial burden in these games. For example, Claire Wolf’s
The Teeny Tiny Mansion (TTTM) (Wolf 2017) is a simple
model of an adventure game which is formally verified to be
solvable. The aim of this project is not to create a playable
experience per se, but to prove that adventure games are able
to be formally verified to be solvable. Though questions of
solvability are not the aim of this paper, the genres of adven-
ture games and interactive narrative are closely related, and
this project strives to do something similar to TTTM in cre-
ating a model of an engine for character beliefs rather than a
fully playable experience.

Other work into managing complex stories may focus
on different aspects of NPC interaction to improve upon,
rather than belief and knowledge management. Ware et al.
frame the problem of managing NPCs in complex narrative
as a story graph pruning problem (Ware et al. 2019). The
aim presented by Ware is similar to the aim of this paper,
to manage complex narratives programmatically by using
a system to simplify some aspect of the NPCs that would
otherwise have to be manually authored. However, where
this paper does not address NPC actions in emergent narra-
tive, Ware’s specifically simplifies the concept of NPC be-
lief states, showing that these methods of addressing similar
problems both have their limitations.

Much work has already been done to effectively man-
age character beliefs in complex story environments that
doesn’t leverage Dynamic Epistemic Logic. For example,
Farrell proposed a system where character beliefs are han-
dled abstractly as action histories in the domain of story
graph pruning (Farrell 2018). Although the intended domain
is different from that of this project, the underlying moti-
vation is quite similar — to develop a method of managing
epistemic complexity in interactive narratives. This project
focuses on offsetting the problem of managing belief states
through the use of Dynamic Epistemic Logic and trigger-
ing distinct events in a story without tracking a full history,
while Farrell’s project focuses on abstracting away from be-
lief management through the use of action history as an anal-
ogous but more efficient metric.

Finally, one of the main goals of this research is to limit
the number of bugs introduced into an interactive narra-
tive game by managing NPC belief states. Thus, this project
seeks to simplify the authoring task for these games. While
we present one method to do so, many others have been em-
ployed. James Thomas presents a novel system for interac-
tive narrative authoring which employs a collaborative ap-
proach to planning agents, giving some manual control to
the author but otherwise streamlining the authoring task sig-
nificantly (Thomas and Young 2006). While the system de-
scribed in this paper is significantly different, both belong
to a growing body of literature concerning assisted or pro-
grammatic authoring of narratives.

APPROACH
This research focuses on the potential use Dynamic Epis-
temic Logic for character belief management in the field of
interactive narrative. Dynamic Epistemic Logic is a logical
system which represents imperfect information. It incorpo-
rates actions that effect the genuine state of the world, as
well as actions that reveal or obfuscate pieces of that world,
changing the beliefs of agents about which worlds they view
as possible.

To represent Dynamic Epistemic Logic programmati-
cally, and in the context of a multiagent game, this project
uses the Ostari language. Ostari is a language meant to fa-
cilitate multiagent interactions centering around incomplete
knowledge and changing belief states (Eger and Martens
2017). Ostari is a computational implementation of the for-
mal mathematical language Alexandru Baltag used to de-
scribe Dynamic Epistemic Logic (Baltag 2002). This lan-
guage allows for agents to maintain a set of worlds they be-
lieve possible, and for actions to be defined that control the
flow of information to those agents, revealing information
to some and obfuscating it to others, causing those agents to
consider more possible worlds from the uncertainty.

This language is perfect to model the dynamics surround-
ing information and belief in the Elsinore narrative. For ex-
ample, Ophelia will continue to be murdered every loop un-
til she finds a way to prevent it. When she discovers who
the murderer is, she will still continue to die until she alerts
the guard captain and has him apprehend the killer. This is
because the knowledge the player (and Ophelia) have is not
the same as the knowledge that each character has. If the
guard captain doesn’t know who the killer is, he can’t act
on that information, even if the player does. Thus, the game
must keep track of varying levels of knowledge and beliefs
for each of the characters, something Ostari was built to do.

Ostari alone, however, is primarily useful in simulating
interactions between digital agents, not in interfacing with
those agents directly, and having a player become one the
characters. Thus this paper also makes extensive use of work
done by Henry Mohr in using Ostari as an engine to facil-
itate player interaction within a narrative (Mohr, Eger, and
Martens 2018). Mohr’s work deals with using Ostari in tan-
dem with Python to create mysteries that a player interacts
with to solve. Thus, the work done to interface with Ostari
was instrumental in the ability to have a player take part in
the narrative for this project.

The bulk of this research was done by building a model
of a small section of Elsinore using both Ostari and Python.
Python functions as a wrapper for Ostari and is charged with
both running the Ostari code and managing certain metadata
and world state information for the game itself. Ostari, on
the other hand, defines the actions of the game, and man-
ages events — their effects and preconditions — as well as
character beliefs.

