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Abstract  
The problem of increasing the efficiency of long-term forecasting in the supply chain is 
examined. Neural network forecasting methods that are based on reservoir calculations, 
which increases the forecast accuracy, are proposed. Methods for identifying parameters of 
forecast models based on the metaheuristics are proposed for the methods mentioned above. 
These methods were researched on the basis of the data from the logistics company Ekol 
Ukraine and are intended for intelligent computer-based supply chain management systems. 
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1. Introduction 

These days, domestic and foreign companies are striving to improve and optimize their business 
processes with the implementation of the Lean Production technology and principles, the uniqueness 
of which lies in the fact that it is effective for enterprises of various industries at any stage of the 
supply chain of products or services to the end consumer. [1-3]. The Lean Production concept is 
dominant in the formation of "perfect" supply chains, which, in the context of globalization and 
digitalization of the economy based on information and communication technologies, is the most 
important factor in competitiveness [4]. One of the most important problems in the field of supply 
chain management is the insufficiently high accuracy of the forecast. This leads to the fact that supply 
chain management can be ineffective. Therefore, the development of forecasting methods in the 
supply chain is an urgent task. 

To date, many approaches are known as long-term forecasting tools, among which are: 
 autoregressive forecasting methods [5]; 
 forecasting methods based on exponential smoothing [6]; 
 neural network forecasting methods [7-10]. 
Autoregressive methods have the complex determination of the functional dependencies type, the 

labor intense determination of the model parameters, low adaptability and the lack of the ability to 
model nonlinear processes. 

Neural network forecasting methods provide a tangible advantage, consisting of: the relationships 
between factors are investigated on ready-made models; no assumptions about the distribution of 
factors are required; a priori information about factors may be missing; the original data may be 
highly correlated, incomplete or noisy; analysis of systems with a high degree of nonlinearity is 
possible; rapid model development; high adaptability; analysis of systems with a large number of 
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factors is possible; a complete enumeration of all possible models is not required; analysis of systems 
with heterogeneous factors is possible.  

However, neural network methods have a lack of transparency, the complexity of the architecture 
definition, strict requirements for the training sample, the complexity of the training algorithm choice, 
and the resource-intensiveness of the training process. Therefore, the task of increasing the efficiency 
of neural network forecast is urgent. 

The aim of the work is to develop a method for long-term forecasting in the supply chain. To 
achieve the goal, the following tasks were set and solved: 

 analyze existing forecast methods; 
 propose a neural network forecast model; 
 choose a criterion for evaluating the effectiveness of a neural network forecast model; 
 propose a method for determining the values of the neural network forecast model parameters 
based on multi-agent metaheuristics; 
 perform numerical studies. 

2. Problem statement 

The problem of increasing the efficiency of long-term forecasting in the supply chain is reduced 
to the problem of finding such a vector of parameters W , which satisfies the forecast model adequacy 
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 , i.e. deliver the minimum of the mean squared error (the 

difference between the model output and the desired output), where P  – test set cardinality, x .– th 

training input value, d .– th training input value. 

3. Literature review 

The most commonly used forecast neural networks are: 
1. Long short-term memory (LSTM) [11, 12]; 
This network is based on gates (FIR filters) and a multilayer perceptron. Instead of each hidden 

neuron, it uses a memory block that contains one or more cells, and is connected with input, output 
and forget gates. Gates determine how much information to pass through. If the input and output gates 
are close to 1 and the forget gate is close to 0, then the network turns into an Elman network. If the 
input gate is close to 0, then the short-term information from the input is ignored. If the forget gate is 
close to 0, then long-term information from the memory block is ignored. If the output gate is close to 
0, then the output information is ignored. The advantage of this network is a higher forecast accuracy 
than in a conventional multilayer perceptron. The disadvantages are the complexity of the memory 
blocks implementation, insufficient forecast accuracy, the complexity of defining the architecture, 
insufficient learning rate. 

2. Gated recurrent unit (GRU) [13-15]; 
This network is based on gates (FIR filters) and a multilayer perceptron. Instead of each hidden 

neuron, it uses a hidden block that is connected with reset and update gates. Gates determine how 
much information to pass through. If the reset gate is close to 1 and the update gate is close to 0, then 
the network turns into an Elman's network. If the reset gate and update gate are close to 0, then the 
long-term information from the hidden block is ignored and the network becomes a multilayer 
perceptron. If the update gate is close to 1, then the short-term information from the network input is 
ignored. The advantage of this network is a higher forecast accuracy than in a conventional multilayer 
perceptron. The disadvantages are the complexity of the hidden blocks implementation, insufficient 
forecast accuracy, the complexity of defining the architecture, insufficient learning rate. 

