CEUR-WS.org/Vol-2862/paper27.pdf

MCTS pruning in Turn-Based Strategy Games

Yu-Jhen Hsu, Diego Perez-Liebana
School of Electronic Engineering and Computer Science
Queen Mary University of London, UK

Abstract

Large action spaces is one of the most problematic aspects of
turn-based strategy games for all types of Al methods. Some
of the state-of-the-art algorithms such as Online Evolutionary
Planning and Evolutionary Monte Carlo Tree Search (MCTS)
have tried to deal with this problem, but they required a fixed
number of actions in each turn. In general strategy games, this
assumption can’t be held, as the number of actions that can be
executed in a turn is flexible and will vary during the game.
This paper studies pruning techniques and the insertion of do-
main knowledge to deal with high branching factors in a new
turn-based strategy game: Tribes. The experiments show that,
with the help of these techniques, MCTS can increase its per-
formance and outperform the rule-based agents and Rolling
Horizon Evolutionary Algorithms. Moreover, some insights
into the tree shape and the behaviour of MCTS with and with-
out pruning techniques are provided.

1 Introduction

Turn-based multi-action strategy games raise the interest
in the Al domain due to, among other things, their huge
branching factors. These kinds of games contain a consid-
erable number of actions within a turn, which the player ex-
ecutes in sequence. The order of actions is important as pre-
vious actions influence latter ones. The branching factor can
significantly increase up to billions next states. Compared to
Go and Chess, the branching factor is much higher in turn-
based strategy games (Perez et al. 2020). Taking Bot Bowl
(Justesen et al. 2019) as an example, in which the goal is to
manage a football team where each unit can execute several
actions, the branching factor can be as high as 10°! in a given
turn. The branching factor for Tribes (Perez et al. 2020) and
HeroAlcamdy (Justesen, Mahlmann, and Togelius 2016) are
103! and 108, lower than Bot Bowl but still much higher
than Go and Chess. Tribes is a strategy game that introduces
extra management complexities, as it requires controlling
not only the units but also cities, tech trees and resources.
Some recent progress has been made by analysing how huge
branching factors impact the performance of agents. High

Copyright (© 2020for this paper by its authors. Use permitted un-

der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

branching factors drop the performance of search algorithms
(Justesen et al. 2017; Baier and Cowling 2018). The diffi-
culty of developing an evaluation function makes the situa-
tion even worse (Justesen et al. 2017; Browne et al. 2012), as
the search algorithms require them to guide decision mak-
ing. Although Monte Carlo Tree Search (MCTS) can han-
dle large branching factors, it fails when branching factors
reach the sizes mentioned above (Baier and Cowling 2018;
Chaslot et al. 2008). In the default tree policy of MCTS, all
nodes are required to be visited before exploitation happens,
making non or rarely visited less informative for making a
good decision (Gelly and Wang 2006).

New search algorithms have been developed to tackle
strategy games, such as Online Evolutionary Planning
(OEP) (Justesen et al. 2017) and Evolutionary MCTS
(EvoMCTS) (Baier and Cowling 2018), obtaining decent
performance in HeroAlcamdy. Instead of using a single ac-
tion as genomes or nodes, they use a sequence of actions as
the representation. The difference between OEP and EvoM-
CTS is the way to obtain an action set over the turn. OEP
uses crossover and mutation operators to choose the best ac-
tion set. EvoMCTS combines MCTS and an evolutionary al-
gorithm to mutate action sets to guide search in a tree struc-
ture. These two algorithms choose a fixed number of actions
for a turn, and each action is assigned to a specific unit. This
assumption makes it hard to adapt for a game like Tribes
(or most strategy games) for three reasons. First, the num-
ber of actions might change after executing an action during
the same turn. Secondly, the branching factor generally in-
creases during the game. Lastly, instead of managing units,
in Tribes agents require to manage not only unit actions but
also cities and general faction actions. These factors increase
the difficulty to estimate the length of a fixed size genome.

