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Abstract

A valid and believable narrative plan must often meet at least
two requirements: the author’s goal must be satisfied by the
end, and every action taken must make sense based on the
goals and beliefs of the characters who take them. Many nar-
rative planners are based on progression, or forward search
through the space of possible states. When reasoning about
goals and beliefs, progression can be wasteful, because either
the planner needs to satisfy the author’s goal first and then
explain actions, backtracking when an explanation cannot be
found, or explain actions as they are taken, which may waste
effort explaining actions that are not relevant to the author’s
goal. We propose that regression, or backward search from
goals, can address this problem. Regression ensures that ev-
ery action sequence is intentional and only reasons about the
agent beliefs needed for a plan to make sense.

Introduction

Narrative planning algorithms search for a sequence of ac-
tions that tell a story and that make sense for each char-
acter involved in the actions. Many search strategies have
been adapted from classical planning research, including
partial-order causal-link planning (Young 1999; Riedl and
Young 2010; Ware and Young 2011), constraint satisfaction
(Thue et al. 2016), and answer set programming (Dabral and
Martens 2020; Siler and Ware 2020), to name just a few, but
as in the classical planning community, many narrative plan-
ners are based on forward heuristic search though the space
of states (Charles et al. 2003; Teutenberg and Porteous 2013;
Ware and Young 2014; Thorne and Young 2017).

Forward search (or progression) starts at the initial state
of the problem and checks which actions are possible in that
state. Those actions are applied to generate the possible next
states. Then any actions which are possible in those states
are applied, and so on, until a valid story is discovered. Plans
are constructed from start to end in order.

Narrative planning can be challenging because it places
complex constraints on what action sequences are consid-
ered valid stories, and these constraints may be defined in
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terms of the whole sequence, or even in terms of the space of
possible sequences. Consider intentionality. Narrative plan-
ners often require that every action taken by an agent con-
tribute to a sequence of actions to achieve that agent’s goal.
Because goals are achieved at the end of the sequence, it
is difficult to know at the beginning whether the actions an
agent is taking will contribute or not.

In this paper, we propose a regression-based narrative
planning algorithm that starts at the author’s and agents’
goals and works backwards to the initial state. Regression
planning was described as early as 1975 (Waldinger 1975),
but is rarely used in classical planners. We propose it is a
good fit for narrative planners for two reasons:

1. Intentions are goal-directed, so searching backwards from
goals ensures the planner does not spend effort consider-
ing actions that don’t contribute to goals.

2. When we allow for a theory of mind (what x believes y

believes, etc.), belief propositions can be infinitely nested.
Regression can limit the planner to reasoning only about
the beliefs that are relevant to the plan.

We begin with a description of our particular narrative plan-
ning formalism. We then present our regression algorithm
and explain why it is promising. We conclude with a fully
worked example to demonstrate the process.

Narrative Planning

Narrative planners have modeled many kinds of story phe-
nomena (see Young et al. (2013) for a survey). In this pa-
per, we build on a version of narrative planning described
by Shirvani, Farrell, and Ware (2018) with these features:

e There is a system-level author goal that must be achieved
by the end of the story.

e Agents have (possibly wrong) beliefs about the world and
other agents. Beliefs can be arbitrarily nested, meaning
there is no depth limit on the theory of mind.

e Agents have intentions, or personal goals. For an agent
to take an action, the agent must believe the action can
contribute to achieving their goal (whether or not it will).

In this section, we formally define our model of narrative
planning, modifying Shirvani, Farrell, and Ware’s defini-



tions slightly to include an explicit representation of the au-
thor as an agent and to redefine intentionality without using
causal links. We introduce our own version of the Treasure
Island problem as a running example in Figure 1, which is a
simplified plot of Robert Louis Stevenson’s 1883 novel.