3. Neural Turing machine (NTM) [16, 17]; 
This network is based on a Turing machine and a multilayer perceptron or LSTM and includes a 

controller and a memory matrix. At any given time, the controller receives input from the outside 



world and sends the output to the outside world. The controller also reads from the memory matrix 
cells via the read heads and writes to the memory matrix cells via the write heads. The advantage of 
this network is a higher forecast accuracy than in a conventional multilayer perceptron. The 
disadvantages are the complexity of the controller implementation (in the case of LSTM) and the 
complexity of defining the architecture, insufficient forecast accuracy, insufficient learning rate. 

4. Echo state network (ESN) [18, 19]; 
This network is based on reservoir computing over sigmoid neurons and a multilayer perceptron. 

The hidden layer is called the reservoir. Each neuron in the reservoir may be unconnected or 
connected to other neurons in the reservoir. To train the network, the pseudoinverse matrix method is 
used. The advantages of this network are the highest forecast accuracy (due to the pseudoinverse 
matrix method) and the ease of implementation of sigmoid neurons in the reservoir. The 
disadvantages are the complexity of parallel learning and the complexity of defining the architecture. 

5. Long short-term memory (LSM) [20-23]. 
This network is based on reservoir computations over impulse neurons «Leaky Integrate and Fire» 

(LIF) and multilayer perceptron. Each neuron in the reservoir may be unconnected or connected to 
other neurons in the reservoir and is excitatory or inhibitory. A gradient learning method is used to 
train the network. The advantages of this network are a higher forecast accuracy than in a 
conventional multilayer perceptron and the possibility of parallel training for the part of the network 
corresponding to a multilayer perceptron. The disadvantages are the complexity of the implementation 
of impulse neurons, the complexity of defining the architecture and less high prediction accuracy, the 
complexity of parallel training for the part of the network corresponding to the reservoir. 

Usually, the methods listed above either have a low forecast accuracy (due to falling into a local 
extremum) or a low learning rate (due to the high computational complexity of the hidden neuron or 
the complexity of parallelization of training) or the complexity of implementation (due to the 
complexity of the hidden neuron architecture) or the complexity of defining the architecture, which 
leads to a decrease in forecast efficiency. 

Due to this, creation of a neural network with a training method and architecture that will eliminate 
the indicated disadvantages is an urgent task. 

4. Block diagram of a neural network model for a long‐term forecast 

Figures 1-2 show a block diagram of a long-term forecast model based on a fully connected echo 
state network (FC-ESN), which is a recurrent two-layer neural network. Unlike traditional ESN, this 
network is fully connected, using cascades of unit delays. FC-ESN type 1 has a unit delay stage in the 
input layer. FC-ESN type 2 has a unit delay stage in the input and output layers. The number of input 
and output neurons is 1. 
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Figure  1:  Block  diagram  of  a  long‐term  forecast  model  based  on  a  fully  connected  echo  state 
network with a cascade of unit delays for an input layer neuron (FC‐ESN type 1) 
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Figure  2:  Block  diagram  of  a  long‐term  forecast  model  based  on  a  fully  connected  echo‐state 
network with a cascade of unit delays for a neuron of the input and output layers (FC‐ESN type 2) 

5. Neural network models for long‐term forecast 

5.1. Long‐term forecast model FC‐ESN type 1 
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where )1(N  – the number of neurons in the first layer, 
)(kM  – the number of unit delays for the kth layer, 

)(k
ijw  – the connection weight from the ith neuron to the jth neuron on the kth layer,  

)(k
jb  – displacement (thresholds) on the kth layer,  

)()( ny k
j  – the output of the jth neuron on the kth layer at time n,  

)(kf  – neurons activation function on the kth layer (usually )tanh()()( ssf k  ). 

5.2. Long‐term forecast model FC‐ESN type 2 

1. Initialization 
1n . 
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2. Forecast 
2.1. Initialization of the outputs of the neurons of the input layer 
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2.3. Calculation of the outputs of the neurons of the output layer 
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6. Criterion  for evaluating  the effectiveness of  a neural  network model  for 
long‐term forecast 

In this work, to determine the parameters values of the FC-ESN model, the criterion of the model 

adequacy was chosen, which means the choice of such values of the parameters )1({ ijwW  , })2(
iw , 

which deliver the minimum of the mean squared error (the difference between the model output and 
the desired output): 

W
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where P  – the test set cardinality.  

7. Method  for  determining  the  parameters  values  of  the  neural  network 
model for long‐term forecast 

The method for determining the parameters values of the neural network model for long-term 
forecasting is reduced to calculating the weights of the hidden layer and the output layer of the FC-
ESN model. 