Using a single action rather than a complete turn as a rep-
resentation for MCTS is one possible solution. It decreases
the branching factor and makes the tree deeper (Baier and
Cowling 2018). However, vanilla MCTS without improve-
ment fails as the tree is still shallow (Justesen et al. 2017,
Baier and Cowling 2018). Numerous enhancements for
MCTS have been proposed to deal with this issue. One pos-
sible solution focuses on pruning, reducing the branching
factors by removing some weak actions based on evaluation

functions or domain knowledge that increases the converge
speed to find good action.

This paper aims to investigate classic pruning techniques
and analysing the tree structure and behaviours of MCTS
for Tribes. This paper compares the performance of MCTS
with pruning with the original MCTS agent, Rolling Hori-
zon Evolutionary Algorithms (RHEA) agent and rule-based
agent which are agents that outperformed MCTS in the orig-
inal Tribes paper (Perez et al. 2020). Moreover, the different
MCTS pruning techniques are analysed by their tree shape
in terms of the influence of turn and branching factor.

2 Background and related work
2.1 Monte Carlo Tree Search (MCTS)

MCTS (Browne et al. 2012) is a tree search algorithm that
explores the most promising parts of the state space by bal-
ancing exploitation and exploration, and it has been success-
fully applied to many games. The tree, being asymmetric,
contains nodes representing the state and edges representing
the actions. There are four main steps in the default MCTS:
selection, expansion, simulation and back-propagation. In
the selection step, the tree policy (Upper Confidence Bounds
- UCB1 (Auer, Cesa-Bianchi, and Fischer 2002) - in the
most used version) is applied to guide the search from the
root until finding a node with non-visited children. An action
chosen at random is added in the expansion step followed
by the simulation step, performing a random rollout (Monte
Carlo simulation) until reaching a terminal state. While it is
one of the main steps, some recent studies (Perez et al. 2020;
Baier and Cowling 2018) have shown that skipping the roll-
out and directly evaluating the expanded node’s state can
provide better results. The final step, back-propagation, eval-
uates the terminal state and then updates all nodes that are
visited in this iteration. MCTS ends when it runs out of bud-
get and returns the most visited child of the root.

There are different enhancements used to improve the per-
formance of MCTS under large branching factors. These
methods either reduce the branching factor by domain
knowledge or handle the requirement of visiting all nodes
before exploitation. First-Play urgency (Gelly and Wang
2006) encourages early exploitation by assigning the ini-
tial value to non-visited nodes. It reduces the need for vis-
iting every node before exploitation under UCT and allows
the tree to go deeper. Move groups (Childs, Brodeur, and
Kocsis 2008) is another technique for reducing the branch-
ing factor and increasing the performance of MCTS in Go.
Instead of choosing a single action, a move group (which
contains similar moves with a highly-correlated expected
value) is picked and evaluated. Rapid Action Value Esti-
mation (Gelly and Silver 2007) updates the value for all of
the nodes with the same action and state regardless of its
position in the tree. A script approach such as Hierarchi-
cal Portfolio Search (Churchill and Buro 2015) and Port-
folio Greedy Search (Churchill and Buro 2013) specialized
in dealing with huge branching factors in real-time strat-
egy games, searches over the small amount of hand-coded
scripts rather than the whole action set.

2.2 Pruning techniques for MCTS

Pruning is another technique used to deal with huge branch-
ing factors. The benefits of pruning are that poor actions can
be ignored, focusing more on promising actions, resulting in
a much deeper tree and potentially a quicker convergence.
Moreover, it can be used without heuristic functions and can
be applied in any domains (Browne et al. 2012). Some prun-
ing also uses domain knowledge to remove some trap states
(Ramanujan, Sabharwal, and Selman 2010), which are states
which have a high reward but are leading to loss.

Pruning techniques can be divided into two categories:
hard and soft pruning. The hard version prunes the tree by
eliminating actions with the lowest evaluated score. Soft
pruning prunes actions after certain iterations, but the elimi-
nated actions will be chosen in a later iteration. The benefit
of soft pruning is alleviating the risk of removing the good
actions (Browne et al. 2012) while hard pruning allows the
tree to go deeper (Justesen et al. 2017). Progressive widen-
ing (PW) (Coulom 2007) or Progressive Unpruning (Chaslot
et al. 2008) is an example of soft pruning, showing big suc-
cess in the game Go. NV nodes are pruned based on evalu-
ation functions after the iteration number exceeds a thresh-
old. After several simulations, nodes are unpruned and can
be chosen in the selection step. In this way, all actions will
be visited, given enough budget. This technique provides a
similar effect to First-Play urgency, encouraging early ex-
ploitation and allowing the tree to go deeper. While pruning
techniques can be used without heuristics, the performance
of progressive widening depends on the heuristic function.
(Teytaud and Teytaud 2009) show that progressive widening
without the help of heuristic has a little impact on improving
the strength of the agents in the game Havannah.