The majority of the functionality of the game is handled
by the Python layer, and the specific functionality of each
component is detailed in Figure 4. This includes handling
player input, scheduling, and running the Ostari code on
each ”turn” of the game. Essentially, time is stagnant ex-
cept in relation to player action, so each turn is composed of

Figure 4: Diagram of the overall system

the player executing an action, and the game resolving the
effects of that action. Depending on the action itself, new ac-
tions may be put on the schedule or time may be advanced.
The Python code interfaces with Ostari by taking a template
of the Ostari code for the game, and replacing the list of ac-
tions to execute with the list of actions that have occurred
thus far in the game. The Python layer then runs the Os-
tari as a sub-process, and captures and interprets the output.
Thus, the Python code maintains a list of actions that have
occurred and reruns the Ostari on every player turn.

There are five gameplay actions available. The player may
wait, tell hearsay to another character, view an event, go
to another location, or query the status of another character
(mostly for the purpose of experimentation rather than game
play). These actions are described in more detail in Table 1.

For example, Figure 3 illustrates how player information
and information sharing is handled in Elsinore. The image
depicts the hearsay sharing mechanic in Elsinore, which is
primarily how the player affects the game. Here the player
can see all of the pieces of information they have learned
throughout the game by observing events and talking with
various NPCs. They can share certain pieces of this infor-
mation with the character they’re speaking with to influence
the information that character knows, learn new information
from the resulting conversation, and possibly change that
character’s actions further down the timeline. All of this hap-
pens in the interface shown in Figure 3 and in the resulting
conversation, and is played out directly in the game.

By way of comparison, in the model of Elsinore built us-

ing our system, all of these actions — except for wait —
are instantaneous. The only way to advance time is through
the wait function. Further, no actual dialogue is displayed
and hearsay is shared using specific codes to represent each
piece of information. These choices were made primarily
because, although this model is fully playable, playing the
game through it does not facilitate the story in much detail.
Rather, this model is a simplified version of the game meant
to help evaluate it, rather than a playable potion of the game
itself.

Further, the design of this project was split into two stages
— skeleton and content. The skeleton makes up the me-
chanics of the game, which could potentially be translated to
other games of a similar type. The content is an implementa-
tion of a subset of the content within the Elsinore game such
that the mechanics of the skeleton can be tested in a genuine
game and so the results can compared. While Elsinore con-
tains many locations and characters, for the purpose of this
paper some locations were collapsed into each other (result-
ing in the composite locations: Grounds/Docks, Lower Hall,
Upper Hall, Main Hall, and Courtyard) and only the char-
acters (Bernardo, Brit, Polonius, Laertes, and Hamlet) and
events necessary such that the player can solve their mur-
der were included. This was to give a small cross section of
the game for comparison while still focusing mainly on the
design of the mechanics.

Action Ostari Elsinore Effect
Wait User specifies an amount of time

to wait, instantaneous shift in
time

User holds a button while the
world speeds up

Time fast forwards

Tell
Hearsay

User specifies a character and a
piece of hearsay

User approaches a character and
chooses a piece of hearsay

Character reacts to hearsay and
new events are scheduled/new
hearsay is learned

Observe
Event

User indicates that they want to
observe an event, event ends im-
mediately

User clicks on an icon above an
event, witnesses it play out in
real time

Player may learn hearsay

Move Instantaneous travel Real time travel Player moves
Query User specifies a character Information about characters is

seen in journal and map screens
Player learns about a character
and sees their location

Table 1: Action Comparison from Elsinore to Ostari

Character Beliefs
The main purpose of Ostari in this project is to manage the
beliefs of the game characters. In fact, the main purpose of
this project is to see if managing character beliefs using Dy-
namic Epistemic Logic is a viable alternative to hand author-
ing states and transitions in narratives which make heavy use
of character beliefs. The Ostari code, dynamically generated
by the Python layer, executes a series of actions which rep-
resent all of the events that have happened from the start of
the game to the present. Each of these actions are defined in
the Ostari code, and executing them in the order that they
occurred in the game results in a world states representing
each character’s beliefs at the current moment in the game.
Python does pattern matching against the current state of the
world to determine which actions have their preconditions
met, but the tracking of agents beliefs about themselves and
other agents is all internal to Ostari.

Character beliefs had to be specifically authored to fit the
mechanics of Elsinore. Specifically, NPC characters have
beliefs and goals, which represent their knowledge about
the world and their current drive respectively. Ophelia, the
main character, on the other hand, has pieces of information
called hearsay which she can potentially share with NPCs to
change their behavior and knowledge to advance the game.
Thus character beliefs are represented as objects of those
three categories: beliefs, goals, and hearsay. This was sim-
pler than representing the ideas in each of these beliefs using
complex relationships (for example, defining primitive ac-
tions within Ostari and expressing each belief as a conjunc-
tion of these primitives), as the original games treated them
as simple Boolean variables in terms of triggering events.