In the story, protagonist Jim Hawkins (H) finds a map that
gives the location of treasure (7") buried by Captain Flint.
Antagonist Long John Silver (.5) is Flint’s former first mate,
but does not know where the treasure is buried. Hawkins lets
it be known that he has the map, prompting Silver to recruit a
pirate crew and sail to Treasure Island with Hawkins. There,
Hawkins digs up the treasure. Both Hawkins and Silver hope
to take the treasure for themselves, and Hawkins eventually
succeeds.

Formally, a narrative planning problem is a tuple
(C,F,G,s0,A). C is a set of agents, F' a set of state flu-
ents, G a goal function, s¢ the initial state, and A a set of
actions that change the state. Each of these is defined in the
sections below.

Agents, Fluents, and Goals

C'is a set of objects that represent the agents, (i.e. characters)
in the story. All domains include the special author agent c 4
that represents the author of the story. For Treasure Island,
C= {C A, H 5 S }

F' is a finite set of state fluents, each with an associated
finite domain Dy. Each fluent f € F is like a variable that
can be assigned exactly one value from D at any moment
in time. The proposition f = v means that fluent f has value
v € Dy.InTFigure 1, the fluent 7" represents the treasure’s lo-
cation, which can be buried on the island (B), unknown (IN),
dug up on the island (1), or in the possession of Hawkins (H)
or Silver (S). We use the shorthand 7'B to mean “the trea-
sure is buried on the island.” The constant N, for unknown,
is simply a value and has no special semantics here.

We define a simple logical language which allows three
kinds of propositions p, expressed by this grammar:

pi=f=vlblep)[prp
The first kind, f = v, is defined above. The modal propo-
sition b(c, p) means that some non-author agent ¢ € C' be-
lieves proposition p to be true (where p can be any proposi-
tion, including another belief). We also allow conjunctions,
p A p. We assume this equivalency:

b(e,p A q) < (e, p) Ab(e, q)
These three kinds of propositions are sufficient to describe
our model, though our implementation (currently under de-
velopment) includes additional features like negation, dis-
junction, first order quantifiers, and conditional effects.

In this simplified model, it is often convenient to use a
concept of membership in a proposition. Some proposition
p, as defined above, is a member of a proposition ¢ if p is
itself a conjunction of any number of conjuncts from ¢. This
is denoted by ¢q |= p.

G is a function G(C) — p that defines the goal propo-
sition of every agent ¢ € C. G(ca) is the author’s goal,
a proposition which must be true at the end of the story.

For Treasure Island, G(c4) = TH, meaning Hawkins has
the treasure. Hawkins and Silver both want the treasure;
G(H)=THand G(S) =TS.

For simplicity, we define every agent to have exactly
one goal for the whole story, though in our implementa-
tion agents can have multiple goals which can be adopted
or dropped during the story.

States and Actions

A state must be able to determine the truth value of any
proposition. It must define a value for every fluent, plus ev-
ery agent’s beliefs about the values of every fluent, plus their
beliefs about others’ beliefs, and so on infinitely.

Two functions are needed to define a state. For some state
s and some fluent f, let V' (s, f) — D be the value of that
fluent in that state. For some agent ¢ and some state s, let
B(c, s) be the state that represents agent ¢’s beliefs in s. In
other words, when the world state is s, agent c believes the
world state is actually 5(c, s).

The proposition f = v holds in state s when V (s, f) =
v. The proposition b(c, p) holds in state s when p holds in
B(c, s).

The author agent c4 does not have wrong beliefs about the
state of the world, so we define 3(ca,s) = s for all states.

Note that S is a function, which implies that every agent
commits to a specific (but possibly wrong) belief about every
fluent. This requirement simplifies problems significantly,
but means we cannot represent uncertainty (where an agent
could hold one of several sets of beliefs). We have found
this a useful tradeoff in practice, though others have found
it valuable to model uncertainty (Mohr, Eger, and Martens
2018).