2.3 Rolling Horizon Evolutionary Algorithms
(RHEA)

RHEA is an evolutionary algorithm that achieves good re-
sults in several real-time games(Perez et al. 2013). RHEA
learns online, during the game, in a different way to other
evolutionary algorithms that learn offline. It first generates
random individuals, each one representing a sequence of ac-
tions. It then evaluates the final state arrived after execut-
ing, from the current state, all the actions in the individ-
ual sequentially. Evolutionary operators such as selection,
crossover and mutation are used to generate new individuals
based on old ones. The first action in the individual with the
highest value is returned once the budget is exhausted.

3 Methods
3.1 Tribes

Tribes (Perez et al. 2020) is a re-implementation of the game
The Battle of Polytopia (Midjiwan AB 2016), a popular
award-winning turn-based strategy game, which can be seen
as a simplified version of Sid Meier’s Civilization. Fig. 1
shows the interface of Tribes.

The game takes place in N x N tiles. Each tile contains the
terrain type (plain, mountain, shallow water or deep water).
Each tile can only have one resource, building and unit at the
same time. Villages, resource and ruins will be generated in

nnnnnnn oy | o || wam

Figure 1: The user interference of Tribes.

tiles at the beginning of the game. Ruins contain randomized
bonuses (special unit, technology, resources, etc.) and can be
explored by units. There are two game modes, being Capital
and Score mode. The goal in the Score mode is to maximize
the score or take all the enemies’ capitals within 30 turns. In-
stead of reaching as much score as possible within 30 turns,
the Capital mode only requires to capture the enemy’s capi-
tal, or initial city. The score comes from a variety of actions
such as exploring, resource gathering, capturing villages and
cites, and constructing determined buildings. At the begin-
ning of the game, each player controls one of the four avail-
able Tribes (Xin_Xi, Imperius, Bardur and Oumaji). They
have a starting unit and a researched technique, being differ-
ent for each tribe. Each player starts with five stars, which
are the resource currency. Each player executes as many ac-
tions as possible within a turn until they decide to end it, or
no more actions are available.

There are three crucial aspects of the game, technology,
economy management and combat, which determine the
playing strategy. The critical element in economy manage-
ment is handling stars, which is used for building, gather-
ing resources, spawning units and researching technologies.
Stars are produced by cities on each turn. Buildings and re-
sources provide population to the city. When the population
exceeds the level of the city, the city is upgraded, and a
bonus (extra production, units, city border growth, etc.) is
unlocked. For city levels 5 and higher, the player can se-
lect a bonus between the strongest game unit (super unit
or Giant) or building a park (extra score). The higher the
city level is, the higher the number of stars it produces per
turn. The building can only be built in their own territory,
which is formed by the 3 x 3 tiles around the city. The types
of units and buildings that can be spawned and constructed
are limited at the beginning of the game, and more types
are unlocked by researching the different 24 technologies
available. Two types of combat units can be spawned, be-
ing melee (Warrior, Rider, Defender, Swordsman, Knight)
and ranged (Archer, Catapult). Each unit has different attack
power, range and health points (HP). They can also embark
in port buildings and become a boat unit. Boats have three
levels: boat, ship and battleship. Attack power, movement
range and HP are increased when upgrading the boat unit.
Moreover, a different type of units can perform a distinct

combination of actions per turn. Most of them can attack
and/or move in a turn, but others can do multiple consecu-
tive actions. Once a unit defeats three other units, the former
is upgraded to a veteran, having much higher HP. Units can
capture the enemy’s city or neutral villages after staying in
that city/village for more than a turn. The Mind Bender is
a special unit which can heal friendly units and convert en-
emies to their faction. More details about the game can be
found in the original paper (Perez et al. 2020).

