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Abstract  
The essential requirement for accurate classification is the high resolution of input images. 
Among known classification problems, which caused by low-resolution images, are the 
mixing of training samples and the absence of boundaries between objects of different 
classes. The mentioned above problems were reduced by imagery spatial resolution 
enhancement and a hybrid approach to classification, which allows unmixing training 
samples and improving the quality of images and their classifications. 
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1. Introduction 

Classification is the process of dividing a mass of data into classes (groups) according to some 
criterion. In the process of computer classification, each pixel of the image is assigned to one of the 
selected classes. Classification of satellite images is a widely-used remote sensing tool for solving 
such tasks as land-cover mapping and change detection [1], forecasting gas and oil potential of subsoil 
plots [2], etc. For example, when compiling a map of mountain vegetation using the satellite image, 
you can divide the entire territory depicted on it into areas covered with forests, meadows, glaciers, 
etc. The resulting image is called a "classification map", or simply "classification". 

Computer classification is used to automatically separate objects displayed on images and obtain a 
map of the area. For computer processing, each image is presented as a table, each cell of which - an 
element of the image resolution (pixel) - contains a number indicating the brightness of this element. 
In multispectral imagery, the values of the brightness of objects are recorded in separate rather narrow 
areas - spectral bands - of the visible and infrared parts of the spectrum. Then, during computer 
processing, for each pixel of the image, several digital values of brightness are used at once in 
different spectral bands. 

The main difference between visual decryption and automated processing is that a person 
(decoder) sees the entire or almost the entire image, whereas a computer in most cases analyzes 
digital values for only one pixel or a small group of pixels, comparing them with the rest. A person 
can use different decryption signs to recognize terrain objects: size, shape, length, relative position of 
objects, etc., but a computer can simultaneously analyze several images in different spectral bands, 
and, as a rule, much faster than a person can. 

When carrying out any classification, some obstacles affect the quality and accuracy of the 
classification: 
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 the use of supervised classification causes errors associated with the human factor, uneven 
samples, a discrepancy between the selected thematic classes and their spectral characteristics, etc. 
- this can be called a radiometric obstacle [3]; 
 dependence of the quality of classification (detail, separability of classes) on the spatial 
resolution of the input images, as well as the frequent use of images of different resolutions or 
non-uniform spatial resolution of images (such as Sentinel-2 data, where there is a spatial 
resolution of 10, 20 and 60 m) - what can be called a spatial obstacle [4]. 

2. Methods 

This study presents tools for solving the problems described above: applying a hybrid approach to 
classification to correct radiometry and the spatial resolution equalization of multispectral satellite 
images. 

2.1. Hybrid approach to classification 

The reasonable interpretation of land cover classes could only be achieved by supervised 
classification since it applies expert knowledge, which describes each type of land cover. Supervised 
classification requires training samples of classes selected by an expert. However, those classes, as a 
rule, are subjective as well as expert-selected training samples are not accurate. Unlike supervised 
classification, unsupervised one provides objective classes, obtained by clustering. The hybrid 
approach to classification [5] is applied to form the interpretable and objective classes. The scheme of 
the described above approach to classification is shown in Figure 1. 

 
 

 
Figure 1: The scheme of the hybrid approach to classification 

 
This approach to classification implies subdividing training samples of expert-selected classes into 

objective clusters by unsupervised classification. After that, formed clusters are used as training 
samples for supervised classification. Those steps are aimed to reduce the inaccuracy and 



subjectiveness of the selected samples. In turn, it increases the classification accuracy in comparison 
with both supervised and unsupervised types of classification. 