As an analog to the use of notation for membership of
propositions, it is helpful to succinctly indicate that a propo-
sition p holds true in a state s (equivalently, p is satisfied by
s). This is indicated by s - p.

g is the initial state of the narrative planning problem. It
describes the initial values of all fluents and all initial agent
beliefs.

In Treasure Island, the treasure is initially buried on the
island, T'B, and Hawkins believes this. Using Shirvani, Far-
rell, and Ware (2018)’s extension to the closed world as-
sumption, we do not need to explicitly state b(H, T B); this
is assumed because T'B is true and Hawkins has no explic-
itly stated belief that contradicts it. Silver does not know the
treasure’s location, so b(S,TN) must be explicitly stated.
Hawkins believes Silver does not know where the treasure
is, b(H,b(S,TN)), but this also is assumed by the closed
world assumption and does not need to be stated. It is equiv-
alent to say that b(S,TN) holds in sy and to say that TN
holds in 5(S, so).

The set A is the set of all actions that could be taken in a
narrative planning problem. Every action a € A has a pre-
condition, PRE(a), a proposition that must hold in the state
immediately before a occurs, and an effect, EFF(a), a propo-
sition which becomes true in the state immediately after a
occurs.

Action preconditions and effects should not be contradic-
tions. For example, an action may not have the precondi-
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Figure 1: An example problem and example regression search space.



tion TB A TN, indicating that the treasure is both buried
and nonexistent. Since a fluent may only have one value at a
time, this is considered contradictory. This rule also applies
to beliefs. For example, an action cannot have the precondi-
tion b(S, T B) A b(S, T N), which would indicate that Silver
holds two beliefs about the treasure’s location. To formally
indicate that a proposition p is not a contradiction, we write
piE L.

Actions also define CON(a), a set of 0 to many consenting
agents, who must have a reason to take the action. Not every
agent involved in an action is necessarily a consenting agent.
Consider the rumor action. Silver’s beliefs are modified, so
he is involved, but he is a passive participant. Only Hawkins
needs a reason to take this action, so CON(rumor) = {H }.
Actions that happen by accident (i.e. actions agents cannot
anticipate) should have only the special author agent c4 as
the consenting character, which means only the author needs
a reason for it to occur.

Finally, every action a defines OBS(a), a set of O to many
observing agents, which are non-author agents who see the
action occur and update their beliefs accordingly. Because
B(ca,s) = s by definition, the author effectively observes
every action.

Belief propositions can be explicitly stated in precondi-
tions and effects. Consider the rumor action. Its precon-
dition is that Hawkins believe the treasure is buried on the
island, b(H, T B), and its effect is that Silver now believes
the treasure is buried on the island, b(.S, T'B). See Shirvani,
Ware, and Farrell (2017) for full details on how effects are
imposed on states.

Actions can have implied effects which are not explicitly
authored but which still result from the action. Some of these
implied effects are marked in red in Figure 1. They can hap-
pen in two ways.

The first implied effects are from surprise actions. It is
possible for agents to observe actions they do not believe
are possible. For example, if Silver does not know the trea-
sure’s location (i.e. he believes PRE(dig) is false), he would
be surprised to see Hawkins dig it up. When a surprise action
happens, agents first update their beliefs to correct wrong
beliefs and then observe the effects. We accomplish this by
copying any preconditions that remain unchanged into the
effects of an action. Formally,

Va,p : (PRE(a) = p) A (p AEFF(a) [~ L) — EFF(a) = p

Consider the rumor action. Its precondition is b(H,T B),
and Hawkins’ belief about the treasure is not changed by
the action’s effect, so this action implicitly also has the ef-
fect b(H, T B). This is important, because when Silver hears
the rumor, he not only believes the treasure is buried on the
island, he also believes Hawkins believes this.