There are three kinds of actions in Tribes, being unit
(the only set without requiring stars to perform actions),
city and tribe. The unit actions include attack, move, cap-
ture, convert, disband, examine, upgrade and become a vet-
eran. Some of these actions are specialized for the particular
unit type, or can only be performed when its corresponding
technique is researched. The city actions include construct-
ing and destroying buildings, burning, growing and clear-
ing forests, resource gathering, spawning a unit and level-
ling up. The tribes action includes research, build a road in
a non-enemy tile and end the player’s turn. Roads speed up
the units’ movement and can be used by any player. Some
actions decrease the action space for a turn. For example,
the build action consumes resources and results in lacking
enough stars for executing subsequent actions in that turn.
The other actions, such as researching unlocking features,
increases the action space for a turn. This situation makes
Tribes a complex environment for decision making, with
huge branching factors when a player owns many units and
cities. A strong playing strategy must balance actions for
technology, economy management and combat, as well as
a proficient order of actions per turn.

3.2 Baseline Approaches

We use 3 algorithms from the original framework (Perez et
al. 2020) as baseline approaches: MCTS, RHEA and rule-
based agents. It is interesting to compare to RHEA and rule-
based agents as they outperform MCTS in the original paper.

Rule Based (RB): The simple rule-based agent is the only
agent that does not rely on the forward model in this pa-
per. The forward model allows the agent to sample a possi-
ble future state given a particular action in the current state.
In (Perez et al. 2020), RB has the second-highest winning
rate and in particular beats MCTS in 56.2% of the games.
The agent only uses the information of the current state,
evaluating each action separately and returning the one with
the highest value. If there is more than one action with the
highest value, it picks up randomly to break the tie. The eval-
uation is hand-crafted and relies on domain knowledge. The
main weakness of this agent is that it considers every action
independently and does not consider the action’s effect in the
game state. The insights of this agent are that it disables the
destroy and disband action and focus on capturing, examin-
ing ruins and turning units into veteran ones when possible.
For more details about rule-based agents can refer to (Perez
et al. 2020).

Rolling Horizon Evolutionary Algorithms (RHEA):
RHEA, described in Section 2.3, achieved the best perfor-
mance in (Perez et al. 2020) with a 63% winning rate against
MCTS. In the experiments of this paper, the RHEA agent

uses the same parameters: population size of 1 and individ-
ual length of 20. Similar to the RB agent, the disbanding
action and destroying actions are removed.

Monte Carlo Tree Search (MCTS): MCTS, described in
Section 2.1, has below 50% wining rate agents RHEA and
RB in (Perez et al. 2020). This MCTS variant prioritizes the
root action by picking up different subsets of actions from
city, unit and tribe actions. This prioritization is only applied
to the root, not the rest of the nodes. The maximum depth of
the tree is 20. UCBI1 is chosen as the tree policy, with an
exploration constant set to /2. No rollouts are performed
in the simulation step, instead of evaluating the state being
rolled based on default policy until the tree reaches certain
depth or terminal state, the state of the current node is eval-
uated, and the value is updated in the back-propagation step.
To differentiate it from the other MCTS versions proposed
in this paper, we refer to this as Default MCTS.

Heuristic: A heuristic function is used to evaluate a game
state. It compares the difference between two states and eval-
uates them based on seven features. The features in (Perez et
al. 2020) include the differences between production, num-
ber of technologies, score, number of units, number of kills
and the total level of cities. Different features have different
weights, set to 5, 4, 0.1, 4, 2, 3 and 2 respectively, by trial
and error. Two features added in this paper, stressing the im-
portance of building and occupying the enemy’s cities. Ev-
ery new building will provide 5 points and each unit in the
enemy’s city will add 10 points to the score of the state.