7.1. Calculating the weights of the hidden layer 

The weights of the hidden layer are calculated as follows: 

1. Initialize randomly biases (thresholds) )1(
jb  and weights )1(

ijw . 

2. Make up from weights )1(
ijw , )1()0()0( ,1 NMMi  , )1(,1 Nj , matrix ][ ijwW  , 
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where   – spectral radius of the matrix W


 (for large   learning is faster, but long short-term 
memory decreases), 10   , 

j  – eigenvalues of matrix W . 



4. Assign to the weights )()1( nwij , )1()0()0( ,1 NMMi  , )1(,1 Nj , the values of the 

corresponding elements of the matrix W


. 

7.2.  The  output  layer  weights  calculation  based  on  the  multi‐agent 
metaheuristic SAPSO method 

The proposed SAPSO (simulated annealing and particle swarm optimization) method for 
numerical functions optimization consists of the following blocks (Figure 3). 
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Figure  3:  The  sequence  of  procedures  of  the  optimization  method  based  on  the  multi‐agent 
metaheuristic SAPSO method 

 
Block 1 - Initialization: 
 setting the maximum number of iterations N ; 
 setting the size of the swarm K  (usually no more than 40); 
 setting the dimension of the particle position M  (corresponds to the number of weights in the 
output layer); 
 setting the number of the current iteration n  to one; 
 initialization of position kx  (corresponds to the solution, i.e. the vector of the weights of the 
output layer) 
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where )1,0(U  – a function that returns a uniformly distributed random number in a range ]1,0[ , 
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 initialization of personal (local) best position best
kx  

k
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 speed initialization kv  
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 creating an initial particle swarm 
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 determination of the particle of the current population with the best position 
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Block 2 - Modification of the speed of each particle using simulated annealing 
Block 2.1 – Calculating two vectors of random numbers for each particle 

)1,...,1(1 1 kMkk rrr  , )}1,0(),1,0(),1,0({1 NCUr kj  , Kk ,1 , Mj ,1 , 

)2,...,2(2 1 kMkk rrr  , )}1,0(),1,0(),1,0({2 NCUr kj  , Kk ,1 , Mj ,1 , 
where )1,0(N  – a function that returns a random number from a standard normal distribution, 

)1,0(C  – a function that returns a random number from a standard Cauchy distribution, 
Block 2.2 – Calculating annealing temperature 
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where )(nT  – annealing temperature at iteration n , 

0T  – initial annealing temperature, 
  – parameter controlling annealing temperature. 

Block 2.3 – Calculating parameter controlling the contribution of the component 
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particle velocity at the iteration n , 

)(2 n  – parameter controlling the contribution of the component T
k rxx ))(( 2

*   to the particle 

velocity at the iteration n , 
)(nw  – parameter controlling the contribution of the particle velocity at iteration n -1 to the particle 

velocity at iteration n ,  

0  – initial value of parameters )(1 n  and )(2 n , 

0w  – initial value of parameter )(nw , 
The simulated annealing introduced in this work makes it possible to establish an inverse 

relationship between parameters )(1 n , )(2 n , )(nw  and the iteration number, i.e. at the initial 
iterations, the entire search space is explored (in this case, the Cauchy distribution is used), and at the 
final iterations, the search becomes directional (in this case, the normal distribution is used). In 
addition, in this work, a direct relationship was established between parameters 0T  and   and the 
iteration number, which makes it possible to automate the selection of these parameters. 
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Block 2.4 – Вычисление speed of each particle 
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Block 3 – Modification of the position of each particle 
Block 3.1 Limiting the speed of each particle 
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Block 3.2 – Calculating position of each particle 
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Block 4 - Determination of the personal (local) best position of each particle 
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Block 5 - Determination of the particle of the current population with the best position 
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Block 6 - Determining the global best position 
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Block 7 - Stop condition 
If Nn  , then increase the iteration number n  by one and go to block 2. 

8. Experiments and results 

Modeling of the process of the neural network model values determination was carried out in the 
Matlab package using Parallel Computing Toolbox. Since the formation of each particle in block 1, 
the modification of the speed, position and local best position of each particle in blocks 2-4, 
respectively, occurs independently of other particles, and the order of formation and modification of 
particles is arbitrary, it is proposed to perform parallel processing of particles using a parallel parfor 
loop. Parfor is part of Parallel Computing Toolbox, replaces the sequential for loop and is based on 
OpenMP technology, but unlike it, it can be used not only on a local multicore machine, but also on a 
cluster. The advantage of this approach over the CUDA and MPI technologies (represented in the 
Parallel Computing Toolbox by the spmd block) is the simplicity and clarity of the technical 
implementation. Due to the small number of particles, it becomes possible to perform the formation 
and modification of each particle on the corresponding physical core of the machines processors 
united in a cluster.  