As such, the character beliefs are primarily used as pre-
conditions for scheduling events. Beliefs are formatted as
Boolean variables and events use beliefs as preconditions to
mimic the original design philosophy of Elsinore. The aim
of this research is to determine if managing these beliefs
with Dynamic Epistemic Logic cuts down on errors, and this
section of functionality is the core addition of this research.

Events
The main building block of the narrative in Elsinore are
events. Events are situations that arise due to the current state

each of the characters’ beliefs and the state of the world, and
may or may not involve the player. As events are often both
the cause and effect of changes in the world, and the prod-
uct of character beliefs, it was important to show how events
were affected by the changes to belief representation. Within
this model, events are dealt with both on the Python and on
the Ostari side. The Python layer contains metadata about
the events like what time they take place and in what loca-
tion. It also is responsible for deciding which events have
occurred and adding them to the action queue to be run in
Ostari. Ostari, on the other hand, has actions that represent
the preconditions and effects of each event, and when the
Python layer tells the Ostari to run an event, Ostari is what
deals with the effects of that event occurring.

For each event, there are two actions in Ostari: one which
contains only the preconditions for the event and sets a pred-
icate indicating to the Python layer to schedule the event,
and one that contains the effects of the event, and is sched-
uled by the Python layer to execute the event. These pre-
conditions are typically a mix of character beliefs and world
state information (who has died or left the castle and so on).
The effects set character beliefs, change the world state, and
can give the player, should they be observing the event or be
otherwise involved, new hearsay. These functionalities are
split into two actions such that the Python can schedule an
event in advance of running it, rather than having to execute
the full action when the preconditions for the event are met
(but before the time it was supposed to take place) or having
to check if each action was valid at every time step to avoid
missing one.

Events in Python, on the other hand, contain all the infor-
mation needed for the Python layer to schedule and eventu-
ally execute the event. This includes a start time, stop time,
location, all of the characters involved, whether or not the
player is inherently involved in the event, whether or not the
event results in a reset (player death), and the name of the
event in Ostari. This data must be contained in Python be-
cause timekeeping is handled in this layer and because all
of that information is necessary to add the event dynami-
cally to the Ostari code. However, as Python layer needs to
pattern match against the current World state to determine
which events to schedule, Python must also maintain a list

of preconditions for each event.

Scheduling
As stated earlier, the game runs off of a turn based model
where the player takes some action and the world responds
to it. Each response causes the Ostari layer to be rerun and
a new world state to be generated. From this world state, the
Python layer finds whichever events have not been sched-
uled, completed or cancelled, and finds among them those
events who’s preconditions have also been met and adds
them to the schedule.

After each run of the Ostari layer, the Python layer iter-
ates through each of the possible events. Each event that is
not already scheduled, cancelled, or completed, and that has
all of its preconditions met, is added to the schedule. Fur-
ther, this is also the stage where events are cancelled. If an
event on the schedule is deemed impossible (mostly by the
presence of the impossible(event) predicate set by some
other event), that event is removed from the schedule. This
is only one way that events may be cancelled, the other is by
conflicts.

To deal with the scheduling of events, the Python layer
keeps track of a current master schedule. Events are added
and removed from this schedule as the game progresses and
events are executed when observed by the player or when
the current time passes their end time on a wait action. Fur-
ther, when events conflict over resources, particularly over-
lapping in time and requiring some of the same characters
present, the scheduling algorithm simply defaults to can-
celling the older event in lieu of the new. This behavior is
present in the original game as well and represents one’s
plans being changed with new information.

CONCLUSIONS AND FUTURE WORK
Overall, the results of this research were inconclusive, but
this specific approach yielded little to no improvement over
the original design. These results were partially caused by
the limitations of the interactivity of Ostari, but, beyond
technical limitations, this project uncovered a significant in-
compatibility between the structure of Elsinore and the ideas
of Dynamic Epistemic Logic.

Although a similar approach to Henry Mohr’s work was
used to allow the player to interface with Ostari, the Os-
tari language is still not particularly suited to complex user
interaction. This mostly is a result of the fact that Ostari
cannot be interfaced with at runtime, but only have the re-
sults fetched after the program finishes. An early planned
approach involved querying Ostari to determine which ac-
tions are currently possible. This would have replaced hav-
ing Python track prerequisites and pattern match to schedule
events. Would this functionality been possible, Ostari would
have been able to be responsible for more of the functional-
ity of the game as a whole.