3.3 MCTS with hard pruning

MCTS with hard pruning modifies the tree policy of MCTS
to reduce the branching factor. The tree policy not only
guides search, it also prunes the node’s children if they are
visited from the parent more than the 20 times. The num-
ber of remaining nodes, being the number of children kept
after pruning, is based on the branching factor and the limit
for minimum nodes, shown in Equation 1. It will prune the
children of nodes until the number of children matches the
number of remaining nodes by evaluating its state based
on heuristic described above. The children with the lowest
value are pruned and never visited in the later iteration.

remainingNodes = max (alogn, T) (1

a controls the speed of pruning when the number of ac-
tions grows. This parameter plays a vital role in deciding the
number of the remaining nodes when the branching factor
becomes huge. The higher it is, the more children are kept.
T is the minimum number of actions that need to be kept
after pruning. If there is any action set smaller than 7', prun-
ing is not applied. The reason for using logarithm to prune
the tree is to reduce most of the actions when the actions
set becomes extremely large. The parameters are decided by
running the experiment under a different setting. The setting
with the highest winning rate is used.

Besides pruning by the tree, the destroy action is excluded
as it does not provide any rewards and results in a reduced
score. Furthermore, MCTS with hard pruning has another
parameter to decide to prune the move actions or not. Thus

there are two versions of MCTS with hard pruning: with and
without move pruning. The reason for pruning the move is
that it increases the action space significantly: every unit has
multiple move actions based on its move distance and the
road. When it comes to the later game, a player tends to
have many units, increasing the action space significantly.
The move action is pruned by the equation 1. It firstly ex-
tracts the move action from all action sets. The move actions
whose destination is not a ruins or a city tile are extracted
and picked by the equation 1 with « = 1 and 7" = 5. The
pruned move action will then be removed and never be con-
sidered in the action set of the current node. Although the
pruned actions are removed in the current node, they might
appear in the following nodes meaning they still will be con-
sidered in a later step.

3.4 MCTS with progressive widening

This variant of MCTS is a modification of MCTS with hard
pruning. Instead of permanently removing the pruned nodes,
the algorithm unprunes the nodes in later iterations. This
process allows the tree to search for every node and alleviate
the risk of pruning the best action. It is done by increas-
ing the number of remaining nodes if the iteration number
is over the value given by Equation 2 (Chaslot et al. 2008).
When the number of iterations is greater than Y, a pruned
action picked uniformly at randomly is unpruned.

T = aﬁnfn,init (2)

« and S control the unpruning ratio, and they are set to
20 and 1.7 respectively. The higher value § is, the higher
the number of iterations is needed for unpruning, approxi-
mating the behaviour of hard-pruning. n is the size of the
unpruned set of the current node and n_init is the initial
number of unpruned nodes, set to 5. As for the hard pruning
case, two variants of MCTS with progressive widening have
been tested: with and without move pruning.

4 Experiments and results

This section provides the experimental setup for testing
MCTS with pruning followed by the results of our tests. Fi-
nally, an analysis of the MCTS tree is provided.

4.1 Experimental Setup

Both versions (hard pruning and progressive widening) of
MCTS with pruning (i.e. with and without move pruning)
were pitched against the rule-based, the default MCTS and
RHEA agents, as included in the framework. For all search
agents, the stopping condition is set to 2000 usages of the
forward model’s next method.

Each agent pairing plays 5000 games (25 seeds with 200
repetitions). The seeds are the same as in the original paper
(Perez et al. 2020) and they are used to generate different
levels, all of size 11 x 11 tiles. Because levels might not
be balanced for both contestants, players swap starting po-
sitions within the 40 repetitions of every seed. Each game
is independent, meaning that no information is carried from
one game to the next. The game mode is Capital with full ob-
servability, thus the winning condition is set to take over the

Table 1: Averaged winning rate for each version of MCTS vs 3 baseline agents over 5000 games.

Hard Pruning Progressive Widening
RB | Default MCTS | RHEA | RB | Default MCTS | RHEA
Move Pruning 56.9% 63.3% 57.8% | 57.8% 62% 57.7%
No Move Pruning | 54.7% 61.2% 54.5% | 55.8% 60.1% 57.7%

enemy’s capital city. In order to have finite games, a winner
is declared after 50 turns, corresponding to the player with
the highest score at that point.

4.2 Game Results

Table 1 shows the results of both versions of MCTS com-
peting with three baseline approaches. The first row and first
column indicates the version (hard pruning or progressive
widening) and with or without move pruning respectively.
Default MCTS shows 43.8% and 37% winning rates when
playing against the RB and RHEA agents, respectively (not
in the table). With the help of pruning techniques, all ver-
sions of MCTS have more than 50% winning rate playing
against the baseline approaches.

