
Synthesizing Retro Game Screenshot Datasets for Sprite Detection

Chanha Kim, Jaden Kim, Joseph C. Osborn
Formal Analysis of Interactive Media Lab

Pomona College
185 East 6th Street

Claremont, California 91711
{chanha.kim, jaden.kim, joseph.osborn}@pomona.edu

Abstract

Scenes in 2D videogames generally consist of a static terrain
and a set of dynamic sprites which move around freely. AI
systems that aim to understand game rules (for design support
or automated gameplay) must be able to distinguish moving
elements from the background. To this end, we re-purposed
an object detection model from deep learning literature, de-
veloping along the way YOLO Artificial Retro-game Data
Synthesizer, or YARDS, which efficiently produces semi-
realistic, retro-game sprite detection datasets without man-
ual labeling. Provided with sprites, background images, and
a set of parameters, the package uses sprite frequency spaces
to create synthetic gameplay images along with their corre-
sponding labels.

Introduction
Many videogames employ a visual language which presents
a static terrain (with background and foreground elements)
juxtaposed with dynamic, animated, and freely moving
sprites. Sprites are often game characters or objects of in-
terest: potential threats, powerups, or the player’s charac-
ter. Knowledge about these sprites (e.g. their type, loca-
tion, or speed) is vital for AI systems meant to understand
games, especially in systems such as automated game de-
sign learning (Osborn, Summerville, and Mateas 2017) and
learning-based level generation (Guzdial and Riedl 2016;
Summerville et al. 2016a) as well as general videogame
playing and automated approaches to accessibility.

Besides manual image labeling, current methods for ob-
taining sprite segmentations generally involve game-specific
image processing or deep instrumentation of game emula-
tors, as in CHARDA (Summerville, Osborn, and Mateas
2017). These techniques can be difficult to generalize and
may be expensive, slow, or potentially fragile (e.g. the loca-
tions of hardware sprites in memory do not correspond ex-
actly to the positions of human-legible sprites). In this work,
we instead generate synthetic images starting from readily
accessible spritesheets and sprite-free background images.
We can then use the synthetic datasets generated from these

Copyright c© 2020 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

Figure 1: Real (left) vs. Synthetic (right) Screenshot from
Super Mario Bros. on NES

resources to train sprite detection models for their corre-
sponding games, which should generalize better than classi-
cal computer vision techniques or emulator instrumentation.

While our approach still requires that users collect
spritesheets and background images, it eliminates the need
for manually labeling images or writing computer vision
code. We have packaged this generator in a Python pack-
age called YOLO Artificial Retro-game Data Synthesizer
(YARDS). YARDS is a command-line tool which, given
sprites and background images, generates synthetic train-
ing images that mimic patterns found in real game screen-
shots. YARDS pre-formats the synthetic data for integration
with YOLO and can generate 1,000 labeled images in 10
seconds—a task which took the authors 10 long hours!

In this paper, we present our two key contributions. First,
we apply recent progress made in deep learning and com-
puter vision to aid in producing semi-realistic datasets suit-
able for training sprite detection models. Second, we in-
troduce a software package that can rapidly generate large
datasets. In the following sections, we will discuss our
approach for synthesizing retro-game screenshots, demon-
strate how YARDS works, and evaluate several models
trained on synthetic data against those trained on manually
labeled images.

Related Works
The intersection of computer vision and games is a growing
area of research that can benefit both designers and play-
ers. In 2018, Luo et al. demonstrated how transfer learning



Figure 2: Examples of Synthetic Images Generated with YARDS

Figure 3: Adapted diagram of the original YOLO architec-
ture (Koylu, Zhao, and Shao 2019)

could improve the task of extracting player experiences di-
rectly from gameplay videos. In the same year, Zhang et al.
introduced the problem of content-based retrieval of game
moments and presented a prototype search engine for re-
trieving such moments based on user-provided game screen-
shots (2018). Our research contributes to this area by apply-
ing synthetic data generation techniques to the task of train-
ing sprite detection models and by introducing a software
package that supports end-users with synthesizing their own
datasets.