Further, the Python layer ended up being responsible for
a large proportion of the functionality of the game. The pur-
pose of this project was to model the dynamics of informa-
tion amongst the characters solely through Ostari to deter-
mine the efficacy of Dynamic Epistemic Logic in represent-
ing those ideas in a narrative, but with the functionality of

Ostari not being compatible with the method of interactivity
required for a game of this style, even much of the work sur-
rounding character beliefs was pushed to the Python layer.
Determining which actions were now valid and scheduling
should have, ideally, been in the domain of the Ostari layer,
but the capability simply wasn’t there.

On a different note, the narrative structure of Elsinore
was not as compatible with the ideas of Dynamic Epistemic
Logic as initially thought. Though the story and gameplay
were largely dependent on the idea of incomplete infor-
mation and possible worlds, the actual story itself was too
strictly authored to make full use of actions in Ostari as gen-
eral rules and not simply triggers for a structured sequence.
Initial plans included expressing each belief of characters
as some combination of generic predicates (kills(player,
player), etc), but because the original game used these be-
liefs as more of boolean triggers, and because events are al-
ways structured and pre-authored rather than emergent, this
approach was quickly scrapped — it would simply make
preconditions needlessly laborious while not giving any real
benefit. In a game that focuses more on a generic or emer-
gent narrative, especially one that is procedurally generated,
this approach is likely to be much more effective.

One of the key aims of this process was to determine if
it helps to mitigate bugs. Unfortunately, it did not. Because
events are so definite in this game, they essentially had to
be authored in Ostari much as they are in the original code
— with long chains of preconditions. As such, many of the
potential errors come from improper preconditions and im-
proper effects, both of which are still distinctly possible in
this system. In fact, with two separate code bases and with
preconditions authored in both, inconsistencies may be more
likely.

While this system may not work well for Elsinore, that
is partly the product of the type of game Elsinore is. Refer-
ring back to the bug found by Amanda Gentzel, where Ho-
ratio’s dialogue doesn’t accurately reflect the current state
of the world or his current knowledge, that issue could be
caused by not checking the right preconditions in decid-
ing what scene plays when the player brings up that topic
with him, or it may be that dialogue for that specific situ-
ation did not exist at the time. The latter option highlights
an important limitation for our system — even if it handled
knowledge and preconditions perfectly, in a game like Elsi-
nore, where the scenes are heavily scripted and pre-authored,
the authors themselves still have to write all of the dialogue
for every conceivable scene. Our system would not be able
to help prevent this bug. As such, our system would work
best in less story rich environments, where characters react
based on their beliefs but only from a pool of generic actions
rather than scripted scenes. A prime example of these types
of games would be The Sims series.

Though this project was ultimately not successful, ele-
ments of it have led to other potential avenues for research.
One such avenue is an expansion of Ostari to incorporate
runtime intervention. Specifically, adapting Ostari to both
allow for user input (in the form of specifying actions to
be executed) and querying of world state, possible actions,
and so forth during runtime, between actions would suffice.

These alterations would give more fine tuned control in ex-
ecuting Ostari code, as well as open up a whole new type of
game to be viable under the Ostari language.

Finally, though the content portion is specific to modelling
Elsinore, the skeleton used to adapt the content is suitably
generic to be useful in other similar, albeit a bit less struc-
tured, narratives. This skeleton could serve as a tool to both
interface with Ostari and to design more emergent narratives
which could make use of Ostari’s unique system of charac-
ter beliefs. Hopefully, this tool could be used to do further
research into how Dynamic Epistemic Logic pairs with in-
teractive narratives.

References
Baltag, A. 2002. A logic for suspicious players: Epistemic
actions and belief–updates in games. Bulletin of Economic
Research 54(1):1–45.
Eger, M., and Martens, C. 2017. Practical specification of
belief manipulation in games. In Thirteenth Artificial Intel-
ligence and Interactive Digital Entertainment Conference.
Farrell, R. 2018. Experience management with beliefs, de-
sires, and intentions for virtual agents. In Fourteenth Artifi-
cial Intelligence and Interactive Digital Entertainment Con-
ference.
Golden Glitch Studios. 2019. Elsinore. Published online.
Mohr, H.; Eger, M.; and Martens, C. 2018. Eliminating the
impossible: A procedurally generated murder mystery. In
AIIDE Workshops.
Thomas, J. M., and Young, R. M. 2006. Author in the loop:
Using mixed-initiative planning to improve interactive nar-
rative. In Workshop on AI Planning for Computer Games
and Synthetic Characters.
Ware, S. G.; Garcia, E. T.; Shirvani, A.; and Farrell, R. 2019.
Multi-agent narrative experience management as story graph
pruning. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 15, 87–93.
Wolf, C. 2017. The teeny tiny mansion (tttm). Technical
report, University of Applied Arts Vienna.