With the help of hard pruning, MCTS increases its win
rate approximately 8% and 12% compared to the original
MCTS when playing against RB and RHEA, respectively.
Move pruning and progressive widening further increase the
performance of MCTS with hard pruning. MCTS with hard
pruning and move pruning shows the highest winning rate
when competing against the original MCTS and RHEA. As
can be seen, pruning moves increases the performance of
MCTS in relation to only applying progressive widening or
hard pruning. Although using hard pruning or progressive
widening is clearly better than using no pruning at all, the
difference between these two methods is minimal. The win-
ning rate is higher for progressive widening when playing
against RB, but lower than hard pruning when the oppo-
nent is default MCTS and RHEA. The difference however
is likely not to be significant, and different parameters for
Equation (?) may alter the unpruning rate and provide a bet-
ter value estimate of the different moves. Overall, although
hard pruning, progressive widening, and domain knowledge
(move pruning) can improve the performance, using domain
knowledge has clearer effects in the winning rate.

Table 2 shows the statistics of the different versions of
MCTS over 15000 games (aggregated for each 5000 pair-
ings against the baseline approaches). It shows the statis-
tics of average winning rate over three baseline approach,
final score, researched technologies percentage, number of
owned cities at the end game and final production. The val-
ues obtained for these statistics for the default MCTS in
(Perez et al. 2020) (not in this table) are 9966.55, 85.27%,
2.23 and 16.96, respectively. The score and researched tech-
nologies percentage of every version of MCTS are consid-
erably smaller than the original MCTS and have a similar
value to the ones of the RB agent (8076.32 for scores and
71.14% for researched technologies). However, the number
of cities owned at the game end and final production val-
ues are slightly larger, now between 2.24 and 2.26 for the

former, and above 17 for the latter. Results also show that
MCTS with progressive widening has higher number of re-
searched technologies, and move pruning produces higher
final scores, cities and production. This statistic suggests
that the modified MCTS is more focused on occupying cities
rather than trying to maximize the final scores, which may be
a consequence of the new features in the heuristic function
that gives extra value for units in the enemy’s cities. In com-
parison to RB and RHEA, the score and researched tech-
nologies percentage of MCTS sit between those two agents,
while the number of owned cities and final production is
smaller than RB and RHEA. The statistics of the different
versions of MCTS explored in this work, in relation to RB
and RHEA, are comparable with those of default MCTS.

4.3 Tree analysis

This section shows which action groups and actions are exe-
cuted more often, an analysis of the tree depth and the fully
expanded rate of the recommend action node in terms of
different action spaces and turns in the game. The fully ex-
panded rate of the recommended action node is measured
between 0 and 1. If the value is 1, it means the recommended
action node has visited all of its possible children (exclud-
ing the pruned nodes), from its current state. A value of 0
indicates that no children have been explored'.

During the game, the unit action group is the most fre-
quently chosen: 68% of the time. The city and tribe action
groups are only chosen 20.5% and 11.4% of the time re-
spectively. This difference are a consequence of unit actions
taking a large proportion of the action space. The most fre-
quently executed action is move. The move action has the
largest percentage (58.9%) among all actions, also explain-
ing why the unit action group has the largest proportion. The
move action does not provide a significant reward per se, but
it can lead to future reward if the unit moves to ruins or en-
emy cities. Applying the move pruning does not change the
proportion between the action groups. This may be caused
by move actions being taken towards the end of the turn.

Figures 2 and 3 show the influence of the branching fac-
tor in the depth of MCTS and fully expanded rate of the
recommend action node. The original MCTS is unable to go
deeper than 2 levels and visit all the possible actions from the
current state when the branching factor is over 50. With the
help of pruning techniques, this problem happens only when
the size of the action space grows over 180. This is three
times larger than in the original MCTS, providing better ac-
tion value estimates in early game turns (when the action

"Note that these are the children of the node of the recom-
mended action, not the children of the root.