The second kind of implied effects are from observations.
When a character observes an action, they believe its effects
have occurred. Consider sail. It has the effect that Hawkins
is on the island, H I, and Hawkins observes this action, so it
implicitly has the effect b(H, HI). Formally:

Ve,a,p: c € 0BS(a) A (EFF(a) = p) — (EFF(a) = b(c, p))

Valid Narrative Plans

We use the function « to denote the state after a sequence of
actions. In state s, let a([a1,as,...,a,], s) denote the state
of the world after taking those n actions in order from state s.
« is only defined if the preconditions of those actions are sat-
isfied immediately before they occur; that is PRE(a;) holds
in s, and PRE(ag) holds in «([a4], s), etc.

A sequence of actions is a valid story when it achieves the
author’s goal and when every action can be explained by the
beliefs and intentions of the agents who take them.

In a state s, an action a; is explained for agent c iff there
exists a sequence of actions [ay, ag, ..., a,] such that:

1. a([a1,az,...,a,], B(c, s)) is defined.

2. a([a1,az, ...,an], B(c, s)) F G(c).

3. All actions in [asg, as, ..., a,] are explained.

4. Unless ¢ = c4, no action has c4 as a consenting agent.
5

. No strict subsequence of those actions also meets these
same 5 criteria.

In other words, it makes sense for agent c to take action a;
if and only if, according to c’s beliefs about what the cur-
rent state is, ¢ can imagine a reasonable sequence of actions
starting with a; that achieves ¢’s goal (items 1 to 3). Item 4
means that accidental actions can only be explained for the
author; agents cannot plan for them to happen. Item 5 ex-
presses the idea that the plan the agent imagines should not
contain unnecessary or redundant actions.

Some of the actions in the plan may be actions the agent
must consent to, which we term actions the agent fakes.
Some of the actions are those that the agent anticipates will
be taken by other agents. This definition of anticipation is
drawn from Shirvani, Ware, and Farrell (2017). Anticipa-
tion must be justified in the same way that we ensure actions
to be taken are justified: it must be founded on those ac-
tions being explained for the agents who take them, accord-
ing to the anticipating agent’s beliefs. In Treasure Island,
Hawkins anticipates that Silver will choose to sail to the is-
land if he believes his goal can be achieved by acquiring the
treasure. This anticipated action is necessary to explain how
Hawkins’ choice to spread the rumor of the treasure—to take
the rumor action—is justified.

Note that the explanatory action sequence only needs to
exist; it does not actually have to occur in the story. Silver
is willing to sail to the island because he hopes to take the
treasure, even if he never actually succeeds in executing this
plan. This is Ware and Young’s (2014) model of conflict. It is
important to note that explaining an action is, itself, a plan-
ning problem. The high cost of explaining actions is one of
the motivations to use regression planning, which we discuss
in the following sections.

In a state s, an action a1 is explained (in general) iff it is
explained for every agent ¢ € CON(aq). In other words, an
action makes sense when it makes sense for every agent who
takes it.

Finally, we can define that a sequence of actions
[a1, a2, ...,ay] is a valid solution to the narrative planning
problem iff:



e af[ay,as,...,an], o) is defined.
anl, so) F G(ca).

e All actions are explained.

e af[ay,as, ...,

Progression

Progression, or forward search, begins at the initial state
sop and generates possible futures until a state is discovered
where the author’s goal G(c4) holds. A classical planner is
finished once this node is discovered because any path to the
goal is a valid solution.

Progression is difficult for intention-based narrative plan-
ners, like ours, because solutions must meet two require-
ments: the author’s goal is achieved and every action is ex-
plained. Not every path to the goal is a solution. Planners like
Glaive (Ware and Young 2014) first search for sequences
that achieve the author’s goal and then try to explain the ac-
tions in the sequence. Significant work is wasted when an ac-
tion cannot be explained. Glaive’s heuristic tries to account
for the number of yet-unexplained actions in its calcuations,
but this is only effective in some cases.