2.1.1. Training samples clustering 

The first step is the training samples clustering by unsupervised classification. Clustering is 
necessary to avoid the subjectiveness of expert-selected classes. Also, due to the high heterogeneity of 
some land cover classes, they overlap each other and it means that their training samples, as a rule, are 
mixed. This problem could be also solved by the initial training samples clustering. Basic Sequential 
Algorithmic Scheme (BSAS) [6] is applied as a method of unsupervised classification. The main 
benefit of this method among others is that the number of clusters may not be known in advance. 
However, instead of the number of clusters, this scheme requires two other input parameters, which 
are the threshold of the dissimilarity and the maximum allowed number of clusters. The first one is 
defined as a distance between each cluster and feature vector, which corresponds to the set of training 
samples. The second parameter is required not to divide the input data into a greater number of 
clusters than it’s defined by an expert. This parameter should be defined taking into account the 
computational costs of those operations and/or limit of clusters, overcoming of which will provide 
inadequate and not interpretable training samples subdividing. This method applies separately to the 
training samples of each class. As a result of this step, initial expert-selected training samples would 
be subdivided into objective subclasses and their heterogeneity would be reduced by transforming 
them into dense clusters. 

2.1.2. Supervised classification 

The next step is the supervised classification of the study area. Support vector machine [7] is 
applied as a method of supervised classification for this task. This method is proved its reliability in 
conditions of high heterogeneity of land cover classes [8]. The required input data for this procedure 
are an image of the study area and training samples of each class. Subclasses obtained at the previous 
step are used as training samples. Therefore, each subclass is interpreted as a particular class. After 
this step, the input image will be classified into that number of classes, which corresponds to the 
number of subclasses obtained after clustering of initial training samples. 

In case if the task is to obtain classification, which consists only of initial classes, then merging of 
subclasses into initial classes is required. The subclasses’ merging defines the initial class of pixels 
subclass, and then the value of a pixel is converted to the value of the initial class. This procedure is 
performed separately for each pixel of classification obtained at the second step. 

2.2. Spatial resolution equalization 

It is very important to carry out the spatial resolution equalization procedure when satellite images 
or separate image bands of different spatial resolutions are used together. 

A widely used method is to simply divide a pixel into subpixels according to the nearest neighbour 
rule [9], while the resulting subpixels retain the value of the output pixel. Although the use of the 
nearest neighbour rule preserves the average radiometric value of subpixels in a pixel, it does not 
increase the information content of the resampled bands. 

Another widely used method for calculating subpixel values is the application of the selected type 
of interpolation based on a certain number of adjacent pixels in the original image. Consider, for 
example, a bicubic interpolation technique [10] that slightly smoothes the image, giving a sense of 
more detail. However, this procedure does not keep the radiometry within the original pixel. The 
average value of the subpixels in pixels is different from the initial value of the input image. 

It is proposed to use a method [11] based on image segmentation by spectral signatures, as well as 
optimization of decision making when redistributing values in subpixels, taking into account both the 
similarity of the original spectral signatures and the spatial relationships of the topology for each type 
of land cover. 



2.2.1. Scanning pattern 

The Nearest Neighbour Oversampling procedure quadruples a pixel and ultimately generates 4 
identical subpixels. To improve the overall physical resolution of the image bands, but not degrade 
their quality, it is necessary to correctly redistribute the signals in these subpixels, while maintaining 
their average radiometric value.  

This should be done using the scanning window and taking into account the adjacent territory, that 
is, the nearest eight subpixels (numbered 1 .. 4 and 6 .. 9) around the current one (numbered as 5) as 
shown in Figure 2. 

 
 

 
Figure  2:  Neighbourhood  of  processed  subpixel  (5)  within  scanning  window  (1  ..  4  and  6  ..  9) 
including 4 subpixels (1, 2, 4, 5) of one low‐resolution pixel 

 
When processing images, the process of determining different types of the earth's surface is 

necessary. This is done by spectral segmentation of the image by spectral characteristics. Fuzzy logic 
methods are widely used to solve such problems [12]. 

2.2.2. Classes reallocating 

For the correct spatial redistribution of subpixels, it is necessary to analyze the topological 
properties of the main classes and obtain appropriate topological descriptions. Multiple valued logic 
(MVL) methods are used to solve the problem of changing the subpixel class according to the 
relationships and classes of the nearest surrounding subpixels. 