Table 2: The aggregated statistics for each version of MCTS over 15000 games

Hard Pruning Progressive widening
Win Rate Score Techs | Cities | Prod. | Win Rate Score Techs | Cities | Prod.
PM"Y" 59.3% | 8500.06 | 77.88% | 226 | 1738 | 59.1% | 8564.36 | 79.08% | 2.25 | 17.34
runing
lf," Move | 5 g | 845852 | 77.46% | 224 | 17.16 | 57.8% | 8446.04 | 78.17% | 224 | 17.07
runing
6.0 —— hard pruning & move pruning —— hard pruning & move pruning
55 4 ~=~ hard pruning 81 ==~ hard pruning
—— pw & move pruning _.' —— pw & move pruning
5.0 pw 74 A pw
..... original MCTS 3 -+=--original MCTS
4.5
< < 61
840 8
° 3.5 517
3.0 4
2.5
3]
2.0 1
(I) l(l)O 2(I)0 3(I)0 460 S(I)O

Action Size

Figure 2: MCTS depth under different action space sizes.

1.04 —— hard pruning & move pruning
=== hard pruning
0.8 —— pw & move pruning
° e
F-7 S VR original MCTS
< 0.6 1
o
°
3
v 0.4
>
2
0.2
4\
0.0 B .
0 100 200 300 400 500

Action Size

Figure 3: The fully explored rate for the recommended ac-
tion in MCTS under different action space sizes.

space tends to be smaller). The depth of the tree sharply de-
creases when the branching factor grows. As expected, due
to the unpruning mechanism, progressive widening explores
more shallow trees than hard pruning, which is most notice-
able when the action space size is between 100 and 150.
Compared to hard pruning, progressive widening is unable
to fully explore the chosen action when the branching factor
becomes over 100. Although hard pruning also faces this is-
sue, it happens later than progressive widening. The rate of
exploration shown in Figure 3 shows a similar trend: hard
pruning is able to delay the decay of children explored fur-
ther than progressive widening, and both approaches show
clearly that they allow the tree to visit a higher proportion of
actions from the root than when there is no pruning at all.
With no pruning, the rate of default MCTS decays dramat-

1.01

o
©

o
©

o
o

fully explored ratio
o
~

—— hard pruning & move pruning
| ==~ hard pruning i
—— pw & move pruning

pw T

----- original MCTS

o
o

o
P

0 10 20 30 40 50
Turn

Figure 5: The fully explored rate for the recommended ac-
tion in MCTS under different turn

ically when the action space size reaches 50. Figures 2 and
3 show the effect of unpruning in progressive widening and
how the search tree is explored differently in each case.
Figures 4 and 5 show the influence of the game turn in
the depth of MCTS and the fully expanded rate of the rec-
ommended action node. Note that, in Tribes, the size of
the action space tends to grow (particularly if the game is
favourable to the player) with the number of turns. An anal-
ysis of this can be found at (Perez et al. 2020). The depth
of not-pruned MCTS drops to around 3 when the game turn
reaches 30, and the fully explored rate of chosen action starts
to drop in turn 10 and ends up with the 40% in turn 50. The
pruned versions of MCTS show a similar trend but dropping
more slowly than the original MCTS. The depth of modi-
fied MCTS is around 4 at the game end, and the fully ex-
plored rate of the chosen action is considerably higher than

that of the original MCTS in turn 50. Hard pruning decreases
slower than progressive widening, and move pruning further
slows down the decrease. This shows the significant effects
of move pruning in increasing the explored ratio of the cho-
sen action in later turns.

5 Conclusion and future work

This paper focuses on exploring pruning techniques for
MCTS in a multi-action strategy game, Tribes, in which
players must execute multiple actions in a turn while man-
aging other game aspects such as economy, technology re-
search and resource gathering. Moreover, the size of action
space is not fixed and generally increases during the game,
resulting in a high and difficult to manage branching factor.

MCTS can handle large branching factors but it strug-
gles when the action space size reaches more than a hun-
dred (Baier and Cowling 2018; Chaslot et al. 2008), which
is actually the case in Tribes. This paper shows that using
pruning techniques help MCTS deal with this issue. We ex-
plored progressive widening, hard pruning and the insertion
of domain knowledge pruning for move actions. The inclu-
sion of progressive widening and hard pruning improves the
performance of MCTS in a similar fashion, and results are
even better when adding the move action pruning.