In our research, we use YOLO (You Only Look Once) to
detect sprites in four retro games: Super Mario Bros. (NES),
Earthbound (SNES), Super Street Fighter II (SNES), and
Super Mario World (SNES). YOLO is a well-known ob-
ject detection model (Redmon et al. 2015) which has
seen several iterations (Redmon and Farhadi 2016; 2018;
Bochkovskiy, Wang, and Liao 2020). The original model’s
architecture is inspired by GoogLeNet (Szegedy et al. 2014)
and has 24 convolutional layers followed by 2 fully con-
nected layers (see Fig. 3). This end-to-end model allows for
efficient training and detection of objects in both images and
videos. The specific YOLO version that we are using is Ul-
tralytic’s YOLOv5 (Ultralytics 2020), a recent implementa-
tion of YOLO in PyTorch.

The use of synthetic data to train models is a well-
known practice in computer vision. Motivations for gener-
ating synthetic datasets include the high cost of manually
labelling real images (Roig et al. 2020), privacy concerns
when using real user data (Triastcyn and Faltings 2018;
Shaked and Rokach 2020), and the shortage of real train-
ing examples for rare cases (Beery et al. 2019). Other argu-
ments for using synthetic data include the lack of extensive

datasets in niche application domains (Wong et al. 2019)
and the under-representation of the full target distribution
in small datasets (Lateh et al. 2017). For such reasons, re-
searchers have suggested numerous approaches to generat-
ing synthetic data over the past decade (Nikolenko 2019;
Seib, Lange, and Wirtz 2020).

One common approach is to first generate a synthetic im-
age and then stylize the image to be more realistic (Dwibedi,
Misra, and Hebert 2017; Georgakis et al. 2017; Wong et al.
2019). For example, Wang et al. 2019 generated photoreal-
istic synthetic images using a virtual 3D object-environment
reconstruction method and style transfer techniques. Hinter-
stoisser et al. 2019 used 3D CAD models and pose curric-
ula to generate foreground-background compositions, then
made those compositions photorealistic via rendering tech-
niques.

A significant issue arising from synthetic datasets is the
synthetic-to-real domain gap (Tremblay et al. 2018; Yun et
al. 2019b). This gap occurs when the synthetic images used
to train a model are not representative of the target image
distribution. In terms of model performance, research shows
that models trained with both real and synthetic images
achieve the best performance, followed by models trained
with purely real images (Rozantsev, Lepetit, and Fua 2015;
Dwibedi, Misra, and Hebert 2017; Georgakis et al. 2017;
Rajpura, Bojinov, and Hegde 2017; Yun et al. 2019a). These
studies also demonstrate that training with purely synthetic
images seems to detract from model performance. However,
comparable performance is achievable in image segmenta-
tion tasks (Di Cicco et al. 2017) and fine-tuning models
trained on synthetic data with additional real images can
yield better performance than mixed training (Nowruzi et
al. 2019).

Our synthetic data generation approach is most similar to
the one presented by Dwibedi et al. 2017. Since our games
of interest use a pixelated art style, we can skip the step of
increasing the realism of the generated images; it is enough
to simply paste the sprites onto the backgrounds in a rea-
sonable distribution. We therefore focus on developing an
efficient technique for pasting sprites onto background im-
ages based on sprite frequency distributions observed in real
gameplay images.



Synthetic Data Generation Approach
Our approach involves two steps: first, collect the sprites
and background images for a given game; and second, paste
sprites onto background images using their frequency dis-
tributions. Both sprites and background images are easily
obtainable by extracting the data from an emulator, borrow-
ing from archives compiled by fans, or utilizing approaches
proposed by researchers like Summerville et al. 2016b. Ad-
ditional methods for obtaining sprites and background im-
ages include scripting some game-specific image extraction
code or providing the assets directly if the user is the one
developing the game.

One reason why our approach is so effective in the
videogame domain is because we are working with much
smaller image spaces (sets of possible images) than the
real-world image spaces typically used in computer vision
tasks. While the immense complexity of real-world images
can depend on virtually anything, from lighting conditions
to object textures, our focus on low-resolution, retro-game
screenshots allows us to synthesize realistic screenshots just
by pasting sprites onto background images.