MVL is a type of logic in which the level of truth can be m-valued or infinite, not just binary, as in 
Boolean logic. MVL requires a mathematical approach to express the relationships between input 
logic values and the result of certain phenomena. A logical function with a value having the following 
form was used: 

 

,:  n
mf   (1) 

where n is the number of multivalued variables, and the set M = {0, 1, ..., m – 1} is the set of certain 
truth levels. 

MVL is used to reclassify surface types depending on their spatial distribution, which is used in 
our analysis of remote sensing data because this approach will allow a fairly efficient reclassification. 

The pixel redistribution procedure takes into account the following topological properties of the 
analyzed segment:  

 compactness - when subpixels of one class are localized by compact inseparable groups; 
 orientation (linearity) - subpixels of one class are arranged linearly: horizontally, vertically, 
diagonally if you can determine the orientation of these lines; 
 texture (homogeneity) - subpixels of one or more classes are arranged in a checkerboard 
pattern or close to it, as well as when several different classes fall within the window and compact 
or linear structures are not defined.  



Five significant types of the relative location of subpixels of one class are defined in Figure 3. 
These five types represent specific shapes of subpixels, such as all columns and rows - T5, diagonals 
(T2), and right triangles with a certain location (T1 - the right angle at the edges, T3 - the right angle 
in the middle of the outer columns and rows in the matrix, T4 - the right angle in the middle of the 
matrix). The number of occurrences of such types can be defined as an input variable for a 3-digit 
logical function, which will give a decisive result for the central pixel of the class change matrix. 

 
 

 
Figure 3: The main types of mutual arrangement of subpixels. 

 
The values of the types of mutual arrangement of subpixels are consistent with the possible 

number of this type of arrangement in the considered block. 
The next step is performed in a matrix consisting of subpixels of a 3 × 3 sliding window, where the 

analyzed pixel is central. The classification in the scan window is checked sequentially. A logical 
function is used to decide on the replacement of the central subpixel class (Figure 4). According to 
this function, the central pixel changes if the value of the function is 2, and does not change if the 
value of the function is 0. Changing the class of the central pixel requires additional analysis if the 
value of this function is 1. 

 
 

 
Figure 4: A logical function to change the class of the central pixel depending on its location. 

 



2.3. Radiometric‐spatial Feedback 

The hybrid classification method described above requires high-resolution source images. In turn, 
to increase the resolution of the bands of a multispectral image, stable clustering is required, which is 
based on the spectral signatures of the earth's covers. This leads us to the solution of using radiometric 
spatial feedback. This method is an iterative process described in Figure 5. 

 
 

 
 

Figure  5:  General  scheme  of  multispectral  imagery  classification  local  quality  improvement  with 
radiometric‐spatial feedback. 

 
The iterative process continues until the spatial resolution of the bands is increased. As soon as the 

increase becomes insignificant compared to the previous iteration, the process stops and the final 
classification is carried out. 

3. Test  

The method of multispectral imagery classification local quality improvement with radiometric-
spatial feedback in the selected study area was tested. 

3.1. Study area 

The study area was located around the city of Novomyrhorod in Kirovohrad Oblast (administrative 
province) of central Ukraine (Figure 6). It encompassed agricultural, wetland, and urban landscapes 
which elements substantially vary in spatial characteristics. For instance, extensive and spatially 
homogeneous croplands have sharp delineations in a form of roads and tree lines, while wetlands and 
wet grassland have meandering and vague boundaries. Relatively small built-up areas extended along 
streets and surrounded by highly heterogeneous household plots. However, most of these elements 
have similar spectral characteristics especially, during the mid-summer season. For their better 
recognition from satellite images, the application of spectral indices  strongly recommended [13-15]. 

 



 
Figure  6:  The  study  area  involved  various  urban,  rural,  and  complex  natural  landscapes  around 
Novomyrhorod,  Ukraine.  It  is  shown  on  the  fragment  of  the  Sentinel‐2 Multispectral  Instrument 
(MSI) image acquired on 6 July 2020. The image represents a true‐colour composite of Red, Green, 
and Blue bands of 10 m spatial resolution. 