We propose different avenues of future work. One possi-
bility is to explore other pruning algorithms, like NaiveM-
CTS (Ontanén 2017) or other types of heuristic prun-
ing (Sephton et al. 2014), or to dive deeper in the use of
domain knowledge for pruning. This paper shows that de-
creasing the proportion of move actions increases the per-
formance of the agent. However, several actions might able
to benefit from using domain knowledge, such as Level Up
or the Build actions. A more general approach would be to
use machine or reinforcement learning techniques to learn
which actions must be pruned. Another interesting possibil-
ity is to explore variants of OEP or evolutionary MCTS that
deal with varying number of actions per turn. Finally, there
is abundant work on portfilio approaches for strategy games,
and exploring synergies between these and different pruning
techniques can lead to other ways of dealing with large ac-
tion space sizes.

References

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235-256.

Baier, H., and Cowling, P. I. 2018. Evolutionary MCTS
for multi-action adversarial games. In EEE Conference on
Computational Intelligence and Games, 1-8. IEEE.

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and Al in games 4(1):1-43.

Chaslot, G. M. J.; Winands, M. H.; HERIK, H. J. V. D;
Uiterwijk, J. W.; and Bouzy, B. 2008. Progressive strategies
for monte-carlo tree search. New Mathematics and Natural
Computation (NMNC) 4(03):343-357.

Childs, B. E.; Brodeur, J. H.; and Kocsis, L. 2008. Trans-
positions and move groups in monte carlo tree search. In
2008 IEEE Symposium On Computational Intelligence and
Games, 389-395.

Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in starcraft. In 2013
IEEE Conference on Computational Inteligence in Games

(CIG), 1-8. 1EEE.

Churchill, D., and Buro, M. 2015. Hierarchical portfo-
lio search: Prismata’s robust Al architecture for games with
large search spaces. In Eleventh Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE).

Coulom, R. 2007. Computing “elo ratings” of move patterns
in the game of go. ICGA journal 30(4):198-208.

Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in UCT. In Proceedings of the 24th international
conference on Machine learning (ICML), 273-280. Associ-
ation for Computing Machinery.

Gelly, S., and Wang, Y. 2006. Exploration exploitation in
go: Uct for monte-carlo go.

Justesen, N.; Mahlmann, T.; Risi, S.; and Togelius, J. 2017.
Playing multiaction adversarial games: Online evolutionary
planning versus tree search. IEEE Transactions on Games
10(3):281-291.

Justesen, N.; Uth, L. M.; Jakobsen, C.; Moore, P. D.; To-
gelius, J.; and Risi, S. 2019. Blood bowl: A new board game
challenge and competition for Al. In 2019 IEEE Conference
on Games (CoG), 1-8.

Justesen, N.; Mahlmann, T.; and Togelius, J. 2016. Online
evolution for multi-action adversarial games. In Applica-
tions of Evolutionary Computation, 590—603. Springer In-
ternational Publishing.

Midjiwan AB. 2016. The Battle of Polytopia.

Ontandn, S. 2017. Combinatorial multi-armed bandits for
real-time strategy games. Journal of Artificial Intelligence
Research 58:665-702.

Perez, D.; Samothrakis, S.; Lucas, S.; and Rohlfshagen, P.
2013. Rolling horizon evolution versus tree search for nav-
igation in single-player real-time games. In Proceedings of
the 15th Annual Conference on Genetic and Evolutionary
Computation, 351-358.

Perez, D.; Hsu, Y.-J.; Emmanouilidis, S.; Khaleque, B.
D. A.; and Gaina, R. D. 2020. Tribes: A new turn-based
strategy game for Al research. In Proceedings AIIDE’20.

Ramanujan, R.; Sabharwal, A.; and Selman, B. 2010. On
adversarial search spaces and sampling-based planning. In
Twentieth International Conference on Automated Planning
and Scheduling.

Sephton, N.; Cowling, P. I.; Powley, E.; and Slaven, N. H.
2014. Heuristic move pruning in monte carlo tree search for
the strategic card game lords of war. In 2014 IEEE Confer-
ence on Computational Intelligence and Games, 1-7. IEEE.

Teytaud, F., and Teytaud, O. 2009. Creating an upper-
confidence-tree program for havannah. In Advances in Com-
puter Games, 65-T4. Springer.