Sprite Frequency Spaces
Even though we are working with low-resolution images,
synthesizing images that roughly mimic those seen in real
gameplay is a nontrivial task. We generate synthetic images
by providing the sprite frequency space for each class of
sprites to be detected. We define the sprite frequency space
for a given class as the discrete probability distribution over
the frequency of appearances for that class on a given game-
play image. That is, it is a function mapping the numbers of
sprites in a class to the probabilities that those numbers of
sprites actually appear on a screenshot.

These sprite frequency spaces can either be defined by the
user (as in our reported results) or approximated by feed-
ing pre-labeled images into YARDS. At runtime, YARDS
will approximate the sprite-frequency spaces by counting
the frequencies of the desired sprite classes in the image la-
bels. Using these sprite frequency spaces, we can determine
the number of times each sprite class should appear on each
generated image. For example, in Super Mario Bros. (NES),
there should almost always be one player on the screen,
while there may be any number of enemy sprites from zero
to 16, each number appearing at a different rate.

For each output image, we choose the number of times
each class of sprites should appear by sampling the class’s
corresponding sprite frequency space. We thereby incorpo-
rate the given or estimated frequencies with which our tar-
get sprite classes appear in authentic gameplay images. This
allows the YOLO model to train on data that roughly mim-
ics our target distribution and avoid the previously-discussed
domain gap issues.

Edge Handling with Transparency Quadrants
Given that sprites often have transparent pixels, we must en-
sure that sprites are at least partially visible in screenshots no
matter their shape. For example, an L-shaped sprite placed in

Figure 4: Example of sprite clipping on worst-case scenario
of L-shaped sprite in bottom left corner of screen. Midpoints
are where sprite will be cropped.

Figure 5: Example of top-left, top-right, bottom-left, and
bottom-right quadrants in a clipped sprite

the lower left corner of the screen might have no visible pix-
els (i.e., opaque pixels) in the screenshot (see Fig. 4). Train-
ing a model would be very difficult if our training set asserts
that background pixels are in fact part of a character. To han-
dle these edge cases, we propose an approach that relies on
transparency quadrants for determining whether enough of
the sprite is visible in the screenshot.

For a given sprite, we first determine its transparency
quadrants by using the locations of the first and last visi-
ble (non-transparent) pixels along each of its border axes.
The upper-left quadrant (Fig. 5) is determined by the first
visible pixel in the first row of visible pixels and the first
visible pixel in the first column of visible pixels. Corre-
sponding horizontal and vertical lines are drawn from each
pixel, and their intersection defines the quadrant. Similarly,
the bottom-right quadrant (Fig. 5) is determined by the last
visible pixel in the last row of visible pixels and the last vis-
ible pixel in the last column of visible pixels. The upper-
right and bottom-left quadrants are formed analogously. In
general, the quadrant is defined by the intersection of the
horizontal and vertical lines drawn from each relevant pixel.

Once we have the sprite’s transparency quadrants, we de-
termine where the sprite is clipped by the boundaries of the
screenshot. For example, if it is partially off the left side of



Table 1: YARDS Configuration Parameters
game title The game’s title, which is prepended to each image’s filename to avoid naming conflicts.
num images The total number of images to generate.
train size The proportion of total images which should be included in the train set.
mix size The proportion of total real images which should be included in the train set.
label all classes Determines whether all classes should be labeled or if only specific classes should be.
labeled classes Determines which classes to label if label all classes is false. Useful for focusing

attention on a single sprite and introducing noise in the form of other sprites or random
images.

max sprites per class The maximum number of sprites per class which can appear in any given image. If set to
-1, no cap will be set. Provides a means for limiting noise. Useful primarily when setting
classification scheme to random, as it allows for more control of the distribution.

transform sprites Another means for introducing noise. If set to true, transforms sprites by rotating a multiple
of ninety degrees, mirroring, or scaling to twice their original size. The reason for the set
scaling is because pixel art gets distorted by any non-double scaling.

clip sprites1 Determines whether to keep all sprites entirely on screen or to allow some sprite clipping.
classification scheme2 Determines the classification scheme by which to place sprites.

the screenshot, we check the right-most quadrants (Fig. 5).
Then, if the larger width of the two quadrants (i.e., the trans-
parency space) is greater than the width of the sprite that is
visible after clipping (i.e., the clipping space), not enough
of the sprite is within the boundaries of the screenshot. For
instance, assume the transparency space is greater than or
equal to the clipping space for a sprite being clipped off the
left of an image. In this case, we average the x-positions
of the inner vertical edges of all four transparency quad-
rants. Then, we crop the sprite to be from the resulting av-
erage x-position to the sprite’s rightmost border and paste
the cropped sprite into the screenshot with the sprite’s left
border aligned with the screenshot’s left border. Because we
use all four transparency edges to determine how to crop
the sprite, we know that enough of the sprite’s useful infor-
mation will appear on the generated image. We perform an
analogous procedure for each screen boundary that the sprite
overlaps.