Recent work on the density of narrative planning solu-
tions (Siler and Ware 2020) suggests it may be valuable to
do progression the other way—the planner tries to explain
an action immediately after taking it, and when it cannot
be explained, that branch of the search can be pruned. This
guarantees that any path to the author’s goal is a solution,
but this approach risks wasting significant work by explain-
ing actions that are not relevant to achieving the author’s
goal. IMPRACTical (Teutenberg and Porteous 2013) uses
an explain-first approach, but actions are explained using
heuristics, so it cannot guarantee every action in the final
solution will be explained.

Regression

Regression, or backward search, starts at the goal G(c¢) and
generates plans from end to start until one is found that can
be executed in the initial state sg.

Consider Hawkins’ goal of acquiring the treasure, repre-
sented by T'H. Only the take(H,T) action has this as an
effect. We can regress Hawkins’ goal T'H over take(H,T)
by removing the action’s effects from the proposition and
adding the action’s preconditions. The result is the proposi-
tion T'I A HI. In other words, if we can find a state where
the treasure is dug up and Hawkins is on the island, Hawkins
would have a way to achieve his goal—the plan take(H, T).

The search space for the regression is the space of valid
and supported agent propositions, represented by {c, p) for
¢ € C. The proposition p represents a goal that, if satisfied,
indicates that the agent’s goal G(c) may be accomplished
by continuing to follow some (potentially empty) plan. The
criteria of being valid and supported define two key aspects
of the search process, which come together to ensure that the
plan which follows from each such proposition is explained.
These nodes in the search space are connected by actions
over which the regression is performed. A node {(c, ¢), which
was generated by the regression of (c,p) over action a is
valid iff:

1. g}~ L.
2. any state satisfying ¢ satisfies PRE(a), so a can be taken.

3. EFF(a) partially satisfies p, formally: 3 : p = [ A

EFF(a) = 1.
4. p holds after applying EFF(a) to ¢. Vr EFF(a) = r and
(rAplEL).

Between nodes of the same agent an action edge represents
a step the agent plans to take, or anticipates will be taken.
Between nodes of distinct agents the action edge represents
evidence for the anticipation of that action. Consider node
nio in Figure 1. This node is a valid regression for a node
also owned by the author, ng. It also contains the necessary
beliefs to be supported by nodes n; and ng. A node (c, q)
generated by expanding a node with action a is supported
if a regression can be found for at least one node for every
agent in the consenting set except for c. That is, given 7 is
the regression function defined in Algorithm 1:

Veother € (CON(a) — {c})

E|<Cother7pother> - q ': b(cothera A/(avpother))]

When a node is supported, this indicates that all beliefs
necessary to ensure explainability of the actions leading out
of that node are present, in particular those which provide
reason to anticipate the actions consenting agents will take.

Algorithm

The regression of a single proposition over an action is given
by the procedure 7 (a, p) in Algorithm 1. This function re-
turns the simplest proposition required for the action to be
acceptable for any plan continuing from that point, or it sig-
nals failure.

Algorithm 1 v(a, p)
1: Let a be an action, p is a proposition.
2: if (31 : EFF(a) E IAp E )A(Vr,EFE(a) = rA(rAp b
1)) then

3: Let g be PRE(a).

4: Vi,p =1 :Let g be g A Liff EFF(a) }= 1
5: if ¢ [~ L then

6: return g

7: else

8: return failure

9: end if
10: else
11: return failure
12: end if

The process of expanding the regression graph is given by
the procedure SEARCH(C, G, A, s¢) in Algorithm 2. If this
function returns, it provides a plan that satisfies the author’s
goal, starting from the initial state.

Search starts with the set of nodes {{(c,G(c)) : ¢ € C}
(line 3). The SEARCH algorithm is an iterative expansion
of the search space which proceeds by choosing a node to
expand (line 5) and an action to expand it with (line 9), then



Algorithm 2 SEARCH(C, G, A, sg)

1: C'is the set of agents, G is a function of agents to agent
goals, A is the set of actions, and s is the initial state.