Swarm size was selected as K =40. 
To determine the type of distribution used in the SAPSO method, a number of experiments were 

carried out, the results of which are presented in Table 1. 
 
Table 1 
Comparative characteristics of distribution types 

Distribution type 
Criterion 

U(0,1)  N(0,1)  C(0,1) 

Number of iterations  1000  10000  100000 



According to Table 1, the distribution U(0,1) requires the least number of iterations while 
maintaining the required forecast accuracy. 

To define the structure of a long-term forecast model based on FC-ESN, i.e. determining the 
number of hidden neurons, a number of experiments were carried out, the results of which are 
presented in Figure 4. 

A sample of values based on data from the logistics company Ekol Ukraine was used as input data 
to determine the parameters values of the neural network model for the long-term forecast. The 
criterion for choosing the structure of the neural network model was the minimum mean squared 
forecast error. As can be seen from Figure 4, with an increase in the number of hidden neurons, the 
error value decreases. It is sufficient to use 16 neurons in the hidden layer for the forecast, since with 
a further increase in the number of neurons in the hidden layer, the change in the error value is 
insignificant. 

 
 

 
Figure 4: Graph of the dependence of the mean square error (MSE) of the forecast on the number of 
hidden neurons 

 
The neural networks for long-term forecasting were investigated in the work according to the 

criterion of the minimum mean squared error (MSE) of the forecast and computational complexity 

(Table 2), where )(kM  – the number of unit delays for the kth layer, S – the number of cell, )1(N  – the 
number of neurons in the first layer, P – training set cardinality, N  – number of iterations of the 

multi-agent metaheuristic method SAPSO, N << P , PN )1( . 
According to Table 2, FC-ESN type 2 has the highest forecast accuracy, and Type 1 FC-ESN 

network has the lowest computational complexity. 
Based on the performed experiments, the following conclusions can be drawn. 
The LSTM network has average learning rates and forecast accuracy. 
 
 
 



Table 2 
Comparative characteristics of neural networks for long‐term forecast 

Network 
Criterion  

Full  
LSTM 

GRU  ESN  FC‐ESN type 1/2 

Minimum MSE 
of the forecast 

0.12  0.20  0.08  0.06 / 0.02 

Computational 
complexity 

~PN(1)(5M(0)+ 
3M(0)S+24S+S2) 

~PN(1)6 
(M(0)+N(1)) 

~PN(1)(M(0)+ 
N(1))+(max{P,M(0)+N(1)})2

~N(M(0)+N(1)) / 
~N(M(0)+M(2)+ N(1)) 

 
The GRU network is second only to the author's networks in learning speed (it uses a gradient 

learning method and less computational complexity than LSTM and ESN). But it has the least 
prediction accuracy (due to the gradient learning method and a simplified architecture compared to 
LSTM). 

ESN networks are inferior in forecast accuracy only to the author's networks, since they are trained 
on the basis of the pseudoinverse matrix method. But it has the lowest learning rate (it has the highest 
computational complexity, and the pseudoinverse matrix method does not provide for parallelism).  

The author's FC-ESN networks are trained on the basis of the proposed metaheuristic, which 
increases the forecast accuracy (low probability of hitting the local extremum) and the learning rate 
(provides parallel learning), and does not have the complex implementation. 

9. Conclusions 

The article discusses the problem of improving the efficiency of long-term forecasting in the 
supply chain. To solve this problem, the existing forecasting methods were investigated. These studies 
have shown that by far the most effective is the use of artificial neural networks. To improve the 
quality of the long-term forecast, an ESN neural network was chosen, modified (by introducing full 
connectivity and cascades of unit delays in the input and output layers), and in the course of a 
numerical study, the structure of its model was determined. The experiments have shown that with 16 
hidden neurons, the value of the mean squared error does not change significantly, and the selected 
network gives forecast results with a minimum deviation. A method was proposed for determining the 
parameters values of the proposed neural network model for long-term forecast. This allowed to 
ensure high speed and accuracy of the forecast. The proposed methods are intended for software 
implementation in the Matlab package using Parallel Computing Toolbox, which speeds up the 
process of finding a solution. The software implementing the proposed methods was developed and 
researched on the database of the logistics company Ekol Ukraine. The conducted experiments have 
confirmed the efficiency of the developed software allowing to recommend it for practical use in 
solving problems of supply chain management. Prospects for further research are in applying the 
proposed methods on a wider set of benchmarks. 
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