 
In this study, we focused on seven land cover types. They are artificial surfaces, croplands, tree-

covered areas, grasslands, wet grasslands, wetlands, and water bodies (Table 1). 
 

Table 1 
The classification scheme used in the study 

Land Cover Class  Description 

Artificial surfaces  Urban  public  and  industrial  built‐up  areas,  transport  units,  and 
construction sites 

Croplands  Arable  land,  permanent  crops,  fallow  lands,  heterogeneous 
agricultural areas, household plots 

Tree‐covered areas  Broadleaved  and  coniferous  forest  stands,  ravine  and  floodplain 
forests, roadside tree lines, areas with tree cover more than 30% 

Grasslands  Natural  herbaceous  vegetation,  permanent  grasslands  of  natural 
origin, pastures 

Wet grasslands  Grassland that is periodically flooded or waterlogged by freshwater 
with typical plant communities of grass, sedge, and rush 

Wetlands  Inland marshes, reed beds, riparian cane formations 
Water  Rivers, reservoir, streams 

 
 
 



3.2. Sentinel‐2A data and pre‐processing 

Cloud-free Sentinel-2A multispectral instrument (MSI) image acquired on 06 July 2020 was 
downloaded from the U.S. Geological Survey (USGS) archive through the EarthExplorer interface 
(https://earthexplorer.usgs.gov/). The images were obtained at Level 1C: top of the atmosphere (TOA) 
reflectance (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi).  

The MSI measures the Earth's reflected radiance in 13 spectral bands from the visible near-infrared 
(VNIR) to shortwave infrared (SWIR) wavelength regions, with spatial resolutions from 10 to 60 m, 
as shown in Table 2. 

 
Table 2  
Spatial and spectral resolutions of Sentinel‐2 MSI  

Sentinel‐2A/MSI (µm)  Band  Resolution (m) 

Band 1 (0.43–0.45)  Coastal aerosol  60 
Band 2 (0.46–0.52)  Blue  10 
Band 3 (0.54–0.58)  Green  10 
Band 4 (0.65–0.68)  Red  10 
Band 5 (0.7–0.71)  Red‐edge‐1  20 
Band 6 (0.73–0.75)  Red‐edge‐2  20 
Band 7 (0.76–0.78)  Red‐edge‐3  20 
Band 8 (0.78–0.90)  NIR  10 
Band 8A (0.85–0.87)  Narrow NIR  20 
Band 9 (0.93–0.95)  Water vapor  60 
Band 10 (1.36–1.39)  SWIR/Cirrus  60 
Band 11 (1.56–1.65)  SWIR‐1  20 
Band 12 (2.10–2.28)  SWIR‐2  20 

 
To provide atmospherically corrected images essential to calculations of spectral indices, Level 1C 

data was processed to Level 2A: bottom of the atmosphere reflectance (BOA).  
The Sen2Cor tool (https://step.esa.int/main/snap-supported-plugins/sen2cor/) from the European 

Space Agency (ESA) Sentinel Application Platform (SNAP) was used to perform the corrections for 
the Sentinel-2 image. During the processing, Sen2Cor discarded the three bands (B1, B9, and B10) 
that consider the effects of aerosols and water vapour on reflectance. Then, the Sentinel-2 bands 
acquired at 20 m data were previously resampled using the nearest neighbour method to obtain a layer 
stack of 10 spectral bands at 10 m. At the final stage of data pre-processing, the obtained image was 
resized by an area of 1500 × 1000 pixels (Figure 6) for testing the method proposed in the study. 

3.3. Spectral indices use 

Spectral indices, being nonlinear transformations of original spectral bands, substantially enhance 
the classification quality of complex classes [1, 4, 16]. The red-edge (RE) is the prominent spectral 
feature of vegetation, including wetlands [13, 14]. The SWIR range is extensively used in many 
applications related to water bodies and urban surfaces [15]. Sentinel-2 MSI image of Level 2A 
provides the RE (B5, B6, and B7) and the SWIR (B11 and B12) ranges at 20m spatial resolution.   