2: Let X be ()

3: Vee C:Let X be X U (¢, G(c))

4: loop

5: Choose a node (¢, p) € X.

6.

7

8

if (c =ca) A (so - p) then
return the path from (¢, p) to {c4, G(ca))

: else
9: Choose an action a € A.
10: Let ppew be y(a, p).
11: for cotper € CON(a) : Cother 7 ¢ do
12: Choose a node {(Cother, Pother) € X such
that y(a, Pother) does not fail.
13: Let prew be prew A b(coth,era '7/(@, pother))
14: end for
15: if (¢, Ppew) not redundant for (c4, G(c4)) then
16: Let X be X U {(¢, Pnew)}
17: end if
18: end if
19: end loop

choosing nodes from the plans of consenting agents to es-
tablish support for the action (line 12). All such chooses are
non-deterministic.

Each expansion produces nodes which describe the con-
ditions under which the plan—the chain of actions leading
back to the node (¢, G(c)) for that same agent—will suc-
ceed. These nodes also explain participation of all consent-
ing agents for each action to be taken. The search concludes
when a node is found which is both owned by the author and
satisfied by the initial state (line 7).

Recall that the sequence used to explain an an action
should not contain unnecessary or redundant actions (e.g.
sailing back and forth to the island before digging up the
treasure). For now, we define a node (c, p) to be redundant
when it has an ancestor node (c, ¢) such that p |= ¢. In other
words, a plan is redundant when it ends with a sequence of
actions that would also achieve the goal and would apply in
all of the same states (and possibly more).

As an example, consider regressing node mnis over
rumor. This represents the obviously redundant story:

{rumor, rumor, sail, dig, take(H,T)}

Hawkins spreading the rumor that he has the map twice is
possible, but unnecessary, because the proposition produced
by this regression would be exactly the same as the proposi-
tion for nqo.

Note that a node (c, p) is not redundant when it has an
ancestor node (c, ¢) such that ¢ |= p. The proposition for
node nq, is a strict subset of the proposition for nig, but
spreading the rumor is not necessarily redundant, because
the plan represented by node n15 may apply in some states
where n19 does not apply, e.g. any state where b(S,TN)
holds—Silver believes the treasure does not exist.

This definition of redundant plans is not as robust as ones

used in some progression planners like Glaive (Ware and
Young 2014). Improving this check is an area for future
work.

Worked Example

Looking at Figure 1 in more detail, we can see how the al-
gorithm takes shape. Initially, we begin our search at the
goals for each agent: Silver, Hawkins, and the author. Any
of these would be effective choices for our first expansion,
but we choose to expand the author’s goal, n;: Hawkins has
the treasure.

We compute the regression of TH over take(H,T):
~v(take(H,T),TH) = TI A HI. If the treasure is on the
island, and so is Hawkins, we can use take(H,T) to ac-
complish the author’s goal. The resulting node is valid, but
we must also ensure that the node is supported by find-
ing a regression over take(H,T) from a node owned by
Hawkins, the consenting agent of take(H,T). ny serves
our purpose, and the regression is also 7'/ A HI. From the
perspective of the author, this is our expectation of what
the agent needs to think is true of the world in order to
take the action, as opposed to what the true state of the
world is. Therefore, this proposition is added as a belief:
b(H,TINHI)=0b(H,TI) Ab(H,HI). This is conjoined
with T'I A HI to get the final result. Regardless of whether
he is correct, Hawkins believes that n, will put him in the
position to take the treasure. Since he is correct, the author
can accomplish that goal as well.