Using YARDS
Integrating YARDS into object detection projects is simple.
The development pipeline with YARDS involves three main
steps: preprocessing, synthetic data generation, and model
training. In preprocessing, we gather sprite and background
images for a given game and define the corresponding folder
locations in the configuration file. During synthetic data gen-
eration, we define the parameters in the rest of the configu-
ration file and run YARDS via command line to generate the
images. The command-line package for YARDS takes up to
two parameters. The configuration parameter (--config
or -c) defines the path to the configuration file, and the vi-
sualize parameter (--visualize or -v) tells the package
to draw bounding boxes for a sample of images. Finally, in
model training, we train the model and validate it in a con-
ventional machine learning pipeline.

Configuration Parameters
YARDS has multiple configuration parameters that the user
must define prior to using the package. Table 1 summarizes

what each parameter does, and the complete documentation
is available in the project’s source code repository.
clip_sprites1 and classification_scheme2

are the parameters that control our synthetic data gener-
ation approach. clip_sprites1 determines whether or
not the synthetic screenshots should have clipped sprites.
classification_scheme2 accepts one of four key-
words that define different methods for characterizing the
sprite frequency space: distribution, mimic-real,
random, and discrete. The distribution method
takes a set number of predefined classes such as player,
enemy, or item and corresponding sprite frequency spaces
for each class, represented by an array. For instance,
player: [0.20, 0.40, 0.40] means that for the
player class, zero sprites should appear twenty percent
of the time, one sprite should appear forty percent of the
time, and two sprites should appear forty percent of the time.
The mimic-real method analyzes a set of pre-labeled
images to approximate the sprite distribution in a dataset
and takes as input an array of class numbers, which corre-
spond to the class numbers in the image labels. It then uses
the approximated distributions to generate the images. The
random method samples each class with a uniform distri-
bution, given the maximum number of sprites for each class.
The discrete method takes inspiration from games like
Street Fighter II where each screen has a constant number
of sprites, and it takes a constant number of sprites to dis-
play on each screenshot.

Tests and Results
To evaluate our dataset synthesizer we compare model per-
formance for different datasets from a single game, train
binary classifiers to detect real versus synthetic data, and
demonstrate the generalizability of our approach.

Training on Synthetic, Real, and Mixed Datasets
To compare the performance of models trained on synthetic
data to those trained on real data, we trained nine YOLO



Figure 6: Detection Results of Models Trained on Various Datasets for Super Mario Bros.

models on various datasets for Super Mario Bros. (screen-
shot dimension: 256×192). Each YOLOv5 model (Ultralyt-
ics 2020) was trained for 200 epochs with batch-size 32, and
the best weights for each model (i.e. the weights that yielded
the best model performance in training) were validated on
250 real images. We used mAP@0.5, a mean average preci-
sion metric for measuring the performance of object detec-
tion models, as our single-valued evaluation metric.

Table 2: Mean average precision of YOLO models trained
on various datasets for Super Mario Bros. (Better-than-
baseline performance is in bold.)

Training Set Composition mAP@0.5
750 real (baseline) 0.856
375 real + 375 synthetic 0.886
75 real + 675 synthetic 0.841
750 synthetic 0.677
750 synthetic + fine-tuning w/ 750 real 0.881
375 real + 3,375 synthetic 0.956
3,750 synthetic 0.816
500 real + 9,500 synthetic 0.963
10,000 synthetic 0.935

Table 2 confirms the results shown by researchers in other
image recognition domains, suggesting that training mixed
datasets of real and synthetic images yields the best model
performance—although models trained on 3,750 and 10,000
synthetic images show that training with large purely syn-
thetic datasets can also work well. The model trained on
750 synthetic images also improved significantly after fine-
tuning with 750 real images for 41 epochs. We initialized
fine-tuning to train the model’s weights for 200 epochs, but
the package fast-forwarded the fine-tuning process to the
last 41 epochs. Based on these results, we recommend us-
ing YARDS to generate either very large synthetic datasets
or smaller supplementary synthetic datasets to boost manu-
ally labeled images.

Binary Classification of Synthetic vs. Real Data
To test whether computer vision models could distinguish
between real and synthetic data, we trained LeNet-5 (Lecun
et al. 1998), AlexNet (Krizhevsky, Sutskever, and Hinton
2012), and ResNet-50 (He et al. 2015)—three classic CNN
architectures of increasing complexity—to classify real ver-

Table 3: Accuracy of binary classifiers trained to classify
synthetic versus real Super Mario Bros. gameplay images

Model Accuracy
LeNet-5 0.5000
AlexNet 0.8490
ResNet-50 0.9690

Table 4: Mean average precision of datasets containing mix-
ture of generated data from Super Mario Bros., Super Street
Fighter II, and Earthbound

Dataset mAP@0.5
60k imgs w/ clipping 0.9525
60k imgs w/o clipping 0.9635

sus synthetic images. Each architecture was modified to take
in inputs of 256 × 256 × 3, configured with binary cross-
entropy loss and the Adam optimizer, and trained for 50
epochs with batch-size 64. LeNet-5 was modified to use
max-pooling and ReLU activation. We trained and tested
the classifiers on 4000-image datasets composed of real and
synthetic training images from Super Mario Bros.

Contrary to our original hypothesis that each model would
achieve roughly a 50% accuracy, Table 3 suggests that archi-
tectures with many weights (e.g. AlexNet and ResNet-50)
are able to distinguish between real and synthetic images,
while smaller ones like LeNet-5 are not. We therefore need
to develop a training strategy to account for the discrepancy
between synthetic and real data; in the future, we may be
able to leverage these binary classifiers to guide further im-
provements to our synthetic data generation approach.

Generalization
We trained two very large datasets composed of synthetic
data for three separate games: Super Mario World, Super
Street Fighter II, and Earthbound (screenshot dimension:
256 × 224). We generated 20,000 images for each game,
combining them into a total dataset of 60,000 images. We
split the dataset at a 0.8 train-test ratio and generated two
variants: one with clipping and one without. The results can
be seen in Table 4. Model performance dropped for games
outside of those the model was trained on, which may be
due to the lack of sprites representing the larger sphere of



Figure 7: Detection Results of Models Trained on Large Dataset with Clipping for Super Mario Bros., Super Street Fighter II,
and Earthbound

NES/SNES games. Given a wider variety of sprites and
games, however, we believe in the possibility of training a
general detection model for most NES/SNES games.

Discussion
Although models trained on purely synthetic datasets do not
perform as well as those trained on purely real datasets, our
results suggest that training models with mixed synthetic-
and-real datasets can increase overall sprite detection per-
formance. Furthermore, synthesizing artificial data is much
more efficient than collecting real gameplay screenshots and
accelerates object-detection model development, ultimately
allowing for better-performing models. Additionally, large
synthetic datasets may outweigh the advantages of using real
images and make sprite detection tools more accessible.

Training videogame object detectors on mixed datasets
can be useful for many applications. For example, it may
accelerate research in automated game design learning and
help relax the requirement of deep visibility into the in-
ner workings of emulated game hardware for distinguish-
ing game sprites from the level geometry. We also envision
methods for game developers to improve the accessibility
of their games by verifying that a trained model recognizes
sprites and their labels in a way which is consistent with
a designer’s intention (e.g. that enemies “read” as enemies,
that a character is not easy to misinterpret as background
texture, etc.). Such a model could help predict whether fu-
ture players would be able to make the same assumptions
and easily identify the playable parts of the game.

Synthetic data generation could also be useful as a feature
extraction tool for reinforcement learning or other general
game-playing agents. By training models that can accurately
identify features of sprites belonging to classes like helpful,
harmful, item, enemy, etc. (perhaps borrowed from an affor-
dance grammar like that of Bentley and Osborn 2019), sprite
detection models may help reinforcement learning agents
train faster and generalize more effectively.

That being said, there are numerous ways to improve
our approach. First, we suggest using model visualization
techniques (e.g. class activation maps, occlusion sensitiv-
ity, gradient ascent) to visualize what the models see when
trained with synthetic versus real data. Second, an addition

that could greatly improve our current approach would be to
define spatial curves in addition to sprite frequency spaces.
Using the spatial curves to paste sprites into regions where
they would appear in real gameplay images can serve as
a way of increasing the realism of the synthetic images.
Third, trying out existing approaches, such as domain ran-
domization (Liu, Liu, and Luo 2020; Borrego et al. 2018;
Tremblay et al. 2018), increasing the accuracy of images
in relation to natural data (Liu, Liu, and Luo 2020), us-
ing generative models or GANS (Goodfellow et al. 2014;
Liu, Liu, and Luo 2020; Bailo, Ham, and Shin 2019; Tri-
astcyn and Faltings 2018), and procedural content genera-
tion (Nikolenko 2019), may provide further insight into how
to refine our approach.

Our YARDS implementation can also benefit from addi-
tional features. First, incorporating multiprocessing would
greatly increase the speed of synthetic data generation. Our
current package generates 80 images per second on a sin-
gle core with no GPU acceleration for Super Mario Bros.,
and parallelizing this task would increase the package’s ef-
ficiency. Second, adding basic image rendering and filtering
functions such as blurring or pixelating sprites may be use-
ful for videogames that do not use the pixelated style and
resolution common to the four games we examined in this
work. Third, color filtering functions may help the object de-
tection models learn the sprites’ essential features and avoid
overfitting to their color patterns. Fourth, we would like to
see added support for games in a wider variety of gameplay
styles and genres. Finally, adding text detection functions
may help with including basic user-interface elements.

In summary, this paper has introduced an application of
existing synthetic data generation research to the problem
of sprite detection and a software package that enables an
end-user to rapidly generate large, synthetic training im-
ages based on sprite frequency spaces and edge-handling.
An open-source and working prototype of YARDS is avail-
able at https://github.com/faimSD/yards. We hope that our
paper and software package will inspire further research in
sprite detection and in computer vision and games.



References
Bailo, O.; Ham, D.; and Shin, Y. M. 2019. Red blood cell
image generation for data augmentation using conditional
generative adversarial networks.
Beery, S.; Liu, Y.; Morris, D.; Piavis, J.; Kapoor, A.; Meister,
M.; Joshi, N.; and Perona, P. 2019. Synthetic examples
improve generalization for rare classes.
Bentley, G. R., and Osborn, J. C. 2019. The videogame af-
fordances corpus. In 2019 Experimental AI in Games Work-
shop.
Bochkovskiy, A.; Wang, C.-Y.; and Liao, H.-Y. M. 2020.
Yolov4: Optimal speed and accuracy of object detection.
Borrego, J.; Dehban, A.; Figueiredo, R.; Moreno, P.;
Bernardino, A.; and Santos-Victor, J. 2018. Applying do-
main randomization to synthetic data for object category de-
tection.
Di Cicco, M.; Potena, C.; Grisetti, G.; and Pretto, A. 2017.
Automatic model based dataset generation for fast and accu-
rate crop and weeds detection. 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
Dwibedi, D.; Misra, I.; and Hebert, M. 2017. Cut, paste and
learn: Surprisingly easy synthesis for instance detection.
Georgakis, G.; Mousavian, A.; Berg, A. C.; and Kosecka,
J. 2017. Synthesizing training data for object detection in
indoor scenes.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial networks.
Guzdial, M., and Riedl, M. 2016. Toward game level gener-
ation from gameplay videos.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep residual
learning for image recognition. CoRR abs/1512.03385.
Hinterstoisser, S.; Pauly, O.; Heibel, H.; Marek, M.; and
Bokeloh, M. 2019. An annotation saved is an annotation
earned: Using fully synthetic training for object instance de-
tection.
Koylu, C.; Zhao, C.; and Shao, W. 2019. Deep neural net-
works and kernel density estimation for detecting human
activity patterns from geo-tagged images: A case study of
birdwatching on flickr. ISPRS International Journal of Geo-
Information 8(1).
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Pereira, F.; Burges, C. J. C.; Bottou, L.; and Wein-
berger, K. Q., eds., Advances in Neural Information Process-
ing Systems 25. Curran Associates, Inc. 1097–1105.
Lateh, M. A.; Muda, A. K.; Yusof, Z. I. M.; Muda, N. A.;
and Azmi, M. S. 2017. Handling a small dataset problem
in prediction model by employ artificial data generation ap-
proach: A review. Journal of Physics: Conference Series
892:012016.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition. In
Proceedings of the IEEE, 2278–2324.

Liu, W.; Liu, J.; and Luo, B. 2020. Can synthetic data im-
prove object detection results for remote sensing images?
Luo, Z.; Guzdial, M.; Liao, N.; and Riedl, M. 2018.
Player experience extraction from gameplay video. CoRR
abs/1809.06201.
Nikolenko, S. I. 2019. Synthetic data for deep learning.
Nowruzi, F. E.; Kapoor, P.; Kolhatkar, D.; Hassanat, F. A.;
Laganiere, R.; and Rebut, J. 2019. How much real data do
we actually need: Analyzing object detection performance
using synthetic and real data.
Osborn, J. C.; Summerville, A.; and Mateas, M. 2017. Au-
tomated game design learning.
Rajpura, P. S.; Bojinov, H.; and Hegde, R. S. 2017. Object
detection using deep cnns trained on synthetic images.
Redmon, J., and Farhadi, A. 2016. Yolo9000: Better, faster,
stronger.
Redmon, J., and Farhadi, A. 2018. Yolov3: An incremental
improvement.
Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2015.
You only look once: Unified, real-time object detection.
Roig, C.; Varas, D.; Masuda, I.; Riveiro, J. C.; and Bou-
Balust, E. 2020. Unsupervised multi-label dataset gener-
ation from web data.
Rozantsev, A.; Lepetit, V.; and Fua, P. 2015. On rendering
synthetic images for training an object detector. Computer
Vision and Image Understanding 137:24–37.
Seib, V.; Lange, B.; and Wirtz, S. 2020. Mixing real and
synthetic data to enhance neural network training – a review
of current approaches.
Shaked, S., and Rokach, L. 2020. Privgen: Preserving pri-
vacy of sequences through data generation.
Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M.
2016a. Learning player tailored content from observation:
Platformer level generation from video traces using lstms. In
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment.
Summerville, A. J.; Snodgrass, S.; Mateas, M.; and On-
tanón, S. 2016b. The vglc: The video game level corpus.
arXiv preprint arXiv:1606.07487.
Summerville, A.; Osborn, J.; and Mateas, M. 2017. Charda:
Causal hybrid automata recovery via dynamic analysis.
arXiv preprint arXiv:1707.03336.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2014. Going deeper with convolutions.
Tremblay, J.; Prakash, A.; Acuna, D.; Brophy, M.; Jampani,
V.; Anil, C.; To, T.; Cameracci, E.; Boochoon, S.; and Birch-
field, S. 2018. Training deep networks with synthetic data:
Bridging the reality gap by domain randomization.
Triastcyn, A., and Faltings, B. 2018. Generating artificial
data for private deep learning.
Ultralytics. 2020. Yolov5.
Wong, M. Z.; Kunii, K.; Baylis, M.; Ong, W. H.; Kroupa,
P.; and Koller, S. 2019. Synthetic dataset generation for
object-to-model deep learning in industrial applications.



Yun, K.; Nguyen, L.; Nguyen, T.; Kim, D.; Eldin, S.; Huyen,
A.; Lu, T.; and Chow, E. 2019a. Small target detection for
search and rescue operations using distributed deep learning
and synthetic data generation.
Yun, W.; Lee, J.; Kim, J.; and Kim, J. 2019b. Balancing
domain gap for object instance detection.
Zhang, X.; Zhan, Z.; Holtz, M.; and Smith, A. M. 2018.
Crawling, indexing, and retrieving moments in videogames.
In Proceedings of the 13th International Conference on the
Foundations of Digital Games, FDG ’18. New York, NY,
USA: Association for Computing Machinery.