The SI used in this study are:  
 (a) the normalized difference vegetation index - NDVI [17]; 
 (b) the red-edge NDVI -RENDVI [18]; 
 (c) the red edge ratio vegetation index – RERVI [19, 20]; 
 (d) the normalized difference water index -NDWI [21]; 
 (e) the modified normalized difference water index - MNDWI [22]; 
 (f) the normalized difference moisture index - NDMI [23]; 
 (g) the normalized difference built-up index – NDBI [24]. 



The formulations and the bands used to calculate the spectral indices from Sentinel-2A MSI are 
shown in Table 3. 

 
Table 3  
The spectral indices calculated from Sentinel‐2A MSI image data in the study 

Vegetation Index  Formulation  Sentinel‐2 Bands Used 

NDVI 

redNIR

redNIR

RR

RR




 
48

48

BB

BB




 

RENDVI 

edgeredNIR

edgeredNIR

RR

RR

_

_




 

68

68

BB

BB




 

RERVI 

edgered

NIR

R

R



 
6

8

B

B
 

NDWI 

NIRgreen

NIRgreen

RR

RR




 

83

83

BB

BB




 

MNDWI 

SWIRgreen

SWIRgreen

RR

RR




 

113

113

BB

BB




 

NDMI 

SWIRNIR

SWIRNIR

RR

RR




 
128

128

BB

BB




 

NDBI 

NIRSWIR

NIRSWIR

RR

RR




 
811

811

BB

BB




 

 

4. Local quality improvement 

Guided by the data flow diagram described in Figure 5, a two-iteration process was carried out, 
which included 2 hybrid classification blocks, 2 blocks of spectral bands spatial resolution 
enhancement, and the final classification. 

The results of evaluating the spatial resolution of spectral bands after the second iteration using the 
edge spread function are presented in Table 4 and show a steady increase of spatial resolution in 
bands 5-7 and 8a. It is assumed that a more stable increase of the spatial resolution in bands 11 and 12 
can be achieved after attracting additional spectral signatures for reference clustering. 

 
Table 4 
Digital image bidirectional Gaussian edge spread function values after the second iteration 

Band  Basic  Cubic  Enhanced 

Band 5  1.778 × 2  2.806  2.658 
Band 6  2.313 × 2  3.092  1.417 
Band 7  2.157 × 2  3.047  1.759 
Band 8a  2.239 × 2  3.128  1.893 
Band 11  2.561 × 2  3.379  4.113 
Band 12  2.043 × 2  3.009  4.125 
Average  4.364  3.077  2.661 

 
An illustration of the multispectral imagery classification local quality improvement with 

radiometric-spatial feedback is shown in Figure 7. 
 
 



 
Figure  7:  Test  example:  a  ‐  reference  classification  before  the  spatial  resolution  enhancement  of 
spectral bands, b ‐ a subset of the area of interest, c ‐ final classification after the spatial resolution 
enhancement of spectral bands 

 
In the presented test section, you can see that the class divergence has increased, as a result of 

which there are no obvious errors in the final classification when the pixels of the artificial object 
class appear in the middle of the field class. All linear extended features, such as forest belts and 
roads, retained their shape and got rid of distortions caused by larger pixels from bands with a lower 
spatial resolution. 

5. Conclusion 

The article presents a solution to a radiometric obstacle by using a hybrid approach to 
classification, as well as a solution to a spatial obstacle by the spatial resolution enhancement of 
lower-resolution spectral bands. Radiometric-spatial feedback has also been established. 

Further research should be aimed at developing an algorithm for determining the most appropriate 
clustering method for each particular class. And to increase the quality of the spatial resolution 
enhancement in all spectral bands, it is planned to use spectral signatures databases. 
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