The next regression in the author’s sequence will be the
regression of the proposition for ng over the action dig, but
we can only expand a node if we can find a regression for
it and for a node from every consenting agent as well as the
current one. In this case, we must first expand no (Hawkins’
goal to have the treasure) to get ns; (Hawkins’ belief that he
can eventually get the treasure if he is on the island and it
is too) and now we have everything necessary to produce ng
in the same way that we did for n4. When preforming this
regression over dig, we must be sure to remove the implied
effect b(H,TT), as we preform this regression from ny, to
avoid the contradiction of Hawkins believing the treasure is
buried and excavated at the same time.

The process continues as we consider the dig actions
for the author and Hawkins, and perform those expansions.
Then prior to being able to consider the sail action, which
requires Silver’s consent, we must expand upon Silver’s plan
until his search space has a proposition which can be re-
gressed over the sail action. We find that we can perform a
regression of his goal over take (.S, T'), and then regress over
the action dig. Hawkins is the only agent who must consent
to dig, so Silver must expect that Hawkins will have rea-
son to dig. This is an instance of anticipation. Anticipating
the dig action provides an explanation for why Silver should
consent to a sail action, if it left the world in a state fitting
Ng.

The most complicated proposition for this example is
the result of the regression of TB A HI A b(H,HI) A
b(H,TB) over sail. sail requires consent from both
Hawkins and Silver, so we must retrieve their regression
results as well, and add their beliefs. The final proposition



is given by: v(sail, TB AN HI ANb(H,HI) ANb(H,TB)) A
b(S,v(sail, TB AN SI AN HI Nb(H, TB) Nb(H,HI))) A
b(H,~(sail,TB A HI))). Included in this, as an example
of nested belief, is Silver’s belief that Hawkins believes the
treasure is buried—and therefore Hawkins will seek to dig
up the treasure and give Silver the chance to take it. n; is
determined in much the same way, but only needs consider-
ation of Hawkins’ and Silver’s goals, not the author’s. ni5 is
expanded in the same way as the others.

At every step the algorithm compares expanded author
nodes against the initial state, though we have left out men-
tion of this until now. When 7,5 is compared with the ini-
tial state, we see that we have satisfied the needs of the
problem—keeping in mind that, unless explicitly stated oth-
erwise in the initial state, we assume that each agent has an
accurate belief of the world.

We propose that regression planning has three major ad-
vantages:

e By searching backward from goals, we ensure action se-
quences are intentional. There is still a risk that search ef-
fort will be wasted exploring sequences which can never
be possible, but regression addresses the two criteria prob-
lem described in the previous section. Heuristic search
can prioritize sequences that can reach the initial state,
and once such a sequence is found, it is guaranteed to be a
solution, with no additional constraint checking required
afterwards.

e With no limit imposed on the model’s theory of mind, it
can be difficult to know which beliefs are relevant to an
agent’s plan. Shirvani, Ware, and Farrell’s (2017) model,
on which we build, spends much effort generating all
changes to beliefs that result from actions, many of which
are not relevant. Regression reasons only about the beliefs
which are needed to make a plan work.

e Narrative planners are often used in interactive systems
where the narrative is replanned frequently. A regression
plan expresses only the requirements needed to ensure it
will work, so plans found this way can be easily reused in
many states. Consider node n5 in Figure 1. Hawkins has a
plan to get the treasure in any state where the proposition
TI A HI holds, which might be multiple states during the
lifetime of an interactive story.

Conclusions and Future Work

The algorithm we detail here presents a method to manage
intention and belief in narrative planning problems in a sin-
gle search process, with no requirement to check that actions
are explained after reaching the author goal. By the nature
of the search space, nodes are only added to the search if the
action being used for the regression is fully explained.

Our implementation of the algorithm is in development,
and will be tested a suite of benchmark narrative planning
problems to determine the experimental performance of the
method. We also intend to develop and test heuristics to
guide the regression effectively. Heuristics like the one used
by Glaive are complicated because they attempt to account
for the number of yet-unexplained steps in a plan. Since ev-
ery node produced by our regression planner is represents

a valid plan, a heuristic only needs to estimate the distance
between the initial state and a node’s proposition.